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ABSTRACT
Graphics processing units (GPUs) have been shown to be well-
suited to accelerate agent-based simulations. A fundamental chal-
lenge in agent-based simulations is the resolution of conflicts arising
when agents compete for simulated resources, which may introduce
substantial overhead. A variety of conflict resolution methods on
the GPU have been proposed in the literature. In this paper, we sys-
tematize and compare these methods and propose two simple new
variants. We present performance measurements on the example
of the well-known segregation model. We show that the choice of
conflict resolution method can substantially affect the simulation
performance. Further, although methods in which agents actively
indicate their interest in a resource require the use of costly atomic
operations, these methods generally outperform the alternatives.
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1 INTRODUCTION
Agent-based simulation is widely applied to evaluate systems in
domains such as traffic engineering and biology. In contrast to
macroscopic simulations, agent-based simulation considers the in-
teractions between the participating entities in detail, incurring
substantial computational load. Since most agent-based simula-
tions exhibit a certain degree of locality w.r.t. the simulation space
and involve state updates for all agents at the same logical time,
graphics processing units (GPUs) have proven to be well-suited for
parallelization of agent-based simulations.

If at a given point in logical time, all agent states are updated
concurrently, multiple agents may request the same resource, e.g.,
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a location in the simulation space. If the simulation model does not
specify how such conflicts are to be resolved, a generic method is
required.We suggest that to generate meaningful simulation results,
such a method should exhibit three properties: exactly one agent
should acquire the resource, the outcome should be deterministic,
and no bias should be introduced.

Sequential simulators perform agent state updates one after the
other. If considering the actions taken by each agent’s predecessors,
conflicts are avoided entirely. While some models specify such a
one-by-one update of agents (e.g., [11]), the opportunities for paral-
lel processing are severely limited [6]. In the GPU context, conflict
resolution is complicated by the indeterminism in the progress of
the processing elements. The key challenge is to produce determin-
istic and unbiased results while still achieving high performance.

In this paper, we make the following contributions: 1. We sys-
tematize the GPU-based conflict resolution approaches from the
literature and discuss how bias can be avoided. 2. We propose two
new conflict resolution variants. 3. We present a performance eval-
uation of the existing and proposed conflict resolution approaches1.

2 FUNDAMENTALS
In agent-based simulation, the agent state is represented by a set of
variables associated with each agent. In the following, we assume
that the simulation proceeds in cycles. During each cycle, all agents
update their states, accessing only the previous state of other agents.

We define a conflict as a situation in which an agent requests a
resource that has already been requested by another agent at the
same logical time. An example is given by the Sugarscape model [1],
in which agents compete for pieces of sugar. In the case of discrete
spatial simulations, multiple agents may request the same unoc-
cupied cell on a grid, yet only one of the agents (the “winner”)
can occupy that cell. The goal of a conflict resolution method is to
determine exactly one winner for each conflict. Roughly, conflict
resolution involves two steps: first, each agent indicates its interest
in a resource. Second, a tie-breaking mechanism determines the
winner. All remaining agents then select another resource. A simu-
lation is deterministic iff the same result is obtained from repeated
simulation runs using the same pseudo-random number genera-
tor seed [8]. Determinism is considered important for analyzing
simulation results and for debugging [3].

1https://github.com/GPUCR
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A model may specify rules for breaking ties. However, we con-
sider the case where the model does not specify a tie-breaking
policy. Thus, we postulate that all agents interested in the same
resource should have the same probability of acquiring the resource,
i.e., given 𝑛 conflicts with𝑚 involved agents on average, the ex-
pectation for the number of conflicts won should be 𝑛/𝑚 for each
agent. This requirement implies that the tie-breaking mechanism
should not systematically favor certain agents or states, which we
refer to as bias. As an example, a biased tie-breaking mechanism
in a traffic simulation may favor vehicles entering a road from a
certain direction, which could introduce behaviors not specified in
the model. The required considerations are similar to the handling
of simultaneous events in discrete-event simulations [8].

To illustrate the principles of conflict resolution on a simple ex-
ample, we consider the segregation model by Schelling [11], in
which agents compete for locations in a two-dimensional cellular
simulation space. However, the considered conflict resolution meth-
ods are also applicable to more complex models, e.g., when agents
move on a graph or compete for resources other than locations.

In the segregation model, agents are assigned one of two types.
The “happiness” of each agent is calculated based on the number
of agents of the same type in the eight adjacent cells. In each sim-
ulation cycle, each unhappy (moveable) agent moves to a random
position in a configurable neighborhood. Conflicts occur whenever
multiple agents attempt to move to the same position. We consider
cells containing moveable agents as unoccupied. Thus, there are at
least as many unoccupied cells as moveable agents.

3 CONFLICT RESOLUTION METHODS
A simple way of resolving conflicts is used in the MatSim traffic
simulator [12]: agents attempt to obtain a resource by atomically
writing to a variable associated with each resource. The earliest
agent successfully obtains the resource, whereas the other agents
fail. The atomic write operation ensures that exactly one agent
obtains the resource. However, determinism is not among the design
goals of MatSim [5]. Although the method identifies a winner for
each conflict, if no additional action is taken, the results depend
on the execution order among the processing elements. In the
following, we only consider deterministic approaches.

We propose a classification of the existing approaches into two
categories, push and pull, which are differentiated by the manner
in which potential assignments between agents and resources are
written tomemory. In push approaches, agents actively try to obtain
the resources by writing to a variable associated with the desired
resource. Generally, push approaches require the use of atomic
operations to control concurrent accesses to the resources. In pull
approaches, possible assignments are stored locally by the active
entities. For instance, if agents take the active part, each agent stores
the determined assignment in a per-agent variable. Thus, no atomic
operations are required. Subsequently, scanning is performed by
the resources to determine the interested agents.

We further differentiate among tie-breaking methods: with incre-
mental tie-breaking, predefined priorities are applied as the agents
register their interest, so that a winner has been identified once the
last agent has registered. With postponed tie-breaking, the interested
agents are explicitly stored in a list. Subsequently, the list is sorted
and a pseudo-random number is drawn to determine the winner.

Algorithm 1 Iterative Push
1: while𝐴 ≠ ∅ do
2: for each 𝑎 ∈ 𝐴 in parallel do
3: 𝑎.𝑟 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑅)
4: 𝐴𝑡𝑜𝑚𝑖𝑐𝑀𝑎𝑥 (𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 [𝑎.𝑟 ], 𝑎.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)
5: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒 ()
6: for each 𝑟 ∈ 𝑅 in parallel do:
7: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 [𝑟 ]
8: if 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ≠ 𝑛𝑖𝑙 then
9: 𝑎 ← 𝐺𝑒𝑡𝐴𝑔𝑒𝑛𝑡 (𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) ;𝐴𝑠𝑠𝑖𝑔𝑛 (𝑎, 𝑟 )
10: 𝐴← 𝐴 \ {𝑎};𝑅 ← 𝑅 \ {𝑎.𝑟 }
11: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒 ()

For brevity, we describe all methods using incremental tie-breaking,
however, our performance evaluation covers both approaches.

3.1 Push
In push approaches, agents actively indicate their interest in a
resource by writing to a variable associated with the resource.

Iterative Push: Lysenko et al. [2] proposed a conflict resolution
method based on atomic operations. In the first stage, each agent
attempts to atomically write a unique priority to a per-resource
variable. The assignment of suitable priorities will be discussed in
Section 4. An atomic maximum operation ensures that the final
result holds the value written by the agent with the highest priority.
After performing a global synchronization to guarantee that all
results of the first stage have been written to memory, in the second
stage, each resource checks whether it has been selected by an agent.
If that is the case, the agent is assigned the resource. The two stages
are repeated for a number of iterations until all agents have acquired
a resource. Iteration here is defined as a series of kernel calls that
complete the assign and acquire stages. Pseudo-code is provided
in Alg. 1 where𝐴 is the set of agents intending to obtain a resource,
and 𝑅 is the set of resources.

Non-Iterative Push: We propose a variant of Alg. 1 that re-
quires only one iteration per simulation cycle: each agent attempts
to store its priority in a per-resource variable using an atomic max-
imum operation. In contrast to Alg. 1, each agent considers the
previously stored priority returned by the atomic operation to de-
termine whether its priority is the current maximum. If another
agent already registered a higher priority, the current agent imme-
diately attempts to obtain another resource. Otherwise, if the agent
has displaced a previously registered agent, the current GPU thread
takes control of the displaced agent and repeats the procedure until
it has registered the highest priority for a resource. Since displaced
agents are moved immediately, a simulation cycle concludes in one
iteration. With non-iterative push, the overall number of conflicts
is larger than with iterative push, where agents that have already
obtained a resource do not take part in subsequent iterations. How-
ever, due to a reduction in memory accesses and synchronization
points, our approach still outperforms iterative push (cf. Section 5).

3.2 Pull
In pull approaches, write accesses by agents and resource are limited
to local variables. Thus, atomic operations are avoided. In an early
work on GPUs, a pull approach was proposed by Perumalla et
al. [6]: first each resource selects a random neighboring agent and
stores its identifier locally. Each agent then scans for resources that
have selected the respective agent. If the number of resources is
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Algorithm 2 Iterative Pull
1: while𝐴 ≠ ∅ do
2: for each 𝑎 ∈ 𝐴 in parallel do
3: 𝑎.𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑅)
4: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒 ()
5: for each 𝑟 ∈ 𝑅 in parallel do
6: 𝐴𝑟 ← ∅
7: for each 𝑎 in the neighborhood of 𝑟 do
8: if 𝑎.𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑟 then
9: 𝐴𝑟 ← 𝐴𝑟 ∪ {𝑎}
10: if |𝐴𝑟 | ≥ 1 then
11: 𝑎𝑟 ← 𝑀𝑎𝑥𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐴𝑟 ) ;𝐴𝑠𝑠𝑖𝑔𝑛 (𝑎𝑟 , 𝑟 )
12: 𝐴← 𝐴 \ {𝑎𝑟 };𝑅 ← 𝑅 \ {𝑟 }
13: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒 ()

exactly one, there is no conflict and the agent can obtain the target
resource. Otherwise, the resource is not obtained by any agent.
Since this approach does not resolve conflicts competing for the
same resource, it is not included in our evaluation.

An iterative pull approach is used in FLAME GPU [7]. First, each
agent selects a resource and stores a resource identifier in a per-
agent variable. Then, each resource scans for interested agents. The
winner of a conflict is determined based on the agents’ priorities.
This process is repeated until all agents have obtained resources.
The approach avoids atomic operations. However, scanning for in-
terested agents incurs substantial overhead if a large neighborhood
is considered. The iterative pull approach is shown in Alg. 2.

3.3 Sampling and Permutation
We propose a simple conflict resolution approach targeting models
where agents compete for resources selected uniformly at random
from a global set. With unrestricted agent movement, Schelling’s
segregation model is an instance of this model class. The approach
is based on the observation made previously by Perumalla et al. [6]
that the desired result of a simulation cycle is a random injective
mapping between agents and resources. We directly determine
such a mapping by a two-step approach. First, a random sample
is drawn from the resources. Second, a random permutation of
the agents is computed to determine the mapping to the resources
(cf. Fig. 1). Pseudo-code is provided in Alg. 3. For random sampling
and permutation, we rely on parallel algorithms by Sanders et al. [9,
10]. For random sampling, we ported existing CPU code2, whereas
random permutation was implemented from scratch. For Schelling’s
segregation model with limited neighborhoods, the approach is not
applicable: since agents compete for overlapping sets of resources,
the probability of selecting a given resource varies among agents.

4 AVOIDING BIAS
Clearly, the requirement of unbiased conflict resolution (cf. Sec. 2) is
satisfied by postponed tie-breaking: once the set of interested agents
has been identified, the agents are sorted and a random number
is drawn to select the winner of the conflict. However, with incre-
mental tie-breaking, care must be taken not to introduce undesired
bias into the simulation. We illustrate the issue using Schelling’s
segregation model: it may seem natural to use the agents’ current
position as their priorities. However, if the neighborhood consid-
ered for movement is limited, this choice of priorities introduces a
bias into the movement directions of agents. Consider the situation

2https://github.com/sebalamm/DistributedSampling

Algorithm 3 Sampling and Permutation
1: 𝑅𝑆 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒 (𝑅, |𝐴 |)
2: 𝐴𝑃 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑒𝑟𝑚𝑢𝑡𝑒 (𝐴)
3: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒 ()
4: for each 𝑎𝑖 ∈ 𝐴𝑃 in parallel do
5: 𝐴𝑠𝑠𝑖𝑔𝑛 (𝑎𝑖 , 𝑅𝑆 [𝑖 ])

1 3 5 7 9 3 1 5 9 7

2 24 6 8 10 11 12 4 8 11 12

permute

sample

Moveable agent set

Free cell set

Figure 1: Sampling and Permutation.
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Figure 2: Illustration of bias caused by fixed priorities.

in Figure 2, where agent priorities are chosen by their current posi-
tions. Agents may move to locations in a 3 × 3 neighborhood. We
show two possible target positions chosen by the agent at position
12. The gray rectangles denote the source position of agents that
may compete for the same position. If the agent intends to move to
position 6, any competing agent will have a lower priority, i.e., the
agent will always win the conflict and be able to move. In contrast,
if the agent intends to move to position 18, any competing agent
will have a higher priority, i.e., the agent will lose the conflict and
will have to select a new target position. Since this type of asymme-
try affects the other reachable target positions as well, the general
tendency for agents is to move to the top left of the simulation
space. The bias is more pronounced at small neighborhood sizes.

Independence between winning probabilities and agent states
can be achieved by choosing random priorities for each simulation
cycle. We extended the push approach by generating a random per-
mutation and assigning the results as the agents’ priorities, which is
similar to shuffling the agents’ movement order in sequential agent-
based simulations. It is necessary to generate a new permutation
at the beginning of each cycle to avoid introducing a randomized
but consistent bias pattern. When permuting the priorities at each
cycle, the relative priorities of the competing agents are chosen
without favoring certain agents or agent states systematically. Thus,
as with postponed tie-breaking, the results are unbiased.

5 PERFORMANCE EVALUATION
We measured the performance of the different conflict resolution
approaches using the segregation model on a system equipped with
a NVIDIA Tesla K20Xm with CUDA 7.5. 99% confidence intervals
are plotted but are too small to be visible.

Figure 3 compares the execution times of simulations using iter-
ative push, non-iterative push and sampling and permutation when
agents move without spatial restrictions. Since in the pull approach,
resources scan the entire grid for interested agents, it is about 2000
times slower than the other approaches and thus excluded from the

https://github.com/sebalamm/DistributedSampling


SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy Mingyu Yang, Philipp Andelfinger, Wentong Cai, and Alois Knoll

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Occupancy ratio

Sampling and permutation
Iterative push incremental tie-braking
Iterative push postponed tie-braking

Non-iterative push incremental tie-braking

Figure 3: Simulation runtime with global movement.
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Figure 4: Simulation runtime with limited neighborhood.

figure. As the non-iterative approaches depend on incremental tie-
breaking, combinations with postponed tie-breaking are excluded
as well. We varied the occupancy ratio, i.e., the ratio of populated
cells, from 0.1 to 0.9. The simulation space was a grid of about 16
million (4096 × 4096) cells. The agents’ happiness threshold was
set to 5. The simulation was terminated after 100 simulation cycles.
The results show a minor runtime reduction of non-iterative push
over iterative push. The sampling and permutation approach per-
forms worse under low occupancy ratios. However, for occupancy
ratios above 0.7, sampling and permutation outperforms the push
approaches. The reason is that at high occupancy ratios, with the
push approaches, agents will perform many retries until an open
cell is found and potential conflicts are won. Sampling and permu-
tation avoids these situations by directly mapping agents to the
open cell set. At a smaller grid size of 1024 × 1024 cells, the relative
performance of the push approaches remained roughly the same.
However, sampling and permutation was outperformed by a factor
of about 2.9 to 5.2. Generally, the performance is affected by the
number of moveable agents and conflicts. The largest number of
conflicts was generated at an occupancy ratio of 0.6, coinciding
with the longest observed execution times.

The performance of iterative push is affected by the number of
iterations required to resolve all conflicts, which can be computed
by iteratively determining the number𝑛 of agents that lose a conflict
according to the birthday paradox [4]: 𝑛 = |𝐴| − |𝐶 | + |𝐶 | (1− 1

|𝐶 | )
|𝐴 | ,

where |A| is the number of agents and |C| is the number of cells.
Figure 4 shows the execution times of the various approaches

when the agent movement is limited to a 3 × 3 neighborhood on
a grid of 4096 × 4096 cells. For incremental tie-breaking, the ap-
proach described in Section 4 to avoid bias is used. As discussed
in Section 3.3, sampling and permutation cannot be apply to re-
stricted neighborhoods. In contrast to the unrestricted movement,
the incremental tie-breaking approaches require the computation
of random permutations in order to avoid bias. If an agent cannot
find an unoccupied cell, its neighborhood is enlarged in steps of 3

cells after 10 trials each. We observed neighborhoods up to 63 × 63
cells at occupancy ratio 0.9. Since in the pull approach, the cells
scan for interested agents, they have to consider the largest neigh-
borhood used by any agent in the current iteration. Accordingly,
iterative pull was substantially slower than the push approaches,
requiring up to 1127 seconds at an occupancy ratio of 0.9. Given
these results, we did not implement iterative pull with incremental
tie-breaking. Iterative and Non-iterative push with incremental
tie-breaking requires the computation of a random permutation for
each simulation cycle. Since postponed tie-breaking does not re-
quire this step, it consistently achieved the lowest execution times.

6 CONCLUSIONS AND OUTLOOK
We systematized and evaluated conflict resolution approaches for
agent-based simulation on GPUs from the literature and proposed
two new variants. Our measurements indicate that if agents com-
pete for resources globally without restriction to a certain neigh-
borhood, a non-iterative approach achieves best performance. If the
numbers of agents and conflicts are both large, a direct computation
of a random mapping between agents and resources performed the
best. If agents consider resources within a limited neighborhood,
a postponed tie-breaking between competing agents substantially
outperformed the alternatives. We further discussed ways to avoid
bias in the conflict resolution. Our current observations were made
only based on the classic segregation model, which is simple but
often used to illustrate the power of agent-based modeling. Future
work could extend our observations to more practical applications
such as traffic simulation.
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