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Abstract

We propose a novel two-stage pedestrian detection framework that combines multi-
scale decorrelated filters to extract more discriminative features and a novel group cost-
sensitive boosting algorithm. The proposed boosting algorithm is based on mixture loss
to alleviate the influence of annotation errors in training data and explores varying cost
for different types of misclassification. Experiments on Caltech and INRIA datasets
show that the proposed framework achieves the best detection performance among all
state-of-the-art non-deep learning methods. In addition, the proposed approach runs 88X
faster than the best performing method from the widely-known Filtered Channel Feature
framework.

1 Introduction
Over the past decade, vision-based pedestrian detection has attracted plenty of attention in
the research community [1]. However, [30] suggests that there is still a ten fold improvement
needed before existing methods can match human perception. Even though the recently re-
ported deep learning methods (e.g. [3, 27]) have demonstrated impressive performance,
the high computational complexity of Convolutional Neural Network (CNN) based methods
prohibit their applicability for real time processing on embedded systems with tight com-
putational and energy constraints [4]. Hence, state-of-the-art pedestrian detection methods
are still unable to meet the joint performance, runtime, and energy requirements imposed by
practical systems (e.g. autonomous driving).

In this paper, we focus on improving the detection performance of non-CNN based meth-
ods, while at the same time, lowering the computational complexity. In particular, we pro-
pose a novel two-stage detection framework to boost the performance of decorrelated chan-
nel feature methods. Unlike LDCF (Local Decorrelated Channel Feature) [20], which learns
single scale local decorrelated filters for each feature channel, the proposed method explores
multi-scale local decorrelated filters to extract more discriminative features. Our proposed

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Benenson, Omran, Hosang, and Schiele} 2014

Citation
Citation
{Zhang, Benenson, Omran, Hosang, and Schiele} 2016{}

Citation
Citation
{Cai, Fan, Feris, and Vasconcelos} 2016

Citation
Citation
{Zhang, Lin, Liang, and He} 2016{}

Citation
Citation
{Canziani, Paszke, and Culurciello} 2016

Citation
Citation
{Nam, Doll{á}r, and Han} 2014



iiZHOU ET AL: GROUP COST-SENSITIVE BOOSTING WITH MULTI-SCALE DECORRELATED FILTERS FOR PEDESTRIAN DETECTION

multi-scale filters not only improves the detection performance of existing decorrelated chan-
nel feature methods, but also contributes to lowering computational complexity due to the
use of smaller filter sizes (proposed filter sizes are 2× 2 and 3× 3, while LCDF requires
5×5 filters).

To further improve the detection performance, we proposed a new boosting algorithm
that explores different costs for varying misclassification types and exploits a mixture loss
to alleviate the sensitivity to annotation errors. Concretely, the training samples are divided
into groups based on the resolution, and each group is assigned different cost so that more
emphasis is given to the harder samples in the training process. Mixture loss that combines
the exponential and logistic loss is employed to deal with outliers, which have significant ef-
fects on the boosting algorithm. The proposed mixture loss not only maintains the efficiency
of exponential loss, but also reduces its sensitivity to outliers caused by the annotation errors.

The main contributions of this paper are summarized as follows:

1) Our work is the first to learn multi-scale decorrelated filters from training samples.
Unlike existing decorrelated filters method [20] that learns single scale filters, our pro-
posed method can integrate richer local information and extract more discriminative
features.

2) We propose a novel group cost-sensitive RealBoost algorithm based on a new mixture
loss for training pedestrian detector. The training samples are divided into groups
based on the resolution and different costs are assigned to each group. The different
costs enforce the learning algorithm to pay more attention to the harder samples. A
new mixture loss is proposed to alleviate the influence of annotation errors.

3) We perform extensive evaluations on the proposed framework using the widely known
Caltech and INRIA datasets. Our proposed framework achieves the best detection
performance (i.e. 14.63% log-average miss rate (MR) on Caltech dataset) among
all the state-of-the-art non-CNN methods. In addition, the proposed method runs 88
times faster than the best performing method in the widely-known FCF framework
(i.e. Checkerboards [29]).

2 Related Work

Existing pedestrian detection methods can be categorized into three families based on the
classification strategy adopted: DPM (Deformable Part Models) variants [13, 14, 16], Con-
volutional Neural Network (CNN) [3, 11, 27], and Decision Forest (DF) [6, 10, 28, 29].
The current ranking on Caltech dataset [9] shows that the top-performing methods belong to
the CNN and DF based approaches. The former adopts deep CNN to learn discriminative
features and they typically require high-end GPUs to meet real-time constraints. Experi-
ments undertaken in [4, 17] show that energy and thermal constraints will limit the maxi-
mum achievable accuracy and run-time of deep learning algorithms on embedded GPUs for
applications, e.g. autonomous driving. As such, CNN-based methods are currently not well
suited for realization on affordable and mass volume deployable embedded platforms that
have tight computational constraints. In the remaining section, we will present a review of
the DF based methods, which have achieved notable successes recently.
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Figure 1: Proposed framework. The upper and lower parts are the training and testing procedures
respectively. For each stage, the decorrelated filters are learned from feature channels and used to
extract filtered channel features. Then the classifier is trained by exploiting proposed group cost-
sensitive RealBoost algorithm. During testing, the aggregated channels are extracted from the images
and fed into our multi-stage detector. The final score comprises of scores from the first and second
stage and the detection result is obtained after Non-Maximum Suppression (NMS).

Current top-performing DF-based approaches belong to the Filtered Channel Feature
(FCF) framework [29], which consists of three steps: aggregated feature channel extrac-
tion, filtering over feature channel and object classification. The aggregated feature channel
includes 10 channels: 3 for LUV color, 1 for gradient magnitude, and 6 for Histogram of
Oriented Gradients (HOG). These channels are used for extracting mid-level or high-level
features through filtering. The Adaboost algorithm is then employed to train a cascade strong
classifier. The existing FCF methods vary according to the filters adopted in the channel fil-
tering step. For example, Checkerboards [29] uses a set of checkerboard pattern filters, while
RotatedFilters [30] employs rotated filters based on the orientation of HOG channel. All of
the above mentioned approaches adopt hand-crafted filters based on domain knowledge and
are independent from the training data used in the learning process. To integrate prior in-
formation from training samples, LDCF [20] employs local decorrelation strategy to learn
the filters. While LDCF has been shown to achieve notable gains over ACF (Aggregated
Channel Feature) which use single pixel lookups in the aggregated channels as feature, its
performance is still far lower than current top-performing DF-based approaches. Besides,
LDCF exploits large decorrelated filter size (5× 5) that leads to high computational com-
plexity at the channel filtering step.

All of the above mentioned methods [10, 20, 28, 29, 30] focus on feature representation
and employ cost-insensitive Adaboost learning algorithm [15] when training the classifier.
The cost-insensitive Adaboost assumes that different types of misclassification have equal
importance and hence are assigned identical cost. However, this assumption does not usu-
ally hold in real-world applications [18]. For instance, pedestrians that are far from the
camera are more difficult to detect and localize due to lower resolution and image blurring.
To achieve a better detection performance, more emphasis should be given to these harder
samples. Various cost-sensitive boosting methods have been proposed to assign different
costs to different types of misclassification [12, 19, 24, 25]. However, these algorithms are
designed to deal with class-level cost-sensitivity by only assigning different costs to inter-
class misclassification. In order to better handle multi-resolution pedestrian detection, [31]
proposed a group cost-sensitive Adaboost which explores different costs for different reso-
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lution subsets from positive samples during training. However, the groups are formulated
based on the resolution of positive training samples, and hence they are affected by the qual-
ity of the positive samples that are often subjected to annotation errors [30] as shown in Fig.
3(b). The negative samples with complex background have much larger intra-variants than
positive samples but are not explored. Consequently, the detection performance of [31] is
condiderably lower than existing FCF methods (e.g. Checkerboards [29]).

3 Proposed Method
In this section, we present our multi-stage pedestrian detection framework (see Fig. 1),
which integrates the proposed multi-scale local decorrelated filters and group cost-sensitive
RealBoost algorithm to simultaneously improve detection performance and runtime.

3.1 Multi-scale Local Decorrelated Filters
LDCF [20] applies feature transform to remove correlation in local neighbourhoods so that
the filtered channel features are more suitable for orthogonal split instead of oblique split in
decision trees. Specifically, LDCF uses the top 4 learned PCA eigenvectors extracted from
5× 5 patch as filters and implements filtering over each aggregated channel. The filtered
features are fed into a strong classifier learned by Adaboost. Compared to ACF [10], LDCF
achieved higher performance on Caltech dataset. However, the decorrelated filters learned
by LDCF is from single scale (size of 5× 5) that can only extract discriminative features
from a specific local neighbourhood, which limits their detection performance potential.
To extract more discriminative features, we propose to learn multi-scale decorrelated filters
from training samples and investigate the impact of different scales of filters on the detection
performance. We setup a validation environment by splitting the Caltech 10x training set into
two for training and one for testing. The parameters used in the cross-validation experiments
are identical to those used in the experiments described in Section 4. The log-average miss
rate (MR), which is calculated as False Positive Per Image (FPPI) in [10−1, 100], is used to
evaluate the detection performance.

The detection performance with varying decorrelated filter size on Caltech 10x validation
set is shown in Fig. 2(a). Note that decorrelated filters corresponding to top three PCA
eigenvectors of each scale are used in the experiments. The aggregated channel feature is
used when the decorrelated filter size is one. It can be observed that average MR increase
when the filter size is larger than two. This phenomenon is mainly caused by overfitting as
larger filters capture pixel differences at larger distances and hence, are less correlated. Fig.
2(b) shows the detection performance with varying number of filters with the filter size fixed
as 2×2. It can be observed that the average MR decreases with more filters which implies
more decorrelated filters can extract more discriminative feature for pedestrian detection.
The detection performance gain is very small when the filter number increases from three
to four, but the time for filtering over aggregated channels increases about 33%. Therefore,
in the first stage of the proposed framework, we employ top three decorrelated filters with
size 2× 2. Our pedestrian detector using these three decorrelated filters achieves MR of
15.56%, which is much better than LDCF (MR of 24.80% [20]) and outperforms existing
top-performing FCF methods (e.g. Checkerboards with MR of 18.47%, and RotatedFilter
with MR of 19.20% [29, 30]). This demonstrates the effectiveness of using small scale
decorrelated filters compared to larger ones.
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Figure 2: Average MR on Caltech 10x validation set with varying (a) decorrelated filter size, (b)
number of decorrelated filters, and (c) multi-scale decorrelated filter size.
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Figure 3: a) Learned multi-scale decorrelated filters with size of 2× 2 (left) and 3× 3 (right) from
Caltech10x training set, the top bar indicates the corresponding aggregated channel. b) examples of
error in Caltech annotations, upper and lower rows are due to false annotations and poor alignments
respectively.

To further increase the detection performance, multi-scale decorrelated filters are ex-
plored in the second detection stage of our framework. Based on the analysis in Fig. 2(a),
we propose to employ filter size of 2× 2 and another larger filter in a multi-scale setting.
The average MR of varying multi-scale decorrelated filter sizes in Caltech 10x validation set
is shown in Fig. 2(c). It can be observed that the average MR increase with larger filters.
This is consistent with the results of using single scale filters shown in Fig. 2(a). As such,
we propose to exploit 2× 2 and 3× 3 decorrelated filters when training the second stage
detector. The learned multi-scale decorrelated filters are illustrated in Fig. 3(a). By using
multi-scale decorrelated filters in the two-stage framework, the proposed method achieves
MR of 14.63% which is the best detection performance on Caltech dataset among all non-
deep learning methods in the literature.

3.2 Group Cost-sensitive RealBoost Algorithm

We first briefly describe detection via cost-insensitive boosting and then derive our proposed
group cost-sensitive RealBoost algorithm based on a new mixture loss.

Detection via Boosting: Given a set of training samples for pedestrian detection {(xi,yi)}N
i=1,

where x = (x1, . . . ,xd)
T ∈Rd is the feature vector of each training sample, and y∈ {−1,1} is

the label of the training sample. The detector aims to learn a function G(x) that maps feature
space to label space and can be expressed as:

G(x) = sgn[F(x)] (1)
F(x) is a predictor, sgn[.] is the sign function that returns 1 if F(x) > 0 and -1 otherwise.
In RealBoost, the predictor F(x) is learned from a linear combination of weak learners in a
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greedy forward stagewise fashion [15]:

F(x) =
M

∑
m=1

fm(x) (2)

The predictor is updated at each iteration according to:
F(t)(x) = F(t−1)(x)+ f (t)(x) (3)

where f (t)(x) is the learned weak learner in iteration t. The detector G(x) is optimal if it
minimizes the risk EX,Y [Loss(x,y)], where Loss(x,y) is a loss function that measures the
misclassification. The zero-one loss is often used to evaluate the misclassification:

Loss(x,y) =

{
0, if G(x) = y
1, if G(x) 6= y

(4)

Group Cost-sensitive Boosting: The zero-one loss assigns identical cost to all kinds of
misclassification and is not well suited for pedestrian detection. For instance, samples with
low resolution often leads to misclassification. As such, we propose a group cost-sensitive
RealBoost algorithm that explores different costs for misclassification of pedestrian samples
with different resolutions. Specifically, the training samples are divided into two groups
based on their resolution. The group cost-sensitive loss can be expressed as:

Loss(x,y) =


0, if G(x) = y
CHR, if G(xHR) 6= y
CLR if G(xLR) 6= y

(5)

where xHR and xLR represents set of high and low resolution samples respectively. In the
proposed method, the misclassification of low resolution samples need to be given higher
emphasis, i.e. CHR < CLR. Since the minimization of risk with respect to zero-one loss is
usually difficult, the boosting family chooses to minimize alternative risk, based on convex
upper-bounds of zero-one loss. These risk are of the form:

Rφ = EX,Y [φ(yF(x))] (6)
where φ(v) is a convex upper bound of loss in Eq. 5. In particular, exponential loss and
logistic loss are commonly used in boosting algorithms e.g. Adaboost, RealBoost and Log-
itBoost [15]. The former two employs exponential loss while the last one exploits logistic
loss. The exponential loss is known to be overly sensitive to outliers [8, 26]. As can be seen
from Fig. 4(a), the sensitivity stemming from the weight of misclassifed samples increase
exponentially, especially when yF(x)→−∞. In object detection tasks, errors from anno-
tations are common, as shown in Fig. 3(b) from Caltech pedestrian dataset [9]. Compared
to exponential loss, the logistic loss is more moderate and the speed of weight increasing
is much slower. To alleviate the sensitivity of exponential loss and explore samples with
different resolutions, we propose a novel group cost-sensitive mixture loss which exploits a
combination of exponential and logistic loss as:

φ(v) =C(αe−Cv +(1−α)
1

ln2
ln(1+ e−Cv)) (7)

where α is a trade-off between the exponential and logistic loss. C is the cost for samples
with different resolution as defined in Eq. 5. The proposed loss is illustrated in Fig. 4(a). It
can be observed that the proposed loss is the convex upper-bound of loss defined in Eq. 5.

Note that the hypotheses that pass the first stage should have similar response in decor-
related channels. In order to distinguish the hypothesis that are wrongly classified in the
first stage, we need to expand the receptive field and integrate more local information. In
the proposed framework, two methods are employed: using larger filter and feature channel
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shrinkage. Larger filters allow us to learn decorrelated filters from larger patch and inte-
grate more local information. Feature channel shrinkage aims to shrink the feature channels
prior to filtering which allows filters of the same size to cover larger region. Concretely, in
the second stage, we learn decorrelated filters with size of 2× 2 and 3× 3 since these two
scale filters show lower average MR as illustrated in Fig. 2(a). We adopt 2×2 max-pooling
operation with stride of 2 in vertical and horizontal orientations. The feature channel shrink-
age operation leads to 2× 2 receptive field expansion from the local regions if we use the
same filters as in the first stage while keeping some degrees of invariance with respect to
translations and distortions.

Given CHR, CLR and α , the optimal detector can be learnt by minimizing empirical risk
as:

Rφ(F) =
1
N
[ ∑
xi∈xLR

CLR(αe−yiCLRF(xi)+(1−α)
1

ln2
ln(1+ e−yiCLRF(xi)))

+ ∑
xi∈xHR

CHR(αe−yiCHRF(xi)+(1−α)
1

ln2
ln(1+ e−yiCHRF(xi)))]

(8)

The above problem can be optimized using greedy forward stagewise fashion [15]. After we
have estimated F(t−1)(x), the weak learner f (t)(x) can be learned by solving the following:

f (t)(x) = argmax
f
− [ ∑

xi∈xLR

CLR(−αyiCLRe−yiCLRF(t−1)(xi)− (1−α)yiCLR

ln2(1+ eyiCLRF(t−1)(xi))
)

+ ∑
xi∈xHR

CHR(−αyiCHRe−yiCHRF(t−1)(xi)− (1−α)yiCHR

ln2(1+ eyiCHRF(t−1)(xi))
)] f (t)(xi)

= argmax
f

∑
xi∈xLR

w(t)
iLR

yi f (t)(xi)+ ∑
xi∈xHR

w(t)
iHR

yi f (t)(xi)

(9)
where

w(t)
i =


CLR(αCLRe−yiCLRF(t−1)(xi)+ (1−α)CLR

ln2(1+eyiCLRF(t−1)(xi))
), if x ∈ xLR

CHR(αCHRe−yiCHRF(t−1)(xi)+ (1−α)CHR

ln2(1+eyiCHRF(t−1)(xi))
), if x ∈ xHR

(10)

is the weight of training samples for different groups at iteration t. Note that the weight rule
becomes cost-insensitive if CLR = CHR. The costs defined in Eq. 5 is decided by the ratio
CLR/CHR, CHR can be set to one and the search for optimal cost becomes one-dimensional.
The optimal CLR and α can be selected from cross-validation experiments. The detector of
each stage can be learned by solving corresponding problem in Eq. 8.

4 Results and Discussion
In this section, we evaluate the detection performance and execution time of the proposed
method on two widely used datasets. To ensure a fair comparison for the execution time,
we implemented all the methods on the common platform, i.e. 3.5GHz Intel Xeon E5-1650
CPU with single thread execution. We have not relied on GPUs in our experiments.

Datasets: Our experiments are based on two public datasets: Caltech [9] 1 and INRIA
[6] 2. For the Caltech dataset [9], the training data is augmented by extracting one of every

1http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
2http://pascal.inrialpes.fr/data/human/
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Figure 4: a) Loss function φ(v). Detection performance comparison with state-of-the-art methods on
b) Caltech and c) INRIA datasets

Table 1: Average execution time per frame (seconds) and MR of FCF methods (Caltech)

Aggregated Channel Filtering Classification Total Time (s) MR(MR_N ) (%)
ACF 0.045 - 0.061 0.106 29.76(26.42)

LDCF 0.046 0.220 0.035 0.301 24.80(22.02)
RotatedFilters 0.384 9.309 6.931 16.625 19.20(15.27)
Checkerboards 0.496 22.117 20.709 43.319 18.47(14.39)

Ours 0.193 0.135 0.163 0.491 14.63(11.15)

3 frames (similar to [29]). 42782 images are used to train our model. The Caltech test set
consists of 4024 images which includes 1014 positive images. The evaluation metric is MR
on False Positive Per Image (FPPI) in [10−2, 10−0] under reasonable setup (pedestrians that
are at least 50 pixels tall and at least 65% visible [9]). In addition, we also tested our model
on the new annotations of Caltech test set provided by [30], which has corrected some errors
in the original annotations. We denote the results of the original and new annotations as MR
and MR_N respectively. For the INRIA dataset [6], there are 614 positive images and 1218
negative images in the training set. The trained model is evaluated on 288 testing images
using MR on FPPI ranges of [10−2, 10−0].

Model Parameters: We use a model with size 64×128 when training the detector. For
each stage, three rounds of hard negative mining (32, 512, 1024, 5120 trees respectively) are
used and 100000 negatives are added to the training set in each round. During decision tree
learning, we randomly selected 1/16 features and the depth of the decision tree is limited
to 5. The strides of both sliding window and aggregated channel shrinkage factor are 4,
and each image is upsampled by one octave. The height threshold of samples that splits
training data into low and high resolution group is 55 pixels. The optimal value of costs for
different groups and coefficient α are selected from CHR = 1, CLR ∈ [1.0 : 0.05 : 1.3] and
α ∈ [0.5 : 0.05 : 1] in the cross-validation experiments as described in Section 3.1.

4.1 Comparison with State-of-the-art Methods on Caltech dataset

The detection performance of proposed method and state-of-the-art methods are shown in
Fig. 4(b). It can be observed that the proposed method outperforms all non-CNN methods
in detection performance. Compared with FCF methods, the proposed method achieves a
much lower MR i.e 14.63% while the MR of LDCF [20], RotatedFilters [30] and Checker-
boards [29] are 24.80%, 19.20% and 18.47% respectively. The MR of proposed method
is about 2% lower than NNNF [5]. The proposed method still achieves lowest MR among
non-CNN methods when evaluating on the new annotations provided by [30]. Among the
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Table 2: Average execution time per image (seconds) and MR of FCF methods (INRIA)

Aggregated Channel Filtering Classification Total Time (s) MR (%)
ACF 0.024 - 0.012 0.036 17.28

LDCF 0.051 0.243 0.105 0.399 13.79
Ours 0.079 0.198 0.022 0.299 10.91

CNN methods, RPN+BF that combines a region proposal network and boosted forest to
achieve the lowest MR. However, when using RPN as stand-alone pedestrian detector [27],
the MR is 14.90% which is a little higher than proposed method. Though RPN+BF [27] and
compACT-Deep [2] have a better performance than our proposed method, their performance
are achieved using pre-trained deep models (e.g., VGG [23]) on ImageNet [22] that requires
a large amount of convolution operations. The RPN+BF runs at about 0.5 second per frame
(similar to our runtime on a single thread CPU) on the Tesla K40 GPU (which is reported to
have 10x computation power of parallel processing on a 16-core 3.1GHz CPU 3).

The detection time of proposed method and state-of-the-art FCF methods are illustrated
in Table 1. Note that we only perform comparisons with methods that have released their
models as we can run them on a common platform. It can be observed that the ACF and
LDCF run faster than other methods. This is partly due to their adoption of smaller model
size (64× 32) compared to others that exploit larger model size (128× 64). In addition,
ACF does not incorporate the filtering process which is the most time-consuming step in
FCF framework. The RotatedFilters and Checkerboards achieve much better detection per-
formance compared to ACF and LDCF, but the detection time is very high due to the high
resolution channels and large amount of filters employed. As shown in Table 1, the pro-
posed method achieves a much lower MR and still runs about 33 and 88 times faster than
RotatedFilters and Checkerboards respectively. The proposed method also runs significantly
faster than the current top-performing non-CNN method in the literature, NNNF [5] (i.e.
0.877 seconds per frame on a similar platform) while achieving a lower MR. These results
clearly demonstrate that our proposed method achieves the best trade-off between detection
performance and speed among all the state-of-the-art pedestrian detection methods.

4.2 Comparison with State-of-the-art Methods on INRIA dataset

The INRIA dataset has much lesser training images compared to Caltech. Therefore, we
adjust some settings to adapt to the INRIA dataset. We train a single-stage detector via three
rounds of hard negative mining (32, 128, 512, 2688 trees respectively) and 11000 negatives
are added to each round. The depth of decision tree is constrained to 2 with other settings
identical to the description in Section 4.1. The multi-scale decorrelated filters are learned
with 2× 2 and 4× 4 filter sizes. Note that we only compare the detection time with FCF
methods that have released their models for INRIA dataset.

The detection performance of the proposed method and the state-of-the-art methods are
shown in Fig. 4(c). We can observe that the proposed method still achieves the best de-
tection performance among the non-CNN methods. The MR of LDCF [20] is about 2.88%
higher than proposed method which demonstrates the effectiveness of the proposed multi-
scale decorrelated filter learning strategy. The NNNF [5] and SpatialPooling [21] employ
more complex Haar-like features but their detection performance are still lower than ours.
The detection time of ACF [10], LDCF [20] and proposed method are shown in Table 2. It
can be observed that ACF runs at 0.036 seconds per image but with a very high MR which

3https://www.nvidia.com/content/tesla/pdf/nvidia-tesla-k40-2014mar-lr.pdf
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prohibits its application in real-time systems. LDCF achieves a much lower MR than ACF
but its detection time is about 1.3 times higher than the proposed method and its MR is
also about 2.88% higher than the proposed method. These results further demonstrate the
effectiveness and efficiency of the proposed method.

5 Conclusion
In this work, we presented a novel method for improving the performance and runtime of
pedestrian detection. To integrate more local information, we proposed to learn multi-scale
decorrelated filters for each channel and exploit max-pooling operation prior to the filtering
step in a multi-stage detection framework. We proposed a new group cost-sensitive Real-
Boost algorithm based on a new mixture loss which gives higher emphasis to harder samples
and alleviate the sensitivity to outliers. By combining multi-scale decorrelated filters and
cost-sensitive learning in a multi-stage detection framework, the proposed method achieves
best detection performance among all non-CNN methods. In addition, the proposed method
can run an order of magnitude faster than top-performing FCF methods.
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