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ABSTRACT

Despite significant research efforts in pedestrian detection over
the past decade, there is still a ten-fold performance gap between
the state-of-the-art methods and human perception. Deep learn-
ing methods can provide good performance but suffers from high
computational complexity which prohibits their deployment on
affordable systems with limited computational resources. In this
paper, we propose a pedestrian detection framework that provides
a major fillip to the robustness and run-time efficiency of the re-
cent top performing non-deep learning Filtered Channel Feature
(FCF) approach. The proposed framework overcomes the computa-
tional bottleneck of existing FCF methods by exploiting vector form
filters to efficiently extract more discriminative channel features
for pedestrian detection. A novel dual-stage group cost-sensitive
RealBoost algorithm is used to explore different costs among dif-
ferent types of misclassification in the boosting process in order
to improve detection performance. In addition, we propose two
strategies, selective classification and selective scale processing,
to further accelerate the detection process at the channel feature
level and image pyramid level respectively. Experiments on the Cal-
tech and INRIA datasets show that the proposed method achieves
the highest detection performance among all the state-of-the-art
non-CNN methods and is about 148X faster than the existing best
performing FCF method on the Caltech dataset.
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1 INTRODUCTION

Pedestrian detection is an essential task in many autonomous driv-
ing and video surveillance systems [2, 17]. It is well recognized
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that vision based pedestrian detection is a challenging problem
[2, 11, 17] due to high intra-class variation, highly cluttered back-
ground, inconsistent illumination, etc. This is aggravated by the
fact that real-world applications necessitate that pedestrians are
detected at high speed with high accuracy, while running on inex-
pensive systems with tight computational constraints. Recently, the
Filtered Channel Feature (FCF) methods [8, 27, 41, 42] gained huge
attention when they demonstrated high performance on well estab-
lished pedestrian benchmarks. However, the existing FCF methods
employ cost-insensitive Adaboost algorithm that assigns the same
cost to different types of misclassification, which limits their de-
tection performance potential. Furthermore, existing FCF methods
either employ large numbers of filters [42] or perform filtering over
high resolution channels [41], both of which incur high computa-
tional complexity.

In this paper, we employ vector form filters instead of the tra-
ditional matrix form filters which are widely used in existing FCF
based approaches [27,41, 42], to accelerate the most time-consuming
step of FCF based methods (i.e. channel filtering step). Experimental
results reveal that the proposed vector form filters not only resulted
in significant reduction in run-time, but also led to better detec-
tion performance. Specifically, our proposed method employs three
vector form filters (filter size of 1x1, 2x1 and 1X2 respectively) in
each stage, for each of the 10 aggregated feature channels (3 LUV
color channels, 1 gradient magnitude channel, and 6 channels for
Histogram of Oriented Gradients (HOG)). The filtered channels
are used to assemble a feature pool that is used for training the
detector.

To solve the performance drawbacks of existing FCF methods,
we develop a dual-stage group cost-sensitive RealBoost algorithm
that explores different costs for different types of misclassification
during the boosting process. Concretely, the training samples that
are wrongly classified in the first stage are divided into different
groups where each group is assigned a set of costs based on the
posterior probability estimation from the first stage. The costs of
each group correspond to penalties that enforces the boosting al-
gorithm in the second stage to give larger emphasis to the harder
training samples.

Finally, to further reduce the detection time without compromis-
ing on the detection performance, we incorporated two strategies:
1) selective scale processing, where the proposed dual-stage detec-
tion method is performed on a reduced number of image pyramid
levels, and 2) selective classification, where an initial classification
based on a coarse sliding window pattern is performed to obtain
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responses that will determine if further classification at a finer gran-
ularity is necessary. We evaluated the proposed approach using the
widely used Caltech and INRIA datasets and demonstrated that it
can achieve the best detection performance and fastest run-time
among all the state-of-the-art non-CNN methods.

The rest of the paper is organized as follows. A review of exist-
ing top-performing methods in pedestrian detection is presented
in Section 2. Section 3 introduces the proposed dual-stage detec-
tion framework and two acceleration strategies: selective scale
processing and selective classification. Section 4 presents the exper-
imental results on the Caltech and INRIA datasets to demonstrate
the effectiveness and efficiency of the proposed approach over state-
of-the-art methods. We conclude the paper in Section 5.

2 RELATED WORK

Pedestrian detection can be typically decomposed into two steps,
i.e. feature representation and classification. Based on the classifica-
tion strategy, existing methods can be divided into three categories
[2]: DPM (Deformable Part Models) variants [14, 15, 19, 36, 37],
Convolutional Neural Network (CNN) [12, 32, 38, 39], and Decision
Forest (DF) [8, 20, 27, 40, 42]. The current ranking on the Caltech
evaluation platform shows that the top-performing methods be-
long to the latter two categories. Even though [18], [23] and [30]
significantly improve the speed on the task of general object detec-
tion, they rely on very deep convolution neural networks (e.g. VGG
[33]) that incur high computation complexity and typically require
high-end Graphic Processing Units (GPUs) to meet real-time con-
straints. Experiments undertaken in [5, 22] show that energy and
thermal constraints will limit the maximum achievable accuracy
and run-time of deep learning algorithms on embedded GPUs for
applications e.g. autonomous driving. As such, CNN-based meth-
ods are currently not well suited for realization on affordable and
mass volume deployable embedded platforms that have tight com-
putational constraints. In the remaining section, we will present a
detailed review of the DF based methods for pedestrian detection.

All the current top-performing DF based methods are based on
the Filtered Channel Features (FCF) framework [42]. In this frame-
work, the detection process are decomposed into three correlated
steps: aggregated channel extraction, filtering over aggregated chan-
nels and object classification. Existing FCF methods differ from the
filters used in filtering step. The pioneering work in FCF [10] pro-
posed a pedestrian detector called Integral Channel Feature (ICF)
detector, where the sum of rectangular regions are adopted as fea-
ture vectors. In [9], FPDW is proposed to accelerate ICF. To further
improve the detection performance, the authors in [8] proposed
Aggregated Channel Feature (ACF) in which features are single
pixel lookups from aggregated channels.

Following the success of ACF, more recent works e.g. LDCF
[27], InformedHaar [40], Checkerboards [42] and RotatedFilters
[41] are proposed. LDCF employed learned PCA eigenvectors as
filters to remove correlation in local neighbourhoods so that they
are well suited for orthogonal decision trees. In [42], a naive set
of filters named Checkerboards is proposed to check how much
the "informed" design of the filters is effective compared to other
possible choices. Motivated by the orientated channels in HOG
[8, 27] and the effectiveness of multiple scales in SquaresChnFtrs

[2], RotatedFilters [41] proposed a set of rotated filters that are tai-
lored towards different oriented HOG channels and integrated more
local information by repeating each filter over multiple scales. Even
though the Checkerboards [42] and RotatedFilters [41] achieved
promising performance, the reported run-time for Checkerboards
and RotatedFilters on workstation with single thread execution
are only 43 and 16 seconds per frame respectively on the Caltech
dataset [11], which prohibits their applicability in many real-time
applications that run on tightly constrained embedded systems.
In [1] and [4], the authors proposed to use GPU to accelerate the
pedestrian detection and achieved notably improvement on detec-
tion speed. However, their work focuses on hardware acceleration
which is orthogonal with our work. In addition, the performance
of their work is considerably weak comparing top-performing FCF
methods.

All of the above mentioned methods [8, 27, 40-42] focus on fea-
ture representation and employ cost-insensitive Adaboost learning
algorithm [16] when training the detector. The cost-insensitive Ad-
aboost assumes that different types of misclassification have equal
importance and hence are assigned the same cost. However, this
assumption does not usually hold in real-world applications [24].
For instance, in a pedestrian protection system for autonomous
driving, mis-detection of pedestrians may induce deadly accidents.
Various cost-sensitive boosting methods have been proposed to
assign different costs to different types of misclassification includ-
ing AdaCost [13], CSBO, CSB1, CSB2 [35], asymmetric-AdaBoost
[25] and AdaC1, AdaC2, AdaC3 [34]. All of these algorithms are
heuristic in nature, and they attempt to achieve cost-sensitivity
by direct manipulation of the weights and confidence parameters
of Adaboost [16]. Moreover, these algorithms are designed to deal
with class-level cost-sensitivity by only assigning different costs to
inter-class misclassification. This can lead to failure in capturing
the large intra-class variants (examples of large intra-class variants
are shown in Fig. 2(d)) which are commom in object detection tasks.

In order to better handle multi-resolution pedestrian detection,
[43] proposed a group cost-sensitive Adaboost which explores dif-
ferent costs for different resolution subsets from positive samples
during training. However, the groups are formulated based on the
resolution of positive training samples, and hence they are affected
by the quality of the positive samples that are often subjected to
annotation errors [41]. The negative samples with complex back-
ground have much larger intra-variants than positive samples but
are not explored. Consequently, the detection performance of [43]
(20.20% log-average miss rate(MR)) is inferior comparing with ex-
isting FCF methods (e.g. Checkerboards [42] with MR of 18.47%).

2.1 Main Contributions

In this paper, we focus on improving the detection performance
and at the same time, reducing the computational complexity of
pedestrian detection. Fig. 1 shows the training and testing procedure
of our proposed dual-stage pedestrian detection framework. The
main contributions of this paper are summarized as follows:

1) Our work is the first to use vector form filters in the FCF
framework. Unlike existing FCF methods that employ matrix
form filters [27, 41, 42], our proposed vector form filters can
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Figure 1: Proposed framework. In the first training stage, the cost of each group is the same. The groups are assigned different
costs based on the posterior probability estimation for training in the second stage. During testing, the aggregated channels
are extracted from the images and fed into our dual-stage detector. The final score comprises of average scores from the first
and second stage and the detection result is obtained after Non-Maximum Suppression (NMS).

provide more discriminative features while at the same time
leading to lower computational complexity.

2) We propose a novel dual-stage group cost-sensitive Real-
Boost learning algorithm for training the pedestrian detector.
The posterior probability estimation of the negative training
samples that are misclassified in the first stage are used to di-
vide the negative samples into different groups. Each group
is assigned a different cost and are trained in the second stage
using proposed group cost-sensitive RealBoost algorithm.

3) In order to further accelerate the detection process, we in-
corporate strategies for selective classification and selective
scale processing, to avoid unnecessary computations at the
aggregated channel level and image pyramid level respec-
tively. Results show that these strategies lead to significant
execution time reduction while maintaining good detection
performance.

4) We perform extensive evaluations on the proposed frame-
work using the widely known Caltech and INRIA datasets.
Our proposed framework achieves the best detection per-
formance (i.e. 14.62% MR on Caltech dataset) among all the
state-of-the-art non-CNN methods. In addition, the proposed
method runs 148.8 times faster than the best performing FCF
method in the literature (i.e. Checkerboards [42]).

3 PROPOSED METHOD

The analysis undertaken in [41, 42] reveals that the computational
bottleneck of existing FCF methods lies in filtering over aggregated
channels. This is due to fact that the existing top performing FCF
methods either rely on large numbers of filters [42], or utilize high
resolution feature maps [41]. In addition, existing FCF approaches
adopt cost-insensitive Adaboost learning strategy which limits its
the detection performance potential. Our work aims to address the
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Figure 2: a) Four types of vector form filters, from left to
right: vertical, horizontal, principal diagonal and counter di-
agonal, b) average MR of the vector form filters on Caltech
10x validation set, c) average MR with varying vertical and
horizontal vector form filter sizes on Caltech 10x validation
set, and d) large intra-class variants observed in the hard neg-
ative samples.
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drawbacks of existing FCF approaches by adopting vector form
filters and a group cost-sensitive RealBoost learning strategy. The
proposed vector form filters (Section 3.1) were able to extract more
discriminative pedestrian features which contribute to improved de-
tection performance. At the same time, they contribute to lowering
the computational complexity of the filtering step. The proposed
dual-stage group cost-sensitive RealBoost learning strategy (Sec-
tion 3.2) enforces the boosting process to pay larger emphasis to the
harder training samples, which led to higher detection performance.
Finally, we employ strategies to accelerate the detection process



using selective scale processing and selective classification (Section
3.3).

3.1 Vector Form Channel Filter Bank

Existing top-performing FCF methods exploit matrix form filters
to extract discriminative features. For instance, LDCF employed 4
filters with size 5 X 5 [27] and RotatedFilters utilized 9 filters with
size 16 X 16 [41] per channel respectively. The utilization of matrix
form filters contribute to high computational complexity in the
filtering process. To alleviate this computational bottleneck, we
propose to use vector form filters and investigated the impact of
different vector form filters on the detection performance. We setup
a validation environment by splitting the Caltech 10x training set
into five training sets and one testing set as suggested by [11]. The
parameters used in the cross-validation is identical to those used
in the experiments described in Section 4. The log-average miss
rate (MR), which is calculated as False Positive Per Image (FPPI) in
[1071,107°], is used to evaluate the detection performance.

Four types of vector form filters as shown in Fig. 2(a) are in-
vestigated, i.e. vertical, horizontal, principal diagonal and counter
diagonal. The filters are generated to enable gradient detection in
different orientations for a given size. Note that the filters shown
in the first row of Fig. 2(a) are 1x1 vector filters with weight 1
which means the aggregated channel feature is used. The detection
performance of the four types of filters on cross-validation experi-
ments are shown in Fig. 2(b). It can be observed that the detection
performance of diagonal filters are worse than the vertical and
horizontal filters, which implies that the feature combination in the
vertical or horizontal orientations are more discriminative than the
diagonal orientations. Based on the results of the cross-validation
experiments, we proposed to use vertical and horizontal filters with
same length in the detection framework.

The detection performance with varying vertical and horizontal
filter sizes is shown in Fig. 2(c). It can be observed that the average
MR increases when the filter size is larger than two. This phenome-
non is mostly caused by overfitting as larger filters capture pixel
differences at larger distances and hence, are less correlated. Based
on these results, we employ three vector form filters with size 1x1,
2x1 and 1X2 in the proposed framework. Our first stage pedestrian
detector using these three vector form filters achieves MR of 15.66%,
which outperforms all existing FCF methods (e.g. Checkerboards
with MR of 18.47%, and RotatedFilter with MR of 19.20% ). This
demonstrates that simple vector form filters can achieve better de-
tection performance compared to the commonly used matrix form
filters.

3.2 Dual-Stage Group Cost-sensitive RealBoost

In this subsection, we first give a formal definition of RealBoost and
then we introduce our proposed dual-stage group cost-sensitive
RealBoost algorithm.

Detection via RealBoost: Given a set of training samples for
pedestrian detection {(x;, yi)}f\il, where x = (x1,... ,xd)T e R4
is the feature vector of each training sample and y € {—1, 1} is the
label of the training sample. The detector aims to learn a function
G(x) that maps feature space to label space and can be expressed
as:

G(x) = sgn[F(x)] 1

F(x) is a predictor, sgn[.] is the sign function that returns 1 if
F(x) > 0 and -1 otherwise. In RealBoost, the predictor F(x) is
learned from a linear combination of weak learners in a greedy
forward stagewise fashion [16]:

M
F) = ) fm(x) @
m=1

The predictor is updated at each iteration according to:
FO ) = FUD ) + £ (x) ©

where f(¢ )(x) is the learned weak learner in iteration ¢. The detec-
tor G(x) is optimal if it minimizes the risk Ex y[Loss(x,y)], where
Loss(x, y) is a loss function that measures the misclassification. In
RealBoost [16], the zero-one loss is used to evaluate the misclassifi-
cation and can be expressed as:

Loss(x. y) = {0’ o) =y @

1, ifG(x)#vy
Cost-sensitive RealBoost: The zero-one loss in Eq. 4 is cost-
insensitive as it assigns identical cost for different types of mis-
classification: false positive (y = —1, G(x) = 1) and false negative
(y = 1,G(x) = —1). However in many real-world applications, the
classification techniques involve dramatically varying costs asso-
ciated with different types of misclassification, which motivates
the need for classification algorithms that focus on varying costs
for different misclassification. In [26], a cost-sensitive RealBoost
algorithm is proposed that assigns different costs for false positive

and false negative, which can be expressed as:

0, G =y
Lossc(x, y) = Crn, ify=1G(x) =-1 (5)
Crp ify=-1,G(x) =1

where Cr,, > 0and Cy), > 0 are the cost for false negative and false
positive respectively. The loss function in Eq. 5 is actually a class
level cost-sensitive loss and a generalization of loss function in Eq.
4 since it reduces to zero-one loss when Cy,, = Cp.

Proposed Group Cost-sensitive RealBoost: The class-level
cost-sensitive loss function in Eq. 5 can only capture variants of
inter-class misclassification and is not well suited for pedestrian
detection. In pedestrian detection, the negatives are often obtained
from complex background through hard negative mining which
leads to huge variants in the negative set [39] as shown in Fig.
2(d). In order to explore the variants in negatives and improve
the detection performance, we proposed a group cost-sensitive
RealBoost algorithm which allocates different costs based on the
difficulty of negatives. Specifically, the negative set is divided into
two distinct groups based on the posterior probability estimation
n(x) = Px y(1]x): negative samples with low posterior probability
(n(x) < P¢, denoted as x;), and negative samples with high posterior
probability (n(x) >= P;, denoted as xp). The group cost-sensitive
loss function can then be expressed as:

0, ifGx) =y

Crn, ify=1Gx) =-1
Cfpl, ify=-1,G(x;) =1
Crpn, fy=-1,G(xp) =1

Lossge(x, y) = (6)

where C;. > 0. Note that this group cost-sensitive loss reduces to
zero-one loss if Cgy,, Cpr, Cppp are 1 [16] and becomes class level
cost-sensitive loss when Cgp; = Crpp, [26]. In object detection, it is
essential to ensure that true positives can be correctly classified, as



mis-detections are harder to recover. Therefore, the cost for false
negative (Cr,) should be larger than false positive (Crp,; and Crpp).
The optimal value of different costs can be chosen experimentally
through cross-validation on training set. Note that the optimal costs
are decided by the ratio Cg,,;/Cyy and Cppp/Cyy, where Cyy, can
be set to one and the search becomes two-dimensional. In order
to obtain posterior probability estimation 7(x), we propose a two-
stage detection framework in which each of the negatives that
are wrongly classified in first stage is assigned a corresponding
posterior probability as follows:
eZF (x)

nx)=— = )

1+ 2

where F(x) is the predictor trained in the first detection stage.

Note that the hypotheses that pass the first detection stage should
have negligible difference in pixel values from the filtered feature
channels. In order to distinguish harder negatives that are wrongly
classified in first stage, we need to expand the receptive field of
information extraction to integrate richer local information. Gener-
ally, there are two ways to expand the receptive field: use of larger
filters and feature channel shrinkage. Larger filters can capture
information from larger regions while feature channel shrinkage
enables the same filter to cover a larger region. However, larger
filters entail more filtering operations, which will not only increase
the computational complexity but also increase the risk of overfit-
ting as shown in Fig. 2(c). Therefore, in the second stage, we chose
to use same filters with the first stage and perform feature channel
shrinkage prior to filtering. Specifically, we adopt a 2 X 2 max-
pooling with a stride of 2, downsampled in both the vertical and
horizontal orientations. The feature channel shrinkage operation
leads to 2 X 2 receptive field expansion from the local regions if we
use the same filters as in the first stage while keeping some degrees
of invariance with respect to translations and distortions. From the
perspective of receptive field, 1 pixel represents a 4x4 pixel region
in the first stage, and 8x8 pixel region in the second stage. The
former one is determined by the shrinkage factor when computing
aggregated channel feature while the second one is determined by
both the shrinkage factor and the max-pooling operation (2x2 with
stride of 2) adopted prior to filtering in the second stage.

The optimal detector G(x) can be learnt through minimizing risk
Ex y[Loss(x,y)] with respect to the corresponding loss defined in
Eq. 4, Eq. 5 and Eq. 6. However, these minimizations are difficult to
achieve. In RealBoost [16], exponential loss is employed to approxi-
mate zero-one loss, which induces the minimization of empirical
risk as:

N
R(F) = Z wie YF® ®)
i=1

where w; is weight of loss for training sample x; and uniform
weight distribution (w; = 1/N) is adopted, which means each
training sample share same importance. In the proposed method,
we adopt RealBoost [16] and the exponential loss to approximate
group cost-sensitive loss define in Eq. 6. After training the first
detector with the minimization problem in Eq. 8, each negative that
are wrongly classified is assigned a posterior probability estimation
n(x) using Eq. 7. The negative set is then separated into groups
with low and high posterior probability based on the threshold
P;. With the costs Cr,, = 1,Crpr = v1,Crpn = vz selected from
cross-validation experiments, the group cost-sensitive detector can
be trained by minimizing group cost-sensitive empirical risk based

on exponential loss as:

Ryc(F) = Z Wie*yican(Xi)

yi=1
—u; ; —y; ; 9
+ Z wie ViCrpI P& | Z wie ViCrpnFxi) )
yi=—1 y;i=-1
XEXZ XGXh

The above problem can be optimized using greedy forward stage-
wise fashion [16]. After we have estimated F(!~) (x), the weak
learner f()(x) can be learned by solving the following:

—u; (t=1) (x;
) =argmj§x—[z —wiy;Cppe Vil 70D

yi=1
~yiCppr U (x7)
+ Z —wiyiCrpre J15fp !
yi=-1
X€X]
—u; (£-1) (5
+ Z —wiyiCrppe Vi rpnt OO0 o) (10)
Yo
= arg max Z wgt) yif(t)(xi)
f yi=1 I
(2) t (t) t
+ Zil ifplyif( )(xi) + Z_;l ifphyif( ) (x:)
YL v
where
)
Win"e Can( 1 (XL), ifyi =1
ng) = winpleCfPlF(t_l)(Xi), ify; =-1andx € x; (11)
(- .
winpheCfPhF ! 1)(’“), ify; =—-landx € xp,

is the weight of training samples for different groups at iteration ¢.
The weight updating rule becomes cost-insensitive if Cy = 1 and
class level cost-sensitive if Crp; = Cfpp. Compared to the cost-
insensitive weight updating rule, the weight updating rule in Eq. 11
enables more emphasis on groups with higher cost. The proposed
group cost-sensitive RealBoost for pedestrian detection is presented
in Algorithm 1.

(b)

Figure 3: (a) Traditional sliding window based classification,
and (b) proposed selective classification.

3.3 Strategies to Accelerate Detection

In order to further reduce the computation time of the proposed
detection method, we introduce two acceleration strategies that
are applied to the aggregated channel and image pyramid level:
selective classification and selective scale processing.

Selective Classification: Traditional sliding window based meth-
ods perform classification at regular spaced image locations at a
fine granularity, which often induces unnecessary computations
since the responses for hypotheses at close proximity are usually
highly correlated. The authors in [21] define that an object has a



Algorithm 1 Group Cost-sensitive RealBoost for Pedestrian De-
tection

Input: Training set (x;, yi)l{\il, weight of loss for training samples {w; }f\il
{fi ()& | group cost {Cgpy, Crpps C }, posterior probability threshold Py, number of
i=1 fn “fpl “fph
iteration T and terminate threshold of empirical risk €

Output: Detector G(x)

,a set of weak learner

1: Set Cx = 1;

2: Set Fl(o)(x) =0, wf.l) =w;iCs,i=1,...,N;

3: for t; =1to T do

4: Choose optimal weak learner fl(tl ) (x) through solving problem in Eq. 10
5: Update predictor Fl(t1 ) (x) = Fl(t1 -1 (x) + fl(t1 ) (x);

6: Update weights through Eq. 11;

7. if Rge(F™ (%)) < € then

8: break;

9: end if

10: end for

11: Obtain 7(x) from Fl(tl)(x) and divide negatives into two groups according to threshold P;.
12: Set Cpy, =1, Cppp = y1, and Crpp = y23

13: set V() = 0wl = wiCi= 1, .. N

14: for 2 =1to T do

15: Choose optimal weak learner fz(tz)(x) through solving problem in Eq. 10

16: Update predictor FétZ) (x) = Fé t71) (x) + fz(tz)(x);

17: Update weights through Eq. 11;

18 if Rge(F\? (x)) < € then

19: break;
20: end if
21: end for

22: return detector G(x) = sgn[Fl(tl)(x) + Fz(tz)(x)]

(@ (b) (©)

Figure 4: Hypothesis responses in three successive scales of
the image pyramid. Image scale (b) has the highest positive
response (indicated by the red region).

region of support (ROS) i.e. the neighbours of a positive location
remain positive as illustrated in Fig. 4(b). This means that if the
neighbours of a particular hypothesis are all positive, the hypothe-
sis is most likely to be positive. On the contrary, a hypothesis tends
to be negative if all of its neighbours are negative. Besides, most of
these neighbours will be eliminated as NMS (Non-Maximum Sup-
pression) only selects the hypothesis with highest response. This
motivates us to exploit the responses from neighbours to reduce
the number of classification operations.

Fig. 3 illustrates the traditional sliding window and the proposed
sliding window approach for classification. The proposed sliding
window approach first runs the classifier at coarse granularity (lo-
cations with green points). Their responses are then used to decide
whether the classifier should be performed on the left neighbours
(locations with gray points) or not. The pedestrian candidate is
directly classified as positive if all its neighbours (up, bottom, right
and left neighbours) are positive, and negative if all its neighbours
are negative. Compared with the traditional sliding window method,
our proposed method leads to notably lesser classification opera-
tions.

Selective Scale Processing: Existing image pyramid based meth-
ods first construct several pyramid levels of different image scales
and then perform the detection on each pyramid level to detect
objects of different sizes. The need to perform detection on different
pyramid levels incur high computational complexity. In order to
reduce the computational complexity, the Feature Approximation
method is proposed in [8] which approximates multi-resolution
image features via extrapolation from adjacent scales. However,
the Feature Approximation method achieves faster detection at the
cost of significant reduction in detection performance.

Our proposed strategy exploits the fact that the hypothesis re-
sponse at adjacent scales are correlated since the ratio of adjacent
scale factors are usually close to 1. Similar to ROS [21], we define
this phenomena as scale of support (SOS), which means that a true
positive will induce positive responses at adjacent scales. This phe-
nomena is illustrated in Fig. 4, where the true positive with highest
response in image scale Fig. 4(b) also has positive responses at the
adjacent scales. Most of the positive responses from adjacent scales
will be discarded in the NMS process. This motivates us to perform
the detection process only on alternate scales of the pyramid in
order to reduce the computational complexity.

4 RESULTS AND DISCUSSION

In this section, we evaluate the detection performance and execu-
tion time of the proposed method on two widely used datasets. To
ensure a fair comparison for the execution time, we implemented all
the methods on the same platform, i.e. 3.5GHz Intel Xeon E5-1650
CPU with single thread execution. We have not relied on GPUs in
our experiments.

Datasets: Our experiments are based on two public datasets:
Caltech [11] ! and INRIA [7] 2. For the Caltech dataset [11], the
training data is augmented by extracting one of every 3 frames
instead of every 30 frames from the raw videos, which is similar
to the approach adopted by [42]. 42782 images are used to train
our model. The Caltech test set consists of 4024 images which
includes 1014 positive images. The evaluation metric is MR on False
Positive Per Image (FPPI) in [1072, 107°] under reasonable setup
(pedestrians that are at least 50 pixels tall and at least 65% visible
[11]). In addition, we also tested our model on the new annotations
of Caltech test set provided by [41], which has corrected some errors
in the original annotations. We denote the results of the original
and new annotations as MR and MR _p; respectively. For the INRIA
dataset [7], there are 614 positive images and 1218 negative images
in the training set. The trained model is evaluated on 288 testing
images using MR on FPPI ranges of [1072, 107°].

Model Parameters: We use a model with size 64x128 when
training the detector. For each stage, four rounds of hard negative
mining (32, 512, 1024, 2048, 4096 trees respectively) are used and
100000 negatives are added to the training set at each round. During
decision tree learning, we randomly selected 1/16 features from
a large feature pool and the depth of the decision tree is limited
to 5. The strides of both sliding window and aggregated channel
shrinkage factor are 4, and each image is upsampled by one octave.
The optimal value of costs for different groups are selected from

Lhttp://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
Zhttp://pascal.inrialpes.fr/data/human/



Cgn =1,Cppy €[0.8:0.05: 1) and Cppp € [0.8 : 0.05 : 1) while
keeping Cyp; < Cgpp based on the cross-validation experiments.

4.1 Evaluation of Acceleration Strategies

In this subsection, we analyze the impact of the acceleration strate-
gies discussed in Section 3.3 on the execution time and detection
performance for the proposed cost-sensitive pedestrian detection
framework on Caltech dataset [11]. We also implemented the Fea-
ture Approximation method in [8] within our framework to show
the advantages of our acceleration strategies.

As discussed in Section 3, the computational bottleneck of exist-
ing FCF methods lies in the filtering step. It can be observed from
Table 1 that the proposed method has led to significant reduction
in run-time for the filtering step, as this is no longer the bottleneck
of the detection process. The first row of Table 1 shows that our
proposed method runs at 0.411 seconds per image on the Caltech
dataset without any form of acceleration. It is noteworthy that the
proposed method without acceleration is already the fastest among
all existing methods that have MR lower than 15% on the Caltech
dataset. The Feature Approximation method can significantly re-
duce the execution time as shown in the second row of Table 1, but
at the cost of about 2% loss in MR. It can be observed from the third
row of Table 1, that unlike the Feature Approximation, the proposed
Selective Classification strategy simultaneously achieves lower ex-
ecution time and higher detection performance than the proposed
method without acceleration. To further reduce the execution time,
we employ the proposed Selective Scale Processing strategy by
selecting 12 alternate scales from the entire 27 scales for running
the detection algorithm. When both the Selective Scale Processing
and Selective Classification strategies are employed, the proposed
method obtains a reduction in MR (last row of Table 1), most prob-
ably due to discarding some isolated hypotheses which have no
region of support (ROS). With the combined acceleration strategies,
our method can run at 0.291 second per frame while achieving MR
of only 14.62% on the Caltech dataset. These results demonstrate the
effectiveness of our acceleration strategies compared to the Feature
Approximation method. In the remaining paper, only results of the
proposed method with Selective Classification and Selective Scale
Processing are reported.

4.2 Comparison with State-of-the-art Methods
on the Caltech dataset

For Caltech dataset, The optimal value of Cfp; and Crpp, in the
proposed method are 0.85 and 0.9 respectively. Compared with
traditional cost-insensitive loss in dual-stage detection framework,
there is about 0.4% decline on MR when using proposed group cost-
sensitive loss. Fig. 5 compares the detection performance between
the proposed method and state-of-the-art methods on the Caltech
dataset. It can be observed that the proposed method is superior
to all other non-CNN methods. Compared to existing state-of-the-
art FCF methods, the MR of our method is signficantly lower i.e.
14.62% whereas the MR of RotatedFilter [41] and Checkerboards
[42] are 19.20% and 18.47% respectively. The proposed method
still outperforms existing FCF methods when the evaluations are
undertaken on the new annotations of Caltech test set. Although
the proposed vector form filters are much simpler than those used

in RotatedFilter and Checkerboards, they result in better detection
performance. This demonstrates the effectiveness of the proposed
vector filters and the cost-sensitive learning algorithm.

Among the CNN based methods, RPN+BF [12] achieves the low-
est MR when preparing the paper. Though compACT-Deep [3],
RPN+BF [39] and Fused DNN [12] have a better performance than
our proposed method, their performance are achieved using pre-
trained very deep models (e.g., VGG [33]) on ImageNet [31] that
requires a large amount of convolution operations. The RPN+BF
runs at about 0.5 second per frame on the Tesla K40 GPU (which is
reported to have 10x computation power of parallel processing on
a 16-core 3.1GHz CPU 3). As highlighted in [29], discrete GPUs e.g.
the Tesla K40 GPU are not suitable for automotive systems as they
consume high power (which require active cooling) and occupy
substantial space. Integrated GPUs (e.g. Jetson TX1), which are
the preferred platforms for embedded systems, have significantly
lower computation capabilities. For example, the run-time of CNN
algorithms on the Jetson TX1 are reportedly 7X slower than the
run-time on the Tesla K40 [28]. As such, existing CNN algorithms
for pedestrian detection may not be able to meet the run-time re-
quirements or suffer from accuracy loss if they are deployed on
embedded platforms. On the other hand, the proposed method on
a CPU with only a single processing thread can already achieve
much lower run-time than the CNN based methods on GPUs with
high detection performance.

Table 2 compares the computation time of the proposed method
with state-of-the-art FCF methods. Note that here, we only perform
comparisons with methods that have released their models, as we
can execute them on a common platform. It can be observed that
ACEF has the fastest execution time but suffers from a very high
MR. The ACF is faster than our method since they utilize a smaller
model size (64 X 32) and perform detection on the original image
while we exploit larger model size (128 X 64) and perform detection
on upsampled image. In addition, the ACF method does not perform
the channel filtering step which is the most time consuming step in
the FCF methods. The RotatedFilters [41] and Checkerboards [42]
achieve much lower MR compared with ACF and LDCF but have
very high execution time. As discussed in Section 3, this is either
caused by the need to filter over high resolution channels or the
need for a large amount of filters. As shown in Table 2, the proposed
method runs about 57.1 and 148.8 times faster than RotatedFilter
[41] and Checkerboards [42] respectively while still achieving a
much lower MR. The proposed method also runs significantly faster
than the current top performing non-CNN method in the literature,
NNNF [6] (i.e. 0.877 seconds per frame on a similar platform) while
achieving lower MR. These results clearly demonstrate that our
proposed method achieves the best trade-off between detection
performance and speed among all the state-of-the-art pedestrian
detection methods.

4.3 Comparison with State-of-the-art Methods
on the INRIA dataset

Compared to the Caltech dataset, INRIA [7] has much lesser training
images. There are 42782 images for hard negative mining in Caltech
but only 1218 image in INRIA dataset. Therefore, we change some

3https://www.nvidia.com/content/tesla/pdf/nvidia-tesla-k40-2014mar-Ir.pdf



Table 1: Average execution time per frame (seconds) and MR of proposed method on Caltech test with different acceleration

strategies.
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Figure 5: Detection performance comparison with state-
of-the-art methods on Caltech dataset (legend indicates
MR(MR y)).

Table 2: Average execution time per frame (seconds) and MR
of filtered channel feature methods on Caltech dataset.

Aggregated Filtering Classi- Total MR(MR p7)

Channel (s) (s) fication (s) Time (s) (%)
ACF 0.045 - 0.061 0.106 29.76(26.42)
LDCF 0.046 0.220 0.035 0.301 24.80(22.02)
RotatedFilters 0.384 9.309 6.931 16.625 19.20(15.27)
Checkerboards  0.496 22.117 20.709 43.319 18.47(14.39)
Ours 0.153 0.044 0.094 0.291 14.62(11.95)

parameters to adjust the smaller dataset. Each stage detector is
trained via three rounds of hard negative mining (32, 128, 512, 4096
trees respectively) and 20000 negatives are added to each round.
The depth of decision tree is limited to 2 when training weak learner.
Note that we only perform comparisons on the execution time with
FCF methods that have released their models for the INRIA dataset.

The detection performance of the proposed method and the
state-of-the-art methods are shown in Fig. 6. It can be observed that
our proposed method achieves best detection performance (MR is
10.97%) among all the non-CNN methods. The MR of the proposed
method is 6.31% and 2.82% lower than ACF [8] and LDCF [27] re-
spectively. The detection performance of our proposed method is
much better than NNNF [6], which employs more complex Haar-
like features. These results on the INRIA dataset further confirm
that the simple vector form filters and cost-sensitive learning strat-
egy can lead to significant detection performance improvement.
The execution time of ACF [8], LDCF [27] and proposed method
are shown in Table 3. Even though ACF runs at 0.036 seconds per
image, the high MR limits its practicality in real-world applica-
tions. LDCF achieves a much lower MR but its execution time is
about 3 times higher than the proposed method and its MR is also

false positives per image
Figure 6: Detection performance comparison with state-of-

the-art methods on the INRIA dataset.

Table 3: Average execution time per frame (seconds) and MR
of filtered channel feature methods on INRIA dataset.

Aggregated Classi- Total

Channel (s) Filtering (s) fication (s) Time (s) MR (%)
ACF 0.024 - 0.012 0.036 17.28
LDCF 0.051 0.243 0.105 0.399 13.79
Ours 0.075 0.027 0.019 0.121 10.97

about 2.82% higher than the proposed method. These results fur-
ther demonstrate the effectiveness and efficiency of the proposed
method.

5 CONCLUSION

We proposed an accurate and run-time efficient pedestrian detection
method that exploits vector form filters to capture more discrimi-
native features and a group cost-sensitive RealBoost algorithm to
explore the intra-class variants of training samples to improve de-
tection performance. The vector form filters are used in a dual-stage
detection framework that relies on a learned cascade detector to
capture the discriminative features from aggregated channels of dif-
ferent resolutions in two stages. The combination of simple vector
form filters and the cost-sensitive learning framework resulted in
the best detection performance among all state-of-the-art non-CNN
based methods. In addition, the proposed method achieves about
one order of magnitude speedup over existing filtered channel fea-
ture methods. In order to further improve the speed of detection, we
adopted a selective classification strategy which is inspired by the
principle of region of support (ROS), and proposed a selective scale
processing strategy which is motivated by the principle of scale of
support (SOS). These strategies led to further speedup improvement
in our proposed method without compromising on the detection
performance.
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