
Online Data Extraction for Large-Scale Agent-Based
Simulations

Daniel Zehe, Vaisagh Viswanathan
TUM CREATE

1 CREATE Way
138602 Singapore

+6566014015
{daniel.zehe,vaisagh.viswanathan}@tum-create.edu.sg

Wentong Cai
Nanyang Technological University

639798 Singapore
+657904600

aswtcai@ntu.edu.sg

Alois Knoll
Technische Universität München (TUM)

85748 Munich Germany
+498928918104

knoll@in.tum.de

ABSTRACT
Cloud-based simulation systems reduce the upfront hard-
ware costs of running high-performance experiments and
increases the ease with which simulation experiments can
be repeated. The data being generated by simulations can
be large. Commonly used data storage systems such as re-
lational databases can handle large amounts of data, but
the analysis is a challenging problem. Moreover, handling
this amount of data in cloud services can be both expensive
(bandwidth and storage costs) and time-consuming. How-
ever, a lot of the data that is generated by agent-based
simulations does not contribute directly to the purpose of
the experiment being conducted. We propose an extension
to cloud-based simulation systems that rather than storing
raw simulation output data, uses stream data processing to
generate the result dataset while the simulation is running.
This can then be used to store only the data required for
later use, this saving both time and money.

CCS Concepts
•Computing methodologies→Modeling and simula-
tion; Data assimilation; Agent / discrete models; Simu-
lation environments; Simulation tools;

Keywords
Online Data Extraction, Time-variant Relational Algebra,
Cloud-based Simulation, Agent-based Simulation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’16, May 15 - 18, 2016, Banff, AB, Canada
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3742-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901378.2901384

1. INTRODUCTION
The computational resources required for modern urban

system simulations [18, 4] are increasing; this has also re-
sulted in more high resolution output data being generated.
Moreover, availability of much cheaper storage options1 has
resulted in data being generated at unprecedented veloc-
ities, volumes and varieties [19, 8]. Depending on the run
time of a single simulation, the design decision is often taken
to record as much as possible in order to reduce the number
of simulation runs.

However, despite the price reduction in persistent stor-
age, analyzing large amounts of data can still be problem-
atic. Large data sets have to be loaded into the memory
of one or multiple machines in order to do the necessary
post-processing of the data. If the main memory of the sys-
tem is exhausted, a distributed or stream-processing work-
flow has to be used. This adds an additional overhead for
the user. There is a need for more efficient methods for
handling the large datasets that are generated, especially
with the increasing availability of cloud computing resources
and cloud-based simulation services [21]. As stated in [13],
“transferring data-sets to a centralized machine is thus ex-
pensive (due, for example, to network communication and
other I/O related costs)”.

A possible solution to this problem is to do the data anal-
ysis while the simulation is running and store only the pro-
cessed data set necessary for the given experiment, i.e. the
result data set. Such a solution would be most useful for
large workflows where, traditionally, huge amounts of data
have to be transfered between two consecutive steps. A pos-
sible approach to this would be to leverage on the IEEE
1516 High Level Architecture (HLA) [6] which is popular in
the simulation community. A data processing federate could
be created which collects the data from the running simu-
lations, and processes and writes it to persistent storage as
required. However, the limited data transfer rate and the
large overhead of publishing all information either reduces
the simulation performance significantly or necessitates a
larger simulation “cool-down” phase during which all data is
analyzed and transmitted to a single data analysis federate.

1http://www.mkomo.com/cost-per-gigabyte-update

Most simulation experiment post-processing workflows start
with obtaining data sets from databases, but since the size of
these data sets is increasing steadily an online data extrac-
tion methodology as presented in this paper can be useful.
We describe formally the components and advantages of an
online data extraction methodology for agent-based simu-
lation (specifically cloud-based simulations), in which data
processing at simulation time is used to minimized the use of
slower persistent storage. Using a relational algebra context
of modelling the data output of a simulation does not break
the post-processing workflow of many experiments. Agent-
based simulations are have been taken as an example, since a
set of agents of the same (or similar) type can be interpreted
as a table or relation.

Using a relational algebra to model the data output of a
simulation is beneficial since it does not interfere with the
established post-processing workflot of many experiments.
Agent-based simulations are a good example to use a rela-
tional representation of the output data, since a agents can
be grouped together and be seen as a relation with tuples of
state-variables.

As part of the literature review, we explore the current
research in big data and stream processing as well as data
description languages. Subsequently, we introduce the struc-
ture and overall working of a data-analysis component for
a cloud-based simulation system. This is followed by a for-
mal relation-algebra-based description of the data output,
but unlike traditionally relational algebra, can be used to
describe time-variant data. Finally, we use two traffic simu-
lation examples to demonstrate the working and advantages
of the proposed system.

2. RELATED WORK

2.1 Relational Data Description
Relational data models are widely used in the database

domain where they are used to describe data by using tables
from which data can be accessed and operations be executed
on. The data entries are called tuples and share the same
structure (i.e. fields) within a single database table. The
advantages of the relational data description language and
relational algebra are that they enable the analysis and op-
timization of complex and large amounts of data by using
formal mathematical methods. Despite the limited num-
ber of operations, complex manipulations can be created on
structured data. Relational databases were first introduced
by Codd [5] and later refined by Darwen and Date [7]. In
this paper, we leverage on the well-developed work in re-
lational algebra, with a temporal component extension in
order to deal with time-variant data sources that character-
ize simulations.

2.2 Big-Data and Stream Processing
Ranja [13] commented on the fact that the data that is

being generated on the internet has been and will keep in-
creasing rapidly over the next couple of years. This is sim-
ilar to the data being generated by simulations. Individ-
ual simulations produce a lot more data than the average
node on the internet. Cloud-based simulation services [22]
can result in multiple concurrent simulations in the cloud
at unprecedented rates which will increase the data output
significantly. Ranja [13] postulates that relational databases
will be unable to cope with the massive data anymore. In

contrast, state-of-the-art data mining algorithms work on
main memory. However, main memory is much more ex-
pensive and invariably inadequate to store the amount of
data generated.

Another point to be considered is the network and I/O
costs involved in the transfer of data between the storage lo-
cation and the analytics computer [13]. Ranja proposes an
ecosystem for data processing that involves a high velocity
data ingestion layer that communicates with the actual data
analytics layer, which then pushes the resulting data sets to
a data storage layer. This kind of data analytics frame-
works have different advantages and drawbacks. While the
Apache Hadoop [17] distributed stream processing toolchain
is more suited for historic/existing data analysis, Spark [20]
and Storm streaming processing are better suited for online
data-streams with highly variable (in terms of amount and
type) data.

For general big data processing, different tools already
exist. Tools like Apache Mahout2 and GraphLab3 have a
large number of implemented data analysis algorithms avail-
able for use. These offer an easy-to-use off-the-shelf experi-
ence for researchers. On the other hand, building a system
with such tools for simulation data analysis, that might be
outside the realm of standard big data processing, presents
its own set of challenges. A distributed system that relies
on message passing and queuing for a general purpose ap-
plication programming interface (API) is more applicable
for simulations. Apache Kafka4 for distribution of incoming
data streams is an example of such a system. This usually
works in conjunction with Hadoop, Storm5 or Spark6 to dis-
tributed high-velocity data processing payloads. Such data
needs to be stored in a NoSQL database structure like Mon-
goDB [3] or Casandra [11]; in these systems large amounts
of data are stored in easily accessible structures.

Babcock et al. [2] give an overview of data streaming mod-
els and current issues in data stream processing systems.
They acknowledge that there are different groups of data
streaming models that handle data differently and differs
from conventionally stored data in (1) availability (online
vs. offline), (2) order of data elements, (3) undefined or un-
bound size of the stream and (4) the unavailability of histor-
ical data, since after processing the input data is discarded.

2.3 Data Extraction Techniques for Simula-
tions

For many simulations the data export focuses on writing
to a comma-separated, XML-based or application-specific
binary data format. This might be acceptable for small
amounts of data coming from small-scale simulations or rarely
updated variables, where the final amount of raw data is
rather small. For large-scale simulations, saving raw data
might be desirable but infeasible due to I/O constraints.
Many simulation tools, output only aggregated values or
rely on visualization to transport information in the form
of recordings (animation or video) or images. Prominent
examples are material simulations, where the forces on a
digital workpiece is shown as an overlaid heat map [10, 16].

2http://mahout.apache.org
3http://graphlab.org
4http://kafka.apache.org
5http://storm.apache.org/
6http://spark.apache.org

Server

Repositories

private public

Execution

Environment

Cloud

Compiler

Data Analysis
input

data processing

output

input

data processing

output

Storage

Raw Models Sources

USER

ExecutablesTyped Models

+

+

+

Input Data

+

Figure 1: Cloud-based Simulation Reference Archi-
tecture. The user interacts with the system through
RESTful APIs and the entire system runs on public
or private cloud instances.

Schützel et al. [14] describe a stream-based reference ar-
chitecture for a data management system that interacts with
all the components of a simulation workflow. The described
approach starts from the experiment setup, the actual exe-
cution of the simulation up to adding a “processing graph”
and a storage engine. Data management has a mediating
role between all steps of a simulation and passes data be-
tween the different steps of an experiment. This mediator
role is also active for different simulations within one exper-
iment run.

In a different publication, Schützel et al. [15] have pre-
sented that the extraction of simulation data is dependent
on the structural dimension of the simulation entities as well
as the sequential dimension that describes the order in which
the data is being generated. They describe the ML-Rules
Data Extraction Language and also the SystemXtract Lan-
guage. The latter one uses sequential logs to reconstruct the
structural and sequential information of the simulation state
and passes it to the analysis application.

3. ONLINE DATA PROCESSING SYSTEM
We have previously presented SEMSim Cloud Service, a

simulation cloud service for agent-based simulations with a
special focus on traffic simulations [22]. In this paper we use
the SEMSim Cloud Service as the reference model for giving
context and for describing the proposed model. However,
the methods developed are not SEMSim specific in any way.
In the next section, we give a brief overview of the Cloud
Service [22].

3.1 SEMSim Cloud Service
The cloud service consists of 6 main components as shown

in Figure 1, of which the Data Analysis component is the
focus of this paper.

1. The user-interface is represented through represen-
tational state transfer (REST) APIs. Through the use
of APIs and non-fixed front-end, the user can tailor
a use-case specific front-end for the simulation experi-
ment.

2. These API calls are then translated by the cloud ser-
vice server component which executes cloud service

actions like allocation and deallocation of cloud re-
sources as well as starting, monitoring and stopping
of simulation experiments.

3. A repository for models (algorithms with parame-
ters), types (parameter configurations for models),
source code (for implemented models and simulation
engine) and executables (compiled source code) is the
main component of the cloud service. It can offer pri-
vate repositories to privileged users or publicly avail-
able repositories to all user. This allows different do-
main experts to develop, validate and test models be-
fore being used by a non-domain expert.

4. The cloud compiler takes the source code from the
repository and compiles it into an executable that can
be used by the execution environment.

5. An execution environment is the heart of the cloud-
based simulation service. It executes an executable
from the repository together with parameterized mod-
els and input data to form a simulation run.

6. Data Analysis is an integral part of any simulation
experiment and is connected to the execution environ-
ment to use the data being generated by a simulation
run to deduce results by analyzing it directly. Data
storage or forwarding the data stream to a visualiza-
tion can range from megabytes to terabytes for a single
simulation run, depending on the simulation experi-
ment.

The complete system relies on public cloud resources al-
located from cloud service providers (e.g., Google Compute
Engine7, Amazon AWS8, Microsoft Azure9). These resources,
mostly virtual machines but also virtual networks and vir-
tual storage, are allocated according to the specifications of
the experiment and deallocated after the experiment has fin-
ished. The data generated is stored in the cloud as well. In
order to guarantee the security of the input data into the
simulation, all data is encrypted until they are used in the
simulation itself. Generated output data can also be en-
crypted, if required. The focus in this paper is on the data
analysis part which is described in more detail next.

3.2 System Design
In the proposed system, the simulation instance’s output

data is first formally defined in a relational algebra as pre-
sented in Section 4.1. This enables us to leverage on the
effectiveness and power of relational algebra in our simu-
lation data manipulation. Once the simulation is running,
a high performance simulation can output data in several
ways. The naive and standard approach is to output all
state variables of all agents whenever they change. However,
by doing so, the bandwidth required would be very high (as
illustrated in Section 5.1). A better strategy would be that
external programs can subscribe to updates of variables as
required for the analysis. This means that subscribers ei-
ther get an update of the variable whenever it changes, at
certain intervals or, if sufficient for the analysis, just once
to initialize. This is a contrast to receiving always all data,

7https://cloud.google.com/compute/
8https://aws.amazon.com
9https://azure.microsoft.com/

whenever a state changes in the simulation. A constraint
is that the update interval, in which state changes can be
received, should not be smaller than the time between two
events that change an attribute in the simulation (e.g., if the
simulation event occurs every 1s then an update frequency
of 500ms is not allowed).

This data-stream is then received by stream processing
scripts. As the data is received in batches (e.g., every 1
second), and in temporal order10, an event-based process-
ing framework, that instantiates a new thread/process is
very favorable. This also allows for scaling the processing to
multiple nodes, due to its limited dependency.

Once the data has been processed by the scripts (which
may even be a chain of different processing steps), this final
result data set is either stored in persistent storage, or sent
to a visualization client.

In order to extend a simulation engine in the cloud with
a stream processing engine, the simulation engine needs to
provide an API that exposes the state of the simulation to
an external data sink. This API should present the data in
such a way, that once requested, each change in the agent’s
state will be transmitted to the requester. This process con-
tinues for as long as the simulation is running, or until the
request is specifically terminated by the requester. Addi-
tionally, the data sink should have some form of caching to
reduce the amount of data being transfered at every change.
The actual processing can be done using existing stream
processing tools like Hadoop or Spark, as introduced in Sec-
tion 2, which either distributes the data to be processed to
one or multiple worker nodes.

3.3 Implementation
The data request scripts, that define what data is streamed

from the simulation is, for ease of use, in an SQL-like lan-
guage called SimuSQL, to ensure compatible with offline
analysis of the data. An exemplary query on the output
data-model of a traffic simulation requests data of electric
vehicles (EV) that have the time variant property State-of-
Charge (SOC) at an update rate of 1 second.

SELECT * from EV WHERE SOC >0.3 AT 1 SECOND

The extension AT 1 SECOND is added to specify how often
an update of the data should be provided by the simula-
tion. When omitting this parameter, a new data item is
sent whenever available. The related concepts are described
in more detail in Section 4. The data analysis middleware
should take care of static/non-changing content and inject
this accordingly, to ensure that the simulation can omit that
data if unchanged – transparent caching.

The most important part of the cloud service, in the con-
text of the proposed data analysis system, is an interface
which the data analysis middleware provides, that the pro-
cessing framework can access and request data from . This
interface needs to be separate from the simulation itself, but
should use locality in the data center to ensure fast data
transfer. The middleware accepts requests in the above de-
fined SimuSQL and returns data when available. It also
takes care of the transparent caching of the data. The con-
nection to the simulation has to be via open socket connec-
tions that support fast data transfers.

10note that the transport protocol can change the receive
order

As can be seen in Figure 2 the data-processing starts with
calling the SELECT statement towards the data analysis mid-
dleware component (step 1). Note, that the user initiating
this data-processing work flow can be different from the user
that designed or started the simulation experiment. The
select statement is the trigger to instantiate a connection
between the simulation and the data analysis middleware.
For this specific call, the first callback will be towards the
initialization function of the data analysis middleware (step
2). This is different from any other succeeding callback, be-
cause the simulation will transmit the entire current state.
This includes, unlike to all other callbacks, the static data
as well. All following callbacks will only include the time-
variant data, as well as the key to identify the tuple unam-
biguously (step 3). Should a new agent be added to the
simulation and should it satisfy the conditions stated in the
initial request, it’s data will be fully included. The data
analysis middleware has to ensure that the static data from
the initial data set is merged with the time-variant data
stream. After the data has been prepared, the entire data
set is presented to the stream processing toolchain. At the
end of processing, data can be stored as a result data set or
streamed out to a different data-sink. Since there is no his-
torical data injected into the stream of data, the processing
component needs to take care of passing values from one step
to the next. The data will be sent from the simulation to
the data analysis middleware and passed to the processing
component until a cancel request is sent (step 4).

Simulation Data Analysis
Middleware

Stream
Processing

Start Simulation

Request initial data

Response
(all data)

Simulation data
(time variant data)

Simulation data
(all data)

Simulation data
(all data)

static
data

Simulation data
(time variant data) Simulation data

(all data)

cancel data
requeststop data

static
data

loop
[simulation running]

User

define
analysis algorithmtransmit

data request

User

Storage

Visuali-

sation

1

2

3

4

Figure 2: Sequence diagram depicting the workflow
of the data analysis including the data processing.
The Data Analysis middleware combines the time-
variant data and the static data and passes it on to
the analysis processing. Finally the result is send to
storage or visualization.

The data transmitted from the simulation is not a con-
stant stream of data. Depending on the execution speed of
the simulation itself, the output will change once the state
of an agent changes or a new agent is added to the simu-
lation. For example, the position of all vehicles in a traffic
simulation, will be updated rather frequently (in the range

of a few seconds), while the occupancy of a car park will
be updated more infrequently (in the range of a few min-
utes)11. The data analysis middleware needs to know when
all data is in the same logical time step in order to pass
this block of data to the processing component. In order
to handle this, landmarks, a concept proposed by Gama et
al. [9], can be introduced into the stream by the simulation.
These are meta information on which the receiver, in our
case the data analysis middleware, can deduce the end of a
data concurrent stream of information.

Figure 3 shows how the landmarks are inserted into the
data stream of serialized data objects from the simulation.
Each rectangle represents information from a specific agent.
The Entity Types are different classes in the object-oriented
framework in a simulation. The order in which entities of
different types are put on the stream can vary (see A and B
in Figure 3), as long as there are no 2 entity updates of the
same type between 2 landmarks. It can also happen that for
different entity types the amount of data varies. Also, not all
entities need to be updated between two landmarks (com-
pare B and C in Figure 3). The data-analysis middleware
needs to keep track of this. It is done to ensure the reduc-
tion of bandwidth usage, by avoiding unnecessary transfers
of information.

simulation time t

A1 A2 A3 A1 A3 A2 A1 A3 A2

B1 B2 B3 B4 B2 B1 B3 B4 B2
Entitie

s Type A

Entitie
s Type B

C1 C2 C3 C4 C2 C1 C2 C1 C2

Entitie
s Type C

LMB LMBLMA LMA LMALMC LMC LMC

Figure 3: The Simulation inserts landmarks into
the stream of updates of state changes for each en-
tity type. The data analysis middleware detects the
landmarks and discards all old information from the
changed entities and replaces it with the newly re-
ceived. Should an agent’s state not change, the pre-
vious value is kept by the data analysis middleware.

To ensure data consistency between the simulation data
model and the output data model, the landmarks play an
important role. The entities that have not been updated
since the last landmark, their old values are still to be con-
sidered valid. Between different entity types the time stamp
of the landmarks for each type is compared by the middle-
ware component and a consistent set of data is presented to
the processing component.

4. FORMAL SIMULATION DATA REPRE-
SENTATION

The data in an agent-based simulation can be described
in multiple ways. In this paper we propose that this data
be in relational algebra. This provides the advantage that
constructs from a structured query language (SQL) can be
used to retrieve data from the simulation or to store the
data in a data sink (for a relational database with the same

11Note that all time information is simulation time, not real-
time

structure). In agent-based simulation, each set of agents of
the same type can be perceived as tuples in a relation of a
database. Therefore, the approach representing the output
data-model in the form of relations is favorable, since many
(post-processing) algorithms and work-flows already work
on database structured data as input. Should there be a
very heterogeneous agent-population, where agents can not
be grouped together into relations, each agent will then form
its own relation with only one time-variant tuple.

Since some of the data will change over the course of
the simulation, a temporal component needs to be added
to the relational schema. Mahmood et al. [12] have given
an overview of how to encode temporal information into a
relational data model with a focus on database use-cases.
This approach is not restricted to databases and can be ap-
plied to generic relational data. This temporal relational
data model can be adapted to be used in describing output
data from an agent-based simulation. The difference here
is that there is no (or only limited) data of the past avail-
able. Future states can be seen as starting or ending points
of data output. The data analysis middleware will only re-
ceive data from the simulation when the requested time is
reached. This means, in practical use, a request on a future
state of an agent in the system can trigger an event to start
outputting the data at that event and not sooner.

4.1 General Simulation Data Representation
The general definition of relational data models, is to

characterize the well-defined structure of databases, called
a database schema. One could describe the state variables
of the agents in an agent-based simulation as a schema with
time-varying data. The formal description of an n-ary tuple
of states is usually done by writing the name of the tuple
(class name) followed by a comma separated list of the state
variable names in parentheses [5]. Primary keys describe a
field or a set of fields which characterizes the tuple unam-
biguously. This primary key is indicated by underlining the
respective variable names. For the temporal dependency as
described in [12], an extra field is added to the relation to
describe its temporal activation (when the value is valid). It
is also possible to add a field for each variable of the rela-
tion, but this increases the number of variables in a relation
significantly, since for each variable field an extra field for
activation is required.

Since we do not have to worry about the actual time when
a state variable is active, we only need to indicate that a
field might change its value over the course of the simu-
lation adding an extra field for each of the state-variable
is unnecessary. We are proposing the indication of time-
variance by adding that the variable is a function of time
(e.g. variablename(t)).

A(f1, f2, ..., fk, fk+1, fk+2, ..., fk+n, fk+n+1(t), ..., fk+n+m(t))

shows agent A with n ∈ N>0 static state variable names,
m ∈ N>0 time-variant state variable names and k ∈ N>0

state variable names that unambiguously describe one (m+
n+ k)-ary tuple.

Time-variant Relational Algebra
Since traditional relational algebra has no concept of time-
variant fields or tuples, the individual simple functions like
projection (Π), selection (σ), Cartesian product (×) and nat-

ural join (./) have to be translated to equivalent time-variant
operations. In all following operations the n-ary tuple for a
given relation has to be determined, such as that the tuples
that are included in the result set before doing the algebraic
function are the most recent tuples for a given primary key
in respect to the time τ given. This is also expressed in
Equation 1.

TS(idi) :all Timestamps for a given idi

ID(tsi) :all IDs for a given tsi

α :Πa1,...,an , σaθv, ./,×, ...
Dom(α(R(τ))) :Domain of operation from α

on relation R at time τ

Dom(α(R(τ))) =
[
∀A(id1, t1) : [t1 ∈ TS(id1), t1 ≤ τ
∧ @t2 ∈ TS(id1), t1 < t2 ≤ τ]

∧ [@A(id2, t2) : t2 ∈ TS(id2), t1 < t2 ≤ τ
∧ id1 = id2]

]
(1)

Table 1 shows two exemplary relations that are used to
demonstrate the time-variant operations in this section. The
column TS is the time-stamp of the respective values.

Table 1: Example Relations
Relation1 Relation2

ID V1 V2 TS ID V3 TS

1 A C 0 1 E 0
2 B H 0 2 F 0
1 J C 1 1 G 1
3 C D 2 2 L 1
2 I C 2

Time-variant Projection
A projection Πa1,...,an(R) returns a set of data items that
contain the components a1, ..., an of relation R and disre-
gards all other fields in the set of tuples. The time-variant
projection includes indication for what time τ this operation
should be applied. Πa1,....,an(R(τ)) returns all n-ary tuples
from the time-variant set R that satisfy the result of Equa-
tion 1. The projection in Table 2 outputs the variable V1
and the ID at time τ = 1 from Relation1.

Table 2: ΠID,V1(Relation1(1))
ID V1

1 J
2 B

Time-variant Selection
A selection σaθv(R) returns a set of data items from the set
of n-ary tuples R that satisfies the restriction expressed by
attribute a, the binary operation θ ∈ {<,≤,=, 6=,≥, >} and
the constant value v. The time-variant version of a selection
needs to include the indication for what time τ this operation
should be applied. σaθv(R(τ)) returns all tuples that satisfy
the restriction, but are also part of the result set generated
by Equation 1. The selection in Table 3 outputs the variables
of Relation1 with the condition that variable V2 is equal to
D.

Table 3: σV 2=D(Relation1(2))
ID V1 V2

3 C D

Time-variant Natural join
A natural join R ./ S returns a set of data item from the sets
of tuples R and S that have at least one matching attribute
∃ar ∈ R ∧ ∃as ∈ S; ar = as in a resulting tuple. The time-
variant version of this natural join includes indications for
what times τS and τR this join should be applied. R(τ1) ./
S(τ2) return all tuples as the standard join would, but under
the constraint that the relations R and S are first reduced
to the result generated by Equation 1. The natural join in
Table 4 joins Relation1 and Relation2 at τ1 = 1 and τ2 = 2.

Table 4: Relation1(1) ./ Relation2(2)
ID V1 V2 V3

1 J C G
2 B H L

Time-variant Cartesian product
The Cartesian product of R× S returns a set of data items
from tuples R and S in which there is no matching attribute
name @ar ∈ R ∧ @as ∈ S; ar = as. The time-variant version
of the Cartesian product needs to include in what times
τ1 and τ2 the tuples need to be included in the operation.
R(τ1)×S(τ2) returns all standard Cartesian product tuples
that are part of the result set that satisfy the Equation 1 for
τ1 and τ2. The Cartesian product in Table 5 joins Relations1
and Relation2 at τ1 = 1 and τ2 = 0.

Table 5: Relation1(1)×Relation2(0)
ID V1 V2 V3

1 J C F
2 B H F
1 J C E
2 B H E

This extension to the standard relational algebra can be
used when the data in a database contains additional infor-
mation about the time of activation of a respective tuple.

5. CASE STUDY
As case studies for strengthening the need to reduce the

amount of data stored in persistent storage, we are first eval-
uating the speed in which data needs to written to a storage
medium and what current technologies support how many
agents and simulation speeds. Secondly, we are giving an
example on how the above described workflow can be used
for an actual cloud based traffic simulation experiment.

5.1 Data Amount Model
In the following section we compare the amount of data

that is being generated by a simulation and try to fit it to
a suitable data processing framework. For this we consider
the writing speed of conventional storage mediums like HDD

or SSD as well as network-based distributed data processing
solutions. First, we develop a model to estimate the amount
of data that is being generated by a simulation.

For this we assume an agent-based simulation with nA ∈
N>0 number of agents, the update frequency of the agents ts
(in seconds), the run time of the simulation T (in seconds)
as well as the function g(τ), the percentage of agents being
updated at given time. Additionally, the run time perfor-
mance as a real time factor RTF (how much faster than
real-time) needs to be considered as well as the number of
state variables s ∈ N>0 each agent can have. An exemplary
function g(τ) can be seen in Figure 4.

time t

% change

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

{

ts

Figure 4: Time-variant percentage of agents chang-
ing in the simulation. ts describes the time between
subsequent simulation steps.

The final mathematical model to determine how many
values will have to be saved or transmitted is:

TotalV alues =

T∑
t=t0

g(t) ∗ nA ∗ s (2)

All variables are double values on a 64 bit system, the mem-
ory footprint is different from the space required when out-
putting into CSV format. The precision p ∈ N>0 needs to
be regarded as well, since this will influence the number of
bytes that need to be written to disk. If the precision is
10 digits, a string representation of the number with ASCII
coding would need 11 bytes, due to the decimal point. This
is 3 bytes more than in the computer’s main memory.

CSV size = TotalV alues ∗ (p+ 1) (3)

In order to evaluate if a certain storage medium can be used,
the specification of common hardware write speeds need to
be collected. For this we are considering conventional hard
drives with a writing speed of 80 - 160 MB/s as well as solid
state disk with a writing speed of 400 - 1000 MB/s. Ad-
ditionally, state-of-the-art network transfer speeds for local
networks need to be considered, since the data analysis is
not be done on the same machine as the simulation is being
executed. Current data center interconnections technologies
are Ethernet, Infiniband or fiber optical connections. They
range from 10 − 40GB/s, 56GB/s to > 100GB/s respec-
tively. The output bandwidth in bytes per second is defined

Table 6: Agent count vs. writing speed
5000 8000 80000 800000

103.76 MB/s 166.02MB/s 1.66GB/s 16.6GB/s

HDD X - - -
SSD X X - -
10G Ethernet X X X -
56G Infiniband X X X X
100G Fibre X X X X

as

OutputSpeed =
CSV Size

T
ts

∗RTF (4)

Conventional way of processing simulation output data
also requires to read data into main memory. There are also
limits on main memory of a single system. A distributed
processing workflow has to be used in such cases. This allows
to distribute workload to multiple worker nodes and use a
single aggregation node to combine the results. this works
very well, when the data has little or no dependencies. The
developed model can help to design the right data analysis
workflow for the agent-based simulation that is to be run.

Data amount example
In a simple example where we vary the number of agents in
a 24-hour simulation with each agent having 25 state vari-
ables that change throughout the simulation. The time step
is 1 second and the RTF is 100. Over the course of the sim-
ulation with each time step 50% of the agents change and
their state has to be outputted. Assuming a precision of 16
digits.

This would result in 87.55GB of total data and 1.04 MB
per simulated second of simulation time when considering
5000 agents. Multiplying it with the RTF of 100, it results
in 103.76MB/s that have to be written to storage. This
would be possible with all the listed storage options in Ta-
ble 6. The introduction of more agents into a simulation will
have the effect that the simulation data can not be written
out anymore and the systems capability is exhausted.

In the presented system, the large data would only be
transfered from the simulation to a distributed processing
workflow.

This mean the large amount of data generated by a sim-
ulation is streamed to the processing systems using high
throughput network communications. Since the processing
system might be distributed, even a lower capability vir-
tual machine can handle the incoming connections. This
allows for shorter turnaround times, between the end of a
simulation, since a hard-disk-based approach would need to
wait until all data is written before reading it from the stor-
age medium. Once the simulation output data bandwidth
exceed the capability of the medium, the I/O presents a
bottleneck to the simulation experiment.

5.2 Traffic Simulation Cloud Service
The SEMSim simulation engine [1, 18] is used in the SEMSim

traffic simulation cloud service. The Scalable Electromobility
Simulator (SEMSim Traffic) is an agent-based traffic simu-
lation engine. It is part of the SEMSim platform, which
also includes a power system simulation [4]. This allows re-
searchers to study the holistic effects of electromobility on
an entire city/region through simulation.

Within the SEMSim traffic simulation each agent is repre-
sented as driver-vehicle-units (DVU) which consists of driver
behavior and vehicle component models. Depending on the
specific agent the actual models can vary.

The simulation uses a hybrid time-stepped and event-
based execution model. Specific events like agent move-
ment have predefined intervals, whereas other events, like
the decision making of the driver or the update of the air-
conditioning, are scheduled at different intervals. This gives
the flexibility to vary the update of certain models more
frequently than others.

An exemplary simulation experiment [4] with electric ve-
hicle agents in a city-scale network and the objective is to
determine the locations and State-of-Charge (SoC) of all
electric vehicles that have an SoC of less than 0.3.

5.2.1 Traffic Simulation Data
In a nanoscopic agent-based traffic simulations like SEMSim

Traffic, the agents are the vehicles and their driver. The
behavior of the driver directly influences the state of the ve-
hicle. For example, the decision by the driver model to in-
crease the velocity directly influences the acceleration, fuel
consumption and, ultimately, the velocity of the vehicle it-
self. Since the vehicle is not the only entity in a traffic simu-
lation, the output data representation also needs to consider
other entities:

• Roads: Consist of links and lanes [18], used for routing
and movement.

• Car Parks: Hold a certain number of vehicles.

• Traffic Lights: Regulate the traffic at intersections and
control the flow of vehicles.

• Other Infrastructure Components: Bus Stops, Cross-
walks, Tram/MRT stations

An agent-based traffic simulation is usually modeled in an
object-oriented framework, all the entities can have inheri-
tance to child-models with larger amounts of data (see Fig-
ure 5). A vehicle only contains the very basic attributes like
speed, location and geometric dimensions, while more spe-
cific vehicle implementations (e.g., electric, fuel-cell, ICE)
can have more specific model attributes that influence the
speed or location. The same applies for driver behavior.
The output data relations for this example, containing only
a subset of all entities in the simulation, would be:

Vehicle(vehicleID ,geometry ,
velocity(t),location(t))

EV(vehicleID ,batterySize ,currentCapacity(t))
ICE(vehicleID ,MotorPower ,tankSize ,

tankfilled(t))
Road(ID,name ,startpoint ,endpoint)
Link(ID,startpoint ,endpoint)
Lane(ID,startpoint ,endpoint ,leftlane ,rightlane)
CarPark(ID,location ,totalSlots , freeSlots(t))
Trip(ID,vehicleID ,FromLocation ,ToLocation)

This relation scheme needs to be known to the user that
is developing the processing scripts, because these are the
relations a SimuSQL query can return results for.

5.2.2 Time-variant Relational Data Model
The data required from the simulation is the vehicle loca-

tion as well as the information of the SoC. A time-variant re-
lation algebra expression would look like the following when

Vehicle

EV ICE

Car Park

Trip Road

LinkLane

has Consists

of

is on

is A

is on

is in

Figure 5: ER output data Model for a agent-based
traffic simulation

considering that t is the current time tnow:

LowSOCAgents(tnow) = Vehicle(tnow) ./

σcurrentCapacity/batterySize<0.3(EV (tnow))
(5)

ΠvehicleID,location,batterySize,currentCapacity

(LowSoCAgents(tnow))
(6)

This projection will return the vehicle ID, the location of
the vehicle, the current capacity of the battery as well as the
total battery size. Due to the selection in equation 5, the
natural join only includes those agents that have an SoC of
less than 0.3. The SoC is defined as the current capacity of
the battery over the maximal battery size. The equation 6
applies a projection on the result tuples of equation 5. This
is the formal description and operations that can be used to
optimize queries using time-variant relational algebra. The
following section expresses the same query as an SimuSQL
statement which is queried from the processing script to the
data analysis middleware.

5.2.3 Stream Output for Traffic Simulations
After we have introduced the data that a traffic simulation

is generating, and the formal time-variant relation algebra
optimization that has been performed, the translation into
a SimuSQL query and the workflow at the data analysis
middleware will be shown now.

A SimuSQL query to obtain the location and the SoC of
all vehicles in the simulation that have less than 0.3 would
be:

SELECT vehicleID ,Location ,currentCapacity/

batterySize as SOC from EV natural

join Vehicle WHERE currentCapacity/

batterySize < 0.3;

This will return a time-variant tuple of all vehicles con-
taining the location as well as batterySize as a fixed value
whenever a vehicle has an SoC (currentCapacity/Battery-
Size) of less than 0.3. Since there is no update interval
(e.g. AT 1 SECOND) specified, the data is streamed when-
ever changed in the simulation.

This query will be forwarded to the data analysis mid-
dleware where it is translated into a statement requesting
information from the vehicle object as well as the inher-
ited properties from the EV object in the simulation. The

first request will transmit the entire state of the simula-
tion regarding the vehicles and the EVs to the data anal-
ysis middleware. The transparent caching structure in the
data analysis middleware will then cache the time-invariant
variables, like the batterySize in this case and pass the
entire data stream to the processing engine. Here the pro-
cessing of spatial information of vehicles is performed and
the result of clustering “low SoC agents” is transmitted to
the database and/or pushed to a visualization engine, which
eventually displays this information. In parallel to the pro-
cessing, the simulation continues running and data contin-
ues being sent to the data analysis middelware. With any
subsequent stream of data after the initial one (containing
the batterySize), only the primary key, in this case the
vehicleID, together with the time-variant information (e.g.
currentCapacity) is forwarded. In the above example, data
analysis middleware takes care of inputting the batterySize
from the transparent cache and forwards it to the process-
ing engine. To the processing engine, the simulation looks
like a normal SQL database; however, in the background the
simulation is changing the data constantly, while the cloud
service is trying to minimize the data transmitted between
the simulation and the data analysis middleware and the
processing engine.

6. CONCLUSIONS
In this paper we have presented an approach to reduce the

data generated by simulation experiments and to couple the
data analysis to the simulation execution. This is especially
useful for cloud based simulation experiments, where the
costs of running simulation experiments is low, but long term
storage and transfer of large amounts of data can be really
expensive. The proposed system uses stream processing of
data during its generation and a relational data model of the
possible output data generated by a simulation experiment.
This enables experiment designers to formally model the
simulation output data with a time-variant relational data
model.

We propose a formalism that indicates time variance on a
simple relational model, where all operations have to regard
the time at which the data was created. Since this method
introduces another layer of middleware into the simulation
work-flow, the middle-ware component presents a possible
bottleneck to the system. This needs to be evaluated in
experimental studies, but since the middle-ware discards any
historical data, the execution, even of complex queries, is
expected to be fast.

Possible use-cases of this model is an online data visual-
ization application that can show results, and possible inter-
actions with the simulation while it is still running. (Semi-
)Manual exploration of different simulation and model con-
figurations could be much more engaging and fruitful. This
can be used for visualization of the data but also for decision
support systems that deliver results while the simulation is
still running.

7. REFERENCES
[1] H. Aydt, Y. Xu, M. Lees, and A. Knoll. A

multi-threaded execution model for the agent-based
semsim traffic simulation. In G. Tan, G. Yeo,
S. Turner, and Y. Teo, editors, AsiaSim 2013, volume
402 of Communications in Computer and Information

Science, pages 1–12. Springer Berlin Heidelberg, nov
2013.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’02, pages 1–16, New
York, NY, USA, 2002. ACM.

[3] K. Banker. MongoDB in Action. Manning
Publications Co., Greenwich, CT, USA, jan 2012.

[4] D. Ciechanowicz, D. Pelzer, and A. Knoll.
Simulation-based approach for investigating the
impact of electric vehicles on power grids. In
Proceedings of IEEE PES Asia-Pacific Power and
Energy Engineering Conference 2015, Nov 2015.

[5] E. F. Codd. A relational model of data for large
shared data banks. Communications of the ACM,
13(6):377–387, jun 1970.

[6] J. Dahmann and K. Morse. High level architecture for
simulation: an update. In Distributed Interactive
Simulation and Real-Time Applications, 1998.
Proceedings. 2nd International Workshop on, pages
32–40, Jul 1998.

[7] H. Darwen and C. J. Date. The third manifesto.
SIGMOD Rec., 24(1):39–49, mar 1995.

[8] W. Fan and A. Bifet. Mining big data: current status,
and forecast to the future. ACM sIGKDD
Explorations Newsletter, 14(2):1–5, dec 2012.

[9] J. Gama and P. Rodrigues. Data stream processing. In
J. Gama and M. Gaber, editors, Learning from Data
Streams, pages 25–39. Springer Berlin Heidelberg, sep
2007.

[10] P. Kurowski. Engineering Analysis with SolidWorks
Simulation 2012. SDC Publications, apr 2012.

[11] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. ACM
SIGOPS Operating Systems Review, 44(2):35–40, apr
2010.

[12] N. Mahmood, S. M. A. Burney, and K. Ahsan. A
logical temporal relational data model. CoRR,
abs/1002.1143, jan 2010.

[13] R. Ranjan. Streaming big data processing in
datacenter clouds. IEEE Cloud Computing,
1(1):78–83, may 2014.

[14] J. Schützel, H. Meyer, and A. M. Uhrmacher. A
stream-based architecture for the management and
on-line analysis of unbounded amounts of simulation
data. In Proceedings of the 2Nd ACM SIGSIM
Conference on Principles of Advanced Discrete
Simulation, SIGSIM PADS ’14, pages 83–94, New
York, NY, USA, may 2014. ACM.

[15] J. Schützel and A. M. Uhrmacher. Targeted extration
of simulation data. In Distributed Simulation and Real
Time Applications (DS-RT), 2015 IEEE/ACM 19th
International Symposium on, Oct 2015.

[16] S. Tickoo. Autodesk Simulation Mechanical 2015 for
Designers. CADCIM Technologies, sep 2014.

[17] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache

hadoop yarn: Yet another resource negotiator. In
Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 5:1–5:16, New York, NY,
USA, oct 2013. ACM.

[18] V. Viswanathan, D. Zehe, J. Ivanchev, D. Pelzer,
A. Knoll, and H. Aydt. Simulation-assisted
exploration of charging infrastructure requirements for
electric vehicles in urban environments. Journal of
Computational Science, 12:1–10, jan 2016.

[19] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding. Data mining
with big data. Knowledge and Data Engineering,
IEEE Transactions on, 26(1):97–107, Jan 2014.

[20] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: an efficient and fault-tolerant
model for stream processing on large clusters. In
Proceedings of the 4th USENIX conference on Hot
Topics in Cloud Ccomputing, pages 10–10. USENIX
Association, jun 2012.

[21] D. Zehe, W. Cai, A. Knoll, and H. Aydt. Tutorial on a
modeling and simulation cloud service. In Proceedings
of the 2015 Winter Simulation Conference, dec 2015.

[22] D. Zehe, A. Knoll, W. Cai, and H. Aydt. Semsim
cloud service: Large-scale urban systems simulation in
the cloud. Simulation Modelling Practice and Theory,
58, Part 2:157 – 171, nov 2015. Special issue on Cloud
Simulation.

