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Abstract—Road traffic simulation is a useful tool for studying
road traffic and evaluating solutions to traffic problems. Large-
scale agent-based road traffic simulation is computationally
intensive, which triggers the need for conducting parallel sim-
ulation. This paper deals with the synchronization problem in
parallel agent-based road traffic simulation to reduce the overall
simulation execution time. We aim to reduce synchronization
operations by introducing some redundant computation to the
simulation. There is a trade-off between the benefit of reduced
synchronization operations and the overhead of redundant com-
putation. The challenge is to minimize the total overhead of
redundant computation and synchronization. Firstly, to deter-
mine the amount of redundant computation, we proposed a way
to define extended layers of partitions in the road network.
The sizes of extended layers are determined by the behavior
of agents and the topology of road networks. Secondly, due to
the dynamic nature of road traffic, a heuristic was proposed to
adjust the amount of redundant computation according to traffic
conditions during simulation run-time to minimize the overall
simulation execution time. The efficiency of the proposed method
was investigated in a parallel agent-based road traffic simulator
using real-world network and trip data. Results have shown that
the method can reduce synchronization overhead and improve
the overall performance of the parallel simulation significantly.

Index Terms—Agent-based traffic simulation, parallel simula-
tion, conservative synchronization, computation replication.

I. INTRODUCTION

Agent-based road traffic simulation considers the behavior
of driver-vehicle-units (DVUs) [1]. Large-scale agent-based
simulation of road traffic (e.g., the whole city) is a useful tool
to evaluate the impact of individual behaviors on road traffic
as a whole [2]. It is useful in solving the severe problems
that modern large cities face, such as congestion and high
emissions. However, such traffic simulation usually involves
thousands or millions of agents, which is computationally
intensive. Parallel computing techniques can be used to speed-
up the simulation.

To parallelize an agent-based traffic simulation, a com-
mon way is to decompose the road network into multiple
spatial subregions (i.e., partitions). Each subregion is exe-
cuted by a Logical Process (LP) which is assigned to a
physical processing unit. To maintain the correctness of the
simulation, synchronization of LPs is required for simulation
time advancement due to data dependencies between LPs
[3]. In a distributed memory environment, synchronization is
typically achieved by message-passing. For agent-based traffic
simulation, global barriers are commonly used [4], [5]. Agent
models are updated with fixed intervals and global barriers

are deployed at the end of update intervals. The limitation
of this synchronization method is that all LPs have to wait at
global barriers despite some LPs having no dependencies with
other LPs. Another approach for synchronization is to allow
LPs to exchange messages and progress asynchronously [6],
[7]. LPs do not need to synchronize at the same time. The
frequencies of synchronization can be different for different
LP pairs and is determined by a measure termed lookahead.
Lookahead of LPi towards LPj (i 6= j) at simulation time
t is a time interval in the simulated future within which
LPi will not have data dependencies with LPj . The larger
lookahead values are, the less frequent synchronization is
performed. However, due to the frequent interaction of agents,
agent-based simulations generally have small lookahead. High
synchronization overhead is still an issue for the performance
of parallel agent-based traffic simulations.

Computation replication is an effective approach reported in
the literature to reduce inter-process communication in parallel
applications [8], [9], [10], [11], [12]. The concept is to let
LPs conduct some redundant computation to generate data
locally instead of receiving them from synchronization. There
is a trade-off between the benefit of reduced synchronization
and the overhead of redundant computation: to further reduce
synchronization operations, more redundant computation is
usually required. This method has been used for solving partial
differential equations and matrix multiplication [8], [9], as
well as agent-based simulations [10], [11], [12]. However,
there is a major difference between the simulation spaces
in those simulations and those in agent-based road traffic
simulation. The spaces in the existing works are either n-
dimensional grids where computational tasks are distributed
uniformly, or graphs where vertices represent computational
tasks and edges represent the dependencies of the tasks. The
simulation space in agent-based road traffic simulation is a
spatial network composed of links and nodes. Agents are
situated in the spatial network. The distribution of agents in
the spatial network may not be uniform and it dynamically
changes since agents move along the links. The interaction of
agents depends on the positions of agents and is dynamic. The
interaction of agents affects how computation is replicated.
Thus, the existing solutions cannot be directly applied to agent-
based road traffic simulation. It is non-trivial to determine
how computation can be replicated in agent-based road traffic
simulation. In addition, the trade-off between the redundant
computation and the benefit of reduced synchronization op-
erations should be carefully studied in order to gain overall
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performance improvement.
We solve two challenges in this paper. The first challenge

is to limit the amount of redundant computation. We propose
a way to define extended layers of partitions for agent-
based road traffic simulation. The sizes of extended layers are
determined by the behavior of agents and topology of road
networks in our representation. The second challenge is to deal
with the dynamic nature of road traffic. A method is proposed
to adjust the amount of redundant computation according to
traffic conditions on the road network dynamically during the
simulation. Efficiency of the proposed methods is investigated
in a parallel agent-based road traffic simulator using real-world
network and trip data.

The remainder of the paper is organized as follows: the next
section presents some background information about parallel
agent-based traffic simulation used in this work: agent models,
partitioning of the simulation, and the synchronization proto-
col. Section III introduces our proposed adaptive computation
replication method. Extended layers of partitions on the road
network are defined. A heuristic that adjusts the number of
extended layers to replicate is developed. Subsequently, Sec-
tion IV presents experiments and results. Section V describes
related works. Finally, Section VI provides a summary of this
work and recommendations for future work.

II. PARALLEL AGENT-BASED SIMULATION OF
ROAD TRAFFIC

A. Simulation Space and Agents

1) Simulation space: The simulation space of an agent-
based traffic simulation is a road network. It is a spatial
network that consists of links and nodes. Links represent real-
world roads and can have one or more lanes. Links have speed
limits. Nodes contain the connectivity information of links.
The traffic flow on a link is unidirectional from the start node
to the end node.

2) Agents: Agents are situated on roads (i.e., links) of
the network. An agent in the simulation represents a DVU.
The behavior of DVUs is often characterized by acceleration
models and lane-changing models [1], [4], [13]. The models
describe the movement of DVUs on roads, such as what
acceleration a DVU should have and which lane to take. The
models require agents to have sensing ranges, which are the
areas in the road network within which other agents may
affect the agent’s behavior. An agent needs to examine the
traffic condition within its sensing range to make acceleration
and lane-changing decisions. This is challenging in parallel
traffic simulation when the sensing range is reaching into
other partitions as it then potentially requires synchronization
between the responsible LPs.

3) Agent state variables: An agent has a state at a certain
virtual simulation time. The state contains multiple state
variables. Among them, there are agent-based and component-
based state variables. Agent-based state variables belong to the
entire agent and are visible to other agents, such as velocity
and position. Component-based state variables belong to the
models in an agent, such as a state-of-charge variable for
a battery model in an electric vehicle. An agent subscribes

Fig. 1. Agent B with front sensing range γf and back sensing range γb in
a road network. Agent C is in the sensing range of agent B; thus, agent B
subscribes to agent-based state variables of agent C.

to agent-based state variables of the agents in its sensing
range. States of agents change as the simulation progresses
by executing timestamped events which contain certain update
functions. Agent-based state variables are updated periodically.
The period is referred to as an update interval, denoted as δ.
The events that change agent-based state variables may have an
effect on other LPs, thus they affect synchronisation between
LPs. Other events that change component-based state variables
are internal to an LP. An illustration of sensing ranges and state
subscription is shown in Figure 1.

B. Parallelization and Data Dependencies

We denote the entire road network as G, and agent popu-
lation at simulation time t as At. In parallel simulation, the
road network is partitioned into I disjoint spatial subregions,
G = {G0, G1, ..., GI−1}. The subset of At that resides in
partition Gi (0 ≤ i < I) at simulation time t are denoted as
At

i. By definition, At = ∪I−1
i=0A

t
i. The LP that is responsible

for executing the events from agents in partition i is LPi.
Agents in partition i are local to LPi.

During partitioning, the network is cut on links. The links
that are cut and therefore evenly divided between two par-
titions are named boundary links. A boundary link can be
incoming to or outgoing from a partition, depending on the
traffic flow on the boundary link. The two partitions that share
boundary links are neighboring partitions.

There are data read and write dependencies between neigh-
boring LPs. Firstly, if there is an agent A in LPi inside the
sensing range of another agent B in LPj , agent B should be
aware of the agent-based state variables of agent A. To achieve
this, a proxy agent is created in LPj that mirrors agent A. It
possesses exactly the same agent-based state variables as agent
A. Hence, the agent-based state variables of agent A should
be sent by LPi to LPj to keep the state of the proxy agent
updated. In this case, there is a data read dependency between
LPi and LPj . The agent-based state variables of agent A are
shared states. Secondly, during the simulation, when an agent
on a boundary link moves beyond the boundary of partition i
and enters the area of partition j (i 6= j), the agent migrates
from LPi to LPj . Migrated agents are destroyed in the original
LP and recreated with all their state variables in the new
LP. The migration of agents incurs a data write dependency
between the two LPs. To identify those agents that need to
share their states, buffer regions of partitions are defined. They
are the regions at the boundary of partitions with sizes equal
to the sensing ranges of agents. If an agent falls inside a buffer
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Fig. 2. Illustration of boundary cut and buffer regions. γf and γb are front
and back sensing ranges, respectively.

region, it is possible that the agent is in the sensing range of
some agents in the neighboring LP.

To illustrate the concepts above, an example is shown in
Figure 2. link2 is a boundary link. The left half is part of G1,
and the right half is part of G2. The direction of traffic on link2

is from G1 to G2, thus link2 is an outgoing boundary link of
G1, and an incoming boundary link of G2. LP1 and LP2

are neighboring LPs. B1,2 is the buffer region for G1 in G2,
and B2,1 is the buffer region for G2 in G1. Given the traffic
direction of the link, the lengths of B1,2 and B2,1 are equal
to the front and back sensing ranges of agents, respectively.
Agent C in LP2 is in buffer region B1,2. Therefore, there is a
data read dependency between LP1 and LP2. LP2 should send
the agent-based state variables of agent C to LP1. There is a
proxy agent in LP1 mirroring agent C. If agent B continues
moves into G2, LP2 will be responsible for executing events of
agent B. Thus agent B is removed from LP1 and created anew
in LP2. To do so, the complete information about agent B,
including all state variables and all model parameters, is sent
from LP1 to LP2. There is a data write dependency between
LP1 and LP2.

C. Mutual Appointment Synchronization Protocol

Data dependencies necessitate synchronization of LPs. The
synchronization protocol used in this work is the mutual
appointment (MA) protocol introduced in [14]. The idea of
the protocol is that an LP communicates with other LPs
by making appointments individually with them at certain
mutually agreed simulation times.

The progression of the simulation in LPi using the MA
protocol is shown in Algorithm 1. For each update inter-
val, there is a synchronization event. Associated with the
synchronization event, there is a set of LPs that currently
have appointments with LPi, denoted as Ct

i . Ct
i may include

all, none, or only a subset of the neighboring LPs of LPi.
When Ct

i is empty, no message-passing occurs for LPi at
time t. For each LPj in the set Ct

i , LPi sends and receives
migrating agents, shared states and a lookahead. Lookahead
is a predicted time period from the current time to the time
when the next data dependency may happen. After messages
are received, the next appointment is made according to the
lookahead. An appointment is made by adding the LP to
the future Ct+∆t

i set, where ∆t is the minimum of the two
lookahead values of LPi and LPj . According to the definitions
of data read and write dependencies, the minimum lookahead
value between any two LPs is an update interval (i.e., δ).
Lookahead decides the frequency of synchronization. In this

ALGORITHM 1: Simulation progression in LPi using MA
protocol

1 Definitions:
2 Tend simulation ending time
3 Cti LPs having appointments with LPi at simulation time t
4 lti,j lookahead from LPi to LPj at simulation time t

5 initialize t← 0, C0
i as all neighboring LPs of LPi ;

6 while t < Tend do
// synchronization event

7 foreach LPj ∈ Cti do
8 send migrating agents, shared states, and current

lookahead (i.e., lti,j) to LPj ;
9 prepare to receive a message from LPj ;

10 end
11 wait for all message sending and receiving to finish ;
12 update the local agent set and proxy agent set ;
13 foreach LPj ∈ Cti do
14 add LPj to Ct+∆t

i , where ∆t = min(lti,j , l
t
j,i) ;

15 end
// event for updating agent-based states

16 update the states of local agents for this update interval;
17 t← t+ δ ;
18 end

work, the lookahead is determined by the number of replicated
extended layers.

Another consideration for efficient parallel simulation is
workload balance of LPs. Agents should be distributed as
evenly as possible among LPs. In this work, we focus on
synchronization, thus load-balancing will not be discussed.
More detail regarding load-balancing in traffic simulation, one
can refer to [15].

III. ADAPTIVE COMPUTATION REPLICATION

The aim of this work is to reduce synchronization so as to
reduce simulation execution time. This is achieved by increas-
ing lookahead via copying more information from neighboring
LPs at each synchronization operation. Interactions of agents
are bounded by their locations on the road network; thus, we
determine the extra information based on agent locations on
the road network. Extended layers of partitions are defined in
this section. Then an adaptive method that dynamically adjusts
the number of extended layers to replicate is proposed.

A. Extended Layers on the Network

We first explain the idea with the simplest case, i.e., one
extended layer. Then the generalized multiple layer case is
described.

1) One extended layer: An extended layer of a partition is
defined as the space in the road network immediately next to
the boundary of the partition that is required to calculate the
agent states in an LP until the next synchronization. Buffer
regions are shifted next to the extended layer.

When synchronization is conducted, each LP receives com-
plete agents in its extended layer and shared states in buffer
regions from neighboring LPs. Agents in the extended layer
still exist in the original LPs, but they are replicated in the
receiving LP. They are referred to as external agents of the
receiving LP. LPs compute the states of external agents, so
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Fig. 3. Illustration of extended layers and new buffer regions: the view of
the network from LP1.

as to emulate the receive of a synchronization message by
producing migrated agent and shard states. This way, the
synchronization operation can be skipped.

The concepts above are illustrated in Figure 3. The network
is the same as that in Figure 2. Partition G1 has one extended
layer in partition G2, which is marked as X1

1,2. B1
1,2 is the new

buffer region of G1 inside G2. Suppose that at simulation time
t, complete agents in X1

1,2 are replicated to LP1 from LP2.
Agent-based state variables of agents in B1

1,2 are send to LP1

by LP2. The agents in X1
1,2 are external agents of LP1. States

of those agents are updated by LP1 together with local agents
at time t. At time t + δ, the agents hat fall inside X1

1,2 will
function as proxy agents. Due to movement of agents, agents
currently in X1

1,2 may be different from those at time t. Then,
states of the agents currently in G1 can be updated till time
t+ 2δ using those agents. After that, the next synchronization
operation is performed. The same procedure also applies to
LP2. Lookahead between the two LPs is 2δ.

2) Multiple layers: More generally, a partition can have
multiple layers of extended layers. The first layer is im-
mediately next to the boundary of the partition, and other
layers expand towards neighboring partitions. Buffer regions
are shifted next to the outermost extended layer.

Supposing that LPi and LPj use k̂ (k̂ ≥ 1) extended layers
between them, the lookahead between the two LPs will be
(k̂ + 1) · δ. To explain this, we denote the kth extended layer
of partition Gi in neighbor Gj as Xk

i,j . After a synchronization
operation is performed, in the mth (1 ≤ m ≤ k̂) update inter-
val, LPi updates the states of local agents and external agents
in the extended layers {X1

i,j , X
2
i,j , ..., X

k̂−(m−1)
i,j }. After the

mth update interval, agents in the extended layer X k̂−(m−1)
i,j

will function as proxy agents. In the (k̂+1)th update interval,
LPi only updates the states of its local agents. After that,
another synchronization is required. A similar procedure is
conducted by LPj . The computation of external agent states
is redundant computation, as they are computed by both LPs.

3) Requirements for agent models: Since the computation
of external agents is replicated in LPs, agent models should
satisfy the following requirements: i) given the same input
values, models of agents always produce the same agent states,
including agent-based and component-based state variables;
and ii) the order of the agents being updated should not
affect the result. Otherwise, replicas may generate different
states. This requirement is met for deterministic models. For
stochastic models, this can be achieved by manipulating the
seeds of the random number generators in the two replicating
LPs to produce the same random number sequence.

B. Sizes of Extended Layers

1) Representation of extended layers: As described before,
a road network is represented as a collection of links and
nodes, and agents are situated on links. Sensing ranges of
agents usually do not cover entire links, thus an extended layer
may only cover a portion of links. Therefore, we represent an
extended layer as a collection of link segments. A link segment
is a portion of a link between two points on the link. A link
segment can be uniquely identified by specifying the link id
that the segment is on and displacements of the two points. A
displacement of a point on a link is the distance between that
point and the start node of the link. Thus, a link segment can
be denoted as seg(id,s,e), where id is the id of the link, s is
the starting displacement of the segment on the link, e is the
ending displacement. The length of this segment is |e− s|.

2) Sizes of link segments: To determine the sizes of ex-
tended layers, we need to analyze the behavior of agents and
topology of the road network, because front and back sensing
ranges of agents may be different and road links can have
different lengths and connectivity too.

The agents in the kth extended layer should allow the agents
in the (k− 1)th layer (or local agents if k=1) to advance one
update interval. Therefore, the kth extended layer must cover
the sensing ranges of the agents in the (k − 1)th layer (or
those in the local area if k=1). Meanwhile, the movement of
agents must also be considered. Different sizes of segments
depending on the direction of extension of extended layers are
illustrated in Figure 4. The direction of extension is from the
(k − 1)th layer to the kth layer (or from the local area to the
first layer if k=1). It can be the same as or opposite to the
traffic direction of a link.

Vl·�

Xi,j

�b

Bi,j
k

�b

Xi,q
k k

�f �f

Bi,q

extending upstream extending downstream

{Xi,j  , ..., Xi,j, Gi, Xi,q, ..., Xi,q  }
k-111k-1

link l

k

link mLPiLPj LPq

Fig. 4. Different lengths of link segments in extended layers of Gi in
neighboring partitions Gj and Gq . Xk

i,j and Xk
i,q are on link l and m,

respectively. The solid arrows indicate the traffic directions on links. The
empty arrows indicate the directions of extension of extended layers. The
direction of extension of Xk

i,j is opposite to the traffic direction of link l,
i.e, extending upstream; the direction of extension of Xk

i,q is the same as the
traffic direction of link m, i.e., extending downstream.

In Figure 4, Xk
i,j is in the upstream direction of Xk−1

i,j , i.e.,
the direction of extension for Xk−1

i,j is opposite to the traffic
direction. The segment of Xk

i,j consists of two parts: the first
part of size γb and the second part of size Vl·δ, where Vl is the
speed limit of link l. The second part, which is marked with
a wavy pattern, ensures that after agents in Xk

i,j are updated,
the first part of Xk

i,j contains all the agents required for the
next round of state update for Xk−1

i,j . Its size is the maximum
distance that agents can travel on link l in one update interval.
In contrast, for Xk−1

i,q , the direction of extension is the same as
the traffic direction, i.e., Xk

i,q is in the downstream direction
of Xk−1

i,q . The segment of Xk
i,q only requires a size of γf ,

because after an update, Xk
i,q will still contain all the agents

needed to update Xk−1
i,q for the next update interval.

To explain what happens to the second part of Xk
i,j dur-
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Fig. 5. An example of simulation in LP2 progressing through time using
two extended layers in LP1 and LP3: (a) At time 0, there are two extended
layers for G2 in G1 and G3. (b) At time δ, X2

2,1 and X2
2,3, excluding the
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excluding the crossed region, function as buffer regions.
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Fig. 6. Four basic cases of extended layer segments on connecting links,
illustrated by links a, b, c, and d. The kth extended layers of Gi in Gj and
Gq , i.e., Xk

i,j and Xk
i,q , have extra segments on link a and link c respectively

(marked by a wavy pattern).

ing the simulation, an example with two extended layers is
depicted in Figure 5. Supposing a synchronization operation
is performed at time 0, LP2 receives complete agents in two
layers of extended layers and shared states in the buffer regions
from LP1 and LP3. As shown in Figure 5a, states of the agents
in X2

2,1, X1
2,1, G2, X1

2,3, and X2
2,3 (i.e., the dark gray region)

are updated by LP2. Figure 5b shows that at time δ, X2
2,3 and

the first part of X2
2,1 function as buffer regions. The second

part of X2
2,1 (marked with a cross) is dropped since agent states

in that region may not be accurate (agents in B2
2,1 may move

into the region). Agents in X1
2,1, G2, and X1

2,3 are updated.
As the simulation progresses to time 2δ as shown in Figure
5c, X1

2,3 and the first part of X1
2,1 function as buffer regions.

Similar to the previous update interval, the region marked with
a cross in X1

2,1 is dropped. Agents in G2 will be updated. It
can be noticed that we have updated agents in G2 for three
update intervals with one synchronization.

3) Segments on connecting links: When a link is not long
enough to cover an extended layer, the layer will expand to its
connecting links. Link segments on the connecting links may
have various sizes depending on how they connect to the link,
and how agents sense the connecting links. In our network
representation, there are four basic cases of how a link x can
connect to another link y: i) they share the same start node;
ii) they share the same end node; iii) the start node of link x
is the end node of the link y; and iv) the end node of link x
is the start node of link y. Sensing ranges of agents can cover
connecting links.

The segment sizes for the four basic cases are illustrated in
Figure 6. Link a has the start node of link l as its end node.
Link b and link l share the same start node. Link c and link m
share the same end node. Link d has the end node of link m
as its start node. Xk

i,j contains an extra segment on link a, and
Xk

i,q contains an extra segment on link c. The extra segments
are required so that the buffer regions for the next round of

ALGORITHM 2: Searching for link segments of extended
layers of Gi inside Gj by LPj
1 Definitions:
2 k index of the extended layer Xk

i,j

3 Ij,i set of incoming boundary links of Gj from Gi
4 Oj,i set of outgoing boundary links of Gj towards Gi
5 Sadd candidate segments to be added to an extended layer
6 Scont segments in Sadd from which the next layer continues
7 Scheck all segments that are already inside extended layers
8 Ll length of link l
9 Vl speed-limit of the traffic on link l

10 ζ a flag that indicates if the searching should continue

11 initialize k ← 1, ζ ← true;
12 foreach link l ∈ Ij,i do
13 put segment seg

(l,
Ll
2
,

Ll
2

+γf )
into Sadd, Scont and

Scheck;
14 end
15 foreach link l ∈ Oj,i do
16 put segment seg

(l,
Ll
2
,

Ll
2

−γb−Vl·δ)
into Sadd, Scont and

Scheck;
17 end

// search layer by layer
18 while ζ do
19 foreach seg(id,s,e) ∈ Sadd do
20 put seg(id,s,e) into layer Xk

i,j ;
21 end
22 Stemp cont ← Scont;
23 Sadd ← ∅, Scont ← ∅;

// search segments for the next layer
24 foreach seg(id,s,e) ∈ Stemp cont do
25 if ζ ∧ (s < e) then

// direction of extension is
downstream

26 searchDownstream(id, e, γf );
27 else if ζ ∧ (e < s) then

// direction of extension is upstream
28 searchUpstream(id, e, γb + Vid · δ);
29 end
30 end
31 if Sadd = ∅ then
32 ζ ← false; // whole Gj has been searched
33 end
34 k ← k + 1;
35 end

state update will contain all necessary proxy agents, which is
for similar reasons explained in Figure 4.

A real-world road network usually has a large number of
links and very complex connectivity. The four cases described
above can be arbitrarily combined. Depending on the topology
of the road network and sizes of partitions, one extended
layer can contain many segments. A searching algorithm is
designed to determine the segments of extended layers in the
next subsection.

4) Searching algorithm for determining extended layers:
Extended layers of Gi inside Gj are calculated by LPj . A
search is performed by LPj starting from all the boundary
links between Gi and Gj towards the inner area of Gj . The
searching algorithm is shown in Algorithm 2.

The algorithm starts with initializing the layer index and a
flag that controls the termination of the algorithm. A set Sadd

is used to store the segments in the current layer. A set Scont

is used to store the segments in Sadd from which the next
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layer continues. Note that some segments in Sadd may not
connect to the next layer (a detailed description is provided
in the appendix). A set Scheck is used to keep track of all
the segments that have been added to extended layers. Areas
occupied by the segments in Scheck will not be searched again.

The first extended layer is obtained by adding segments
from boundary links (lines 12 - 17). It is assumed that
boundary links are long enough to accommodate the segments
of the first layer. Subsequently, the algorithm continues to
search for segments for the next layer based on the current
layer (while loop in lines 18 - 35). Each iteration of the while
loop determines one layer of extended layers. In each iteration,
segments in Sadd are added to the current layer. Segments in
Scont are added to a temporary set Stemp cont. Then, Sadd

and Scont are emptied and reused to store new segments for
the next layer. After that, the algorithm searches for segments
in the next layer connecting to the segments in Stemp cont.
If s < e, the search continues towards the downstream
direction of the link, using function searchDownstream. If
e < s, the search continues towards the upstream direction
of the link, using function searchUpstream . (For more details
of functions searchDownstream and searchUpstream one
can refer to Algorithms ?? and ?? in the appendix). In
functions searchDownstream and searchUpstream , when
the remaining space on a link is not enough for a layer, the
searching will expand to the connecting links.

The searching terminates if the whole area of Gj has been
searched (Algorithm 2 line 32) or the extension reaches a third
partition. In other words, extended layers of Gi inside Gj is
restricted within Gj only. Otherwise, if they were extended to
a third partition Gq , LPq would also need to communicate
with LPi for synchronization between LPi and LPj . This
may introduce extra communication which will downgrade the
benefit of computation replication.

Algorithm 2 is executed after partitions are determined. If
partitions change dynamically during the simulation, extended
layers need to be recalculated. The time and space complexity
of Algorithm 2 is O(|Seg |), where |Seg | is the number of seg-
ments in extended layers in the calculating LP. This is because
the algorithm searches the links within the current partition
only once. The time for searching and adding segments in the
while loop and for loop, and the memory required to store the
segments, are both proportional to the number of segments in
the partition.

C. Adaptive Extended Layers

The maximum number of extended layers that a partition
can have is decided by the road network. However, to reduce
the total execution time of the simulation, it may not be benefi-
cial to replicate all available extended layers due to redundant
computation and extra data in messages. This subsection intro-
duces a method to determine the suitable number of extended
layers to replicate using run-time traffic information. We start
with analyzing the overhead of computation replication. The
notation used in this subsection is listed in Table I.

1) Analysis of overhead: Here, we formulate the total
overhead incurred for a pair of LPs when a certain number

TABLE I
NOTATION USED IN THE ANALYSIS

Notation Description
|Ak

i,j | number of agents in extended layer Xk
i,j

Ki,j available extended layers between Gi and Gj

Km
i,j adaptive range of extended layers between LPi

and LPj in the mth evaluation period
|Mi,j | number of migrating agents from LPi to LPj in

one synchronization
|Sk

i,j | number of shared states that LPi sends to LPj

(i.e., in Bk
j,i) in one synchronization

Ta computational workload of one agent in one
update interval in terms of wall-clock time

bw available bandwidth for message-passing
k̂i,j obtainable optimum number of extended layers

to replicate between LPi and LPj (k̂i,j = k̂j,i
since MA protocol is used)

k̂mi,j k̂i,j for the mth evaluation period
oi,j(k) total overhead for LPi, relative to LPj in

one synchronization cycle, when k layers are
replicated, including redundant computation and
message-passing overhead

oi,j(τ, k) total overhead for LPi, relative to LPj during
time period τ when k layers are replicated

si,j(k) overhead of sending a synchronization message
from LPj to LPi when k layers are replicated

srl send and receive latency of sending a message
Γi,j(k) redundant computation between two consecutive

synchronization operations in LPi due to external
agents from LPj , when k layers are replicated

of extended layers is replicated. The MA protocol introduced
in Section II-C is used for synchronization between LPs.
Therefore, the number of extended layers replicated for Gi

inside Gj and for Gj inside Gi will always be equal.

Considering a pair of neighboring partitions Gi and Gj ,
there are Ki,j available extended layers between the two.
Let a unit of computation be the wall-clock time required
for processing the events from one agent during one update
interval. If k (1 ≤ k ≤ Ki,j) layers are replicated, the
total units of redundant computation in LPi between two
consecutive synchronization operations is:

k∑
x=1

(
|Ax

i,j | · (k + 1− x)
)

(1)

where |Ax
i,j | is the number of agents in layer Xx

i,j . It can be
estimated using the sizes of the segments in the extended layer
and agent densities on the segments.

Therefore, the redundant computation in terms of wall-
clock time in LPi, relative to LPj between two consecutive
synchronization operations is:

Γi,j(k) = Ta ·
k∑

x=1

(
|Ax

i,j | · (k + 1− x)
)

(2)

where Ta is a unit of computation, i.e., the wall-clock time
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for computing the events of an agent in one update interval.
From Equation 2, we can derive the difference quotient of Γi,j

between k + 1 and k as:

∆Γi,j(k + 1, k) = Ta ·
k+1∑
x=1

|Ax
i,j | (3)

It is known that |Ax
i,j | ≥ 0; therefore, ∆Γi,j(k + 1, k) ≥ 0.

This equation shows that if extended layers are not empty
(i.e., |Ax

i,j | > 0), the redundant computation increases with an
increasing k and the increase becomes faster as k increases.

The total overhead for LPi, relative to LPj , in one synchro-
nization cycle using k extended layers is:

oi,j(k) = Γi,j(k) + si,j(k) (4)

where si,j(k) is the overhead for sending one messages from
LPj to LPi during synchronization when k extended layers
are replicated. It is the time that LPi needs to wait for the
message from LPj to arrive before progressing.

Based on the fact that the time for message-passing gener-
ally involves the actual message transmission time and certain
latencies on the sending and receiving ends, we use the
following model to express the message-passing time:

time =
data volume

bandwidth
+ send recv latency (5)

where the first item is transmission time and the second item is
latency. Note that bandwidth and latency may not be constants,
i.e., they may vary with different message sizes.

We conducted an experiment to profile message-passing
overhead for MPI in the cluster used for our experimentation
to validate this simple model. Results show that a linear
regression fits quite well to the MPI message passing overhead.
However, as indicated in the existing literature (e.g., [16] and
[17]), it is not straightforward (may be even impossible) to
define an accurate cost model for message-passing that can
be universally applied. Hence, the model should be adapted
according to the specific experimentation set-up.

Based on Equation 5, si,j(k) can be expressed as:

si,j(k) =
Da

bw
·
( k∑

x=1

|Ax
i,j |+ |Mj,i|

)
+
Ds

bw
· |Sk

j,i|+ srl (6)

where Da and Ds are the data sizes of a complete agent
and the shared state of an agent respectively, Mj,i is the
set of migrating agents from LPj to LPi at the time of
synchronization, Sk

j,i is the set of shared states that LPj

sends to LPi during the synchronization, bw is the available
bandwidth for message-passing, and srl is a send and receive
latency for the message. Values of bw and srl should be
calibrated according to the actual simulation environment.
They are not necessarily constants and can be different for
different LP pairs. In general, message-passing time increases
as the message size increases. So, this equation shows that
as the number of replicated extended layers increases, the
overhead of passing one synchronization message increases
as well.

In order to compare the overhead of synchronization using
different numbers of extended layers, we define the total

overhead for LPi, relative to LPj , during a simulation period
τ , τ � δ, with k extended layers, as follows:

oi,j(τ, k) =
τ

(k + 1) · δ
· oi,j(k) (7)

Equation 7 shows that as the number of replicated extended
layers (i.e., k) increases, the number of synchronization op-
erations during period τ (i.e., the first term of the right-hand
side of Equation 7) decreases; however the total overhead per
synchronization cycle (i.e., the second term of the right-hand
side of Equation 7) increases. The optimum k should give the
best trade-off between the benefit of reducing the synchro-
nization frequency and the total overhead caused by redundant
computation. It can be noticed from Equations 2 and 6 that
the total overhead is influenced by many factors, including
the numbers of agents in the extended layers, time to compute
agent states for one update interval, data sizes of complete
agents and shared states, message-passing bandwidth, and send
and receive latency. Obviously, oi,j(τ, k) is not guaranteed to
be a simple convex or concave function, thus the optimum k
cannot always be determined mathematically using Equation
7. A naive way is to traverse all possible k values and pick
the optimum.

2) Dynamic determination of the optimum number of ex-
tended layers to replicate: Traffic density and flow on the
roads often change throughout the simulation. To give an
example, the traffic densities on main roads in our simulation
of Singapore city traffic are shown in Figure 7.
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Fig. 7. Heat map of the dynamic traffic densities on main roads in a simulation
of Singapore city traffic from 5 am to 12 am.

The heat map in Figure 7 shows that at a certain time of
the day, different roads can have different traffic densities.
Traffic density on the same link also changes throughout the
simulation. Due to computation overhead, it is impractical to
recompute the optimum number of extended layers to replicate
whenever traffic condition changes. Hence, in this section, we
propose a heuristic that periodically adjusts the number of
extended layers for computation replication. We denote the
obtainable optimum number of extended layers to replicate as
k̂i,j .

Suppose that the simulation time from the start to the end
can be segmented into M (M ≥ 1) periods, and in each
period the traffic flow and density of links have no or only
marginal changes. Denote the mth (1 ≤ m ≤ M ) period as
τm. Reevaluation of k̂i,j is only required at the beginning of
each period. So, lookahead remains constant during the period.
Obviously, the smaller the period is, the more accurately k̂i,j
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can be determined, but the more frequent reevaluation will be
required. The size of a period (i.e., τ ) should be much larger
than one update interval (i.e., δ).

To determine k̂i,j , oi,j(τ, k) needs to be evaluated for
each k and agent densities in all link segments needs to be
obtained. In cases when there are a large number of available
extended layers, the overhead of determining k̂i,j may become
significant. To reduce the overhead of reevaluating k̂i,j , the
following method is proposed to limit the range of k. In
consecutive periods τm−1 and τm, the obtainable optimum
lookahead may not vary much, thus it is very likely that the
obtainable optimum lookahead in τm has a similar value to
that of τm−1. Thus, the lookahead in period τm−1 can be
utilized to limit the range of k to be evaluated in period τm. An
adaptive range in time period τm, denoted as Km

i,j , determines
the number of extended layers between LPi and LPj to be
evaluated:

Km
i,j =

{
Ki,j , if m = 1

min(Ki,j , 2 · k̂m−1
i,j + 1), otherwise

where k̂m−1
i,j is the obtainable optimum k value between LPi

and LPj in period τm−1. The adaptive range limits the search
range in period τm, such that the resultant lookahead is at most
twice of that in τm−1. Meanwhile, it ensures that the lookahead
is able to grow exponentially if necessary. In the first period
(i.e., τ1), the entire range of [0,Ki,j ] is searched. In period τm
(m > 1), the search range of k is [0, min(Ki,j , 2 · k̂m−1

i,j +1)].
k = 0 here refers to the case where there are no extended
layers. When k = 0, oi,j(0) = si,j(0). Based on Equation 6,
si,j(0) can be derived as follows:

si,j(0) =
Da

b
· |Mj,i|+

Ds

b
· |Sj,i|+ C (8)

where |Sj,i| is the number of shared states LPj sends to LPi

during synchronization when there are no extended layers.
To determine the obtainable optimum number of extended

layers to replicate (i.e., k̂mi,j), the adaptive range is first
determined. Then, for each value k in the adaptive range, the
overhead is calculated as the larger value between oi,j(τm, k)
and oj,i(τm, k). k̂mi,j will be the value that gives the minimum
overhead in the range.

D. Overall Execution of the Simulation

When computation replication is incorporated to the MA
synchronization protocol, the execution of the simulation
shown in Algorithm 1 needs to be slightly altered. The first
change is that lookahead is determined at the beginning of each
evaluation period (by determining k̂i,j) and is kept fixed during
the period, instead of being determined in synchronization
operations. The second change is that external agents are
sent between LPs during synchronization and their states are
updated by the corresponding LPs.

The effectiveness of the proposed method of dynamically
determining the number of extended layers to be replicated
has been investigated in experiments and the results will be
presented in the next section.

IV. EXPERIMENTS AND RESULTS

A. Set-up

1) Implementation and hardware: The proposed heuris-
tics were experimented with SEMSim Traffic simulator
[18]. It is implemented using C++. Communication be-
tween LPs is realized using OpenMPI 1.8.1. The exper-
iments were run on a cluster composed of three com-
pute nodes. The hardware of each compute node is: Octa-
core Intel(R)Xeon(R)/2.6GHz × 2 CPUs, 192 GB mem-
ory. Compute nodes are connected via 56 Gbps InfiniBand.
Different LPs are mapped to different CPU cores.

2) Workload: Experiments used a real-world road network.
It is the road network of Singapore city consisting of approx-
imately 80,000 links and 40,000 nodes in our representation.
Agents move on the road network according to their trips
derived from the data of the Household Interview and Travel
Survey (HITS) in 2008. In every update interval, agent states
are updated by the Intelligent Driver Model [19] and a rule-
based lane-changing model. They form the major computa-
tional workload of the simulation. The computation time for
models in an agent in one update interval is around 2 µs. The
data size of migrated agents and shared states are around 200
and 100 bytes, respectively. The update interval (i.e., δ) is 0.5
seconds; and the front and back sensing ranges of agents are
40 and 20 meters respectively. The road network is initially
partitioned using METIS [20]. An example of the road network
in four partitions is shown in Figure 8. Different intensities of
gray represent different partitions.

Fig. 8. Singapore city road network partitioned using METIS.

The traffic of 19 hours from 5 am to the midnight of the
same day was simulated. To reduce the influence of workload
imbalance of LPs, dynamic load-balancing described in [15]
was employed. Dynamic load-balancing repartitions the road
network during the simulation to balance the workload of
LPs so as to improve the speed-up. The workload of LPs is
periodically checked and a repartitioning is performed when
workload imbalance exceeds a threshold. Due to the change
of network partitions, extended layers need to be re-computed
by running Algorithm 2. The simulation was run with 8, 16,
32, and 48 LPs. For each setting, four simulation runs using
different seeds for random number generation were performed.
Means and standard deviations of the measurements were
collected.

B. Results

1) Lookahead and synchronization messages: We investi-
gated whether the average lookahead of the MA synchroniza-
tion protocol is increased. The optimum lookahead was re-
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Fig. 9. (a) Average lookahead of all LPs throughout the simulation (larger
lookahead means less frequent synchronization). (b) Total number of messages
sent during the simulation (the smaller the better).

TABLE II
AVERAGE NUMBER OF AVAILABLE EXTENDED LAYERS

8 LPs 16 LPs 32 LPs 48 LPs
layer count 23.6 18.7 16.9 16.0

evaluated every 10 minutes of simulation time. (The results
using different evaluation periods are presented in subsection
IV-B4.) The average lookahead is calculated by averaging the
lookahead values throughout the simulation for all LPs. Let
us denote the MA protocol with computation replication as
MA-CR. The average lookahead values of MA and MA-CR
methods, in terms of number of update interval, are shown in
Figure 9a. The total number of synchronization messages sent
during the simulation is shown in Figure 9b. For comparison,
the results of using global barrier synchronization, denoted as
barrier, are also shown in the figures. Note that the average
obtainable optimum number of extended layers to replicate
(i.e., k̂) is equal to lookahead minus 1.

It can be observed from Figure 9a that the lookahead
values of the MA-CR method are larger than those of the
MA method. For 32 LPs, there is approximately a threefold
increase. Correspondingly, there are much fewer synchroniza-
tion messages when the MA-CR method is used, compared
to the MA method, as shown in Figure 9b. This reduction of
synchronisation messages comes with an increase of message
sizes, which is shown in Table III.

To observe whether all available extended layers are repli-
cated, the average numbers of available extended layers are
shown in Table II. It can be observed that the number of
available extended layers decreases as the number of LPs
increases. The actual numbers of layers replicated are much
smaller than the available numbers of layers.

The average numbers of complete agents and shared states
sent in a message using MA and MA-CR methods are shown
in Table III.

It can be observed from Table III that the average size of

TABLE III
AVERAGE NUMBER OF AGENTS AND SHARED STATES SENT PER MESSAGE

8 LPs 16 LPs 32 LPs 48 LPs
MA agent 0.34 0.22 0.16 0.15

MA-CR agent 25.3 20.5 14.2 13.7
MA shared state 2.53 1.86 1.53 1.48

MA-CR shared state 5.29 3.41 2.33 1.78

TABLE IV
AVERAGE LOOKAHEAD OF ALL LPS THROUGHOUT THE SIMULATION
WITH AND WITHOUT ADAPTIVE RANGE (UNIT=UPDATE INTERVALS)

8 LPs 16 LPs 32 LPs 48 LPs
with 3.69±0.03 4.13±0.06 4.56± 0.05 3.74±0.13

without 3.65±0.14 4.17±0.15 4.59± 0.13 3.59±0.03

messages has increased using the MA-CR method. This is
mainly caused by the replication of external agents.

Moreover, we compared the lookahead values obtained with
and without using adaptive range. The result is shown in
Table IV. It shows that there is no significant difference in
the lookahead values with and without adaptive range. The
adaptive range does not affect lookahead much.

2) Overall speed-up: The overall speed-up of the parallel
simulation is shown in Figure 10. The speed-up is measured
against the sequential simulation, of which execution time is
around 9000 seconds.

The MA-CR method has the highest speed-up, and the
barrier method has the lowest speed-up. This shows that using
adaptive computation replication has improved the overall per-
formance of the simulation. The improvement is the result of
increased lookahead and reduced number of synchronization
messages, as shown in Figure 9. This means that the bene-
fit of reduced synchronization messages exceeded redundant
computation and the overhead of increased message sizes.

When the number of LPs increases from 16 to 32, the
speed-up using MA-CR increases further; whereas the speed-
up using MA decreases. This is because the absolute number
of messages for MA increases drastically as the number of LPs
increases, although the percentages of increment on lookahead
for MA and MA-CR are similar, as shown in Figure 9.

3) Redundant computation and overhead of algorithms:
The amount of redundant computation and the overhead of
the proposed method are investigated in this subsection. The
amount of redundant computation, calculated as a percentage
of the total simulation execution time, is shown in Table V.

TABLE V
REDUNDANT COMPUTATION AS A PERCENTAGE OF THE TOTAL

SIMULATION EXECUTION TIME

8 LPs 16 LPs 32 LPs 48 LPs
Percentage 0.77± 0.03 1.16 ± 0.04 1.50±0.03 0.87±0.03

For all cases in Table III, redundant computation is less than
1.5 percent of the total execution time.

The computational overhead of the method comes from
calculating extended layers (Algorithms 2) and calculating
optimum lookahead. Due to dynamic partitioning of the road



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 10

��
�
�
�
��
�

�

�

	




�

�



�

�

����� ����� 
	���� ������

�����
��

�������

Fig. 10. Speed-up of the parallel simulation with respect to the sequential
simulation.

TABLE VI
TOTAL OVERHEAD OF CALCULATING EXTENDED LAYERS AND

ESTIMATING THE OPTIMUM LOOKAHEAD (UNIT=SECOND)

8 LPs 16 LPs 32 LPs 48 LPs
calc extended layer 6.1±1.9 1.6±0.5 0.6±0.1 0.2±0.01

calc lookahead 2.6±0.1 1.2±0.1 0.8± 0.1 1.0±0.02

network, Algorithm 2 was executed 47 ± 2, 40 ± 1, 31 ± 1,
and 28±1 times for 8, 16, 32, and 48 LPs respectively.
Optimum lookahead was calculated was executed 114 times
for all different numbers of LPs (every 10 minutes in 19 hours
simulation time). Both algorithms are executed by every LP,
hence, the maximum overhead amongst the LPs is collected.
Total overheads of the algorithms throughout the simulation
are shown in Table VI.

Table VI shows that the overheads introduced are at the
magnitude of seconds which are insignificant with respect to
the overall simulation execution time.

Besides computational overheads, extra memory is also
required for the computation replication method. It consists
of mainly two parts: storing segments of extended layers,
and storing external agents. The memory for storing segments
depends on the total number of segments in the road net-
work. Storing external agents takes memory proportional to
redundant computation. In our experiment, storing segments
is not significant compared to the memory usage of the whole
simulation. Memory for storing agents is increased by 1.5
percent (same percentage as redundant computation shown in
Table V).

4) Frequency of evaluation: Experiments have also been
conducted to analyze the effect of different evaluation periods
on the average lookahead, the overall simulation execution
time, and the overhead of adapting the optimum lookahead.
The results of using evaluation periods of 1 minute, 5 minutes,
and 10 minutes with 32 LPs are shown in Table VII. There is
no significant difference in the average lookahead using dif-
ferent evaluation periods. This is because the traffic condition
does not change so often. Therefore, frequent reevaluations
of the optimum number of extended layers to replicate is not
necessary. The overhead of executing the algorithm increases
when the frequency of reevaluation increases, which also
results in slight increase of the total execution time.

The overhead of evaluating the optimal lookahead without
adaptive range for 32 LPs is similar to that shown in Table VII.
However, for 8 LPs, the overheads with and without adaptive
range are 18.11±0.92, and 43.6±6.6 seconds, respectively,

TABLE VII
COMPARISON OF AVERAGE LOOKAHEAD, EXECUTION TIME, AND

OVERHEAD OF EVALUATING OPTIMUM LOOKAHEAD USING DIFFERENT
EVALUATION PERIODS WITH 32 LPS

reevaluation lookahead execution time overhead
period (update intervals) (second) (second)
1 min 4.50±0.15 1275.6±36.8 20.9± 1.34
5 min 4.47±0.14 1261.5±22.7 2.98± 0.29

10 min 4.56±0.05 1253.8±36.6 0.83± 0.06

when the evaluation period is 1 minute. The benefit of adaptive
range is more obvious for more frequent evaluations and fewer
LPs (i.e., more available extended layers).

5) Weak scaling property: In addition to the strong scaling
property, it is also interesting to analyze the weak scaling
property on the MA-CR method. So, we conducted another set
of experiments using four different problem sizes created using
artificial road networks. They are 48×16, 96×16, 192×16, and
384×16 rectangular grid networks. Each road link in the road
networks is 200 meters long. Agent populations are 5k, 10k,
20k, and 40k respectively. Simulations with the four different
networks are run with 12, 24, 48, and 96 LPs, respectively.
The road networks are partitioned into stripes vertically. Thus,
an LP has the same workload for all cases in terms of both the
size of the network partition and the number of agents. A larger
cluster with four compute nodes was used in the experiments,
where each compute node has 24 CPU cores. Each case was
run four times and the average speed-up was taken. The result
is shown in Figure 11.

��
�
�
�
��
�

��	

��


��	

��


��	

��



�	

����� ������ ������ ������

�����

��

Fig. 11. Average speed-up of parallel simulation with MA and MA-CR using
different problem sizes and LPs.

The results in Figure 11 show that when the problem size
is scaled up proportionally with increasing number of LPs,
speedup remains increasing for both MA-CR and MA ap-
proaches. As expected, the amount of increment becomes less
when number of LPs increases. With more LPs, the problem
size also becomes larger. As a result, more communications
are required between different compute nodes. In addition,
synchronization overhead also increases with the number of
LPs. As shown in the figure above, MA-CR always outper-
forms MA and there is no significant drop in performance
improvement (that is, the distance between the two lines) when
number of LPs increases.

V. RELATED WORK
The synchronization issue of parallel discrete-event simu-

lations has been extensively studied in the literature [3], [6].
Nevertheless, improving the performance of synchronization
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protocols usually involves tuning the protocols for the models
used in particular simulations. For parallel agent-based traffic
simulations, there have been many approaches to conduct syn-
chronization. Employing global barriers is the most frequently
used approach due to its simplicity. LPs are blocked from
executing agent models at the end of update intervals, then
they exchange messages with relevant LPs and proceed to
the next update interval simultaneously [4], [5]. For parallel
simulation using multi-threading, all threads access the shared
memory directly at barriers instead of communicating with
each other by message passing [13]. This simplicity frequently
comes at the cost of LPs waiting at global barriers. It does
not fully exploit the parallelism of the simulation. The work
in [7] used a conservative time window synchronization from
[21]. The synchronization protocol allows LPs to progress
asynchronously. LPs analyze their event lists and determine
the lower bounds of simulation time for neighboring LPs,
until which they do not affect the neighboring LPs. LPs
collect the time bounds from all neighboring LPs and take the
minimum values as their time windows. They execute local
events within the time windows, and then synchronize again.
This is inefficient since LPs still need to communicate with
all neighbors during synchronization. Communicating to all
neighbors is unnecessary. The methods above are conservative
approaches, in which no violations of data dependencies are
allowed at any time of the simulation.

Another attempt is to use an optimistic approach [22],
[23]. LPs are allowed to progress over the synchronization
point and violations of data dependencies are examined. If
there is a violation, the simulation is rolled-back to the point
before the violation happens. However, the disadvantage of
this approach is the overhead of state saving and performing
roll-back operations. Some optimistic simulation frameworks
use reverse computation to avoid state saving overhead [24].
Our work aims at improving the efficiency of conservative
synchronization methods in agent-based traffic simulation. In
particular, we try to reduce synchronization operations by
redundant computation.

The idea of reducing communication at the expense of
performing some redundant computation has been presented
in many previous works. Ghost cell expansion is used in
[8] for solving partial differential equation (PDE) problems
using finite difference method. A similar concept has also
been applied in sparse matrix-vector multiplication problems
[9]. The computational tasks in those works are organized as
regular 2D and 3D grids of cells or meshes. They are static
and their interactions are predictable. Thus, the overhead of
computation replication can be analyzed prior to the execution
of the program. Dynamic adaptation of redundant computation
is not required. Consequently, the definition of extended layers
based on grids or meshes cannot be used directly in agent-
based traffic simulations.

Computation replication has also been applied in agent-
based simulations [10], [11], [12]. However, the simulation
space for many of these agent-based applications is a 2D
grid. In some cases, agents are not even situated in a spatial
environment. For instance, in a social network, agents are
represented as vertices of a graph, and interactions of agents

are represented as edges. Hence, the definitions of extended
layers in those works are not applicable for traffic simulation
either. The indexing of the positions of agents and their
interactions are different in a 2D grid or interaction graph
from those in a spatial road network. In addition, the dynamics
of the workload in the replicated region during simulation
run-time is not considered either in these works. Our work
aims at accurately defining extended layers for agent-based
traffic simulation, as well as developing an effective approach
to dynamically balance the trade-off between the overhead of
redundant computation and the benefit of reducing synchro-
nization operations.

VI. CONCLUSION AND FUTURE WORK

The purpose of this work is to reduce the total execution
time of parallel agent-based road traffic simulation by reducing
synchronization overhead. Making agent-based road traffic
simulation fast is crucial for real-time decision support systems
and studies that require a lot of simulation runs. Computation
replication has been applied mainly in applications such as
matrix multiplication and solving partial differential equations
to reduce inter-process communication. However, there is little
work done for applying this approach to parallel agent-based
road traffic simulation.

In this article, we mainly focused on two problems for
effectively applying the concept of computation replication to
agent-based traffic simulation: i) how to determine the redun-
dant computation required to achieve a certain synchronization
frequency, and ii) how to manage the trade-off between the
overhead caused by redundant computation and the benefit
of reduced synchronization. The first problem was solved by
analyzing the characteristics of agents and road networks to
determine extended layers of partitions in a road network.
Sensing ranges and movement of agents were considered.
The second problem was solved by developing an analytical
model of the total overhead of redundant computation and
synchronization, and using it to dynamically adjust the number
of extended layers to replicate according to traffic conditions.
To reduce the overhead of determining the optimum number
of extended layers to replicate when traffic condition changes,
an adaptive approach was used to limit the search range.

The efficiency of the adaptive computation replication
method has been investigated in a parallel agent-based traffic
simulator using real world data. Experiments have shown
that the method is able to reduce synchronization messages
significantly by increasing lookahead of LPs. The overall
execution time of the parallel simulation has been significantly
reduced, though there is redundant computation.

As of future work, there are two interesting directions.
Firstly, similar to the extended layers, inner areas of a par-
tition can also be divided into layers. This can be used for
overlapping communication and computation to further reduce
synchronization overhead. Secondly, partitioning of the road
network affects locations and shapes of extended layers, thus
the performance may be further improved if the partitioning
of the road network considers the optimization of computation
replication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 12

ACKNOWLEDGEMENTS

This work was financially supported by the Singapore
National Research Foundation under its Campus for Re-
search Excellence And Technological Enterprise (CREATE)
programme.

REFERENCES

[1] A. Kesting, M. Treiber, and D. Helbing, “Agents for traffic simulation,”
in Multi-Agent Systems Simulation and Applications, A. M. Uhrmacher
and D. Weyns, Eds. Boca Raton, FL, USA: CRC Press, 2009, ch. 11,
pp. 325–356.

[2] H. Mizuta, Y. Yamagata, and H. Seya, “Large-scale traffic simualtion
for Low-Carbon City,” in Proceedings of the 2012 Winter Simulation
Conference (WSC), Berlin, Germany, 09-12 December, 2012, pp. 1–12.

[3] R. M. Fujimoto, Parallel and Distribution Simulation Systems. New
York, NY, USA: Wiley Interscience, 2000.

[4] K. Nagel and M. Rickert, “Parallel implementation of the TRANSIMS,”
Parallel Computing, vol. 27, no. 12, pp. 1611–1639, 2001.

[5] T. Suzumura and H. Kanezashi, “Highly scalable X10-based agent
simulation platform and its application to large-scale traffic simulation,”
in Proceedings of the 2012 IEEE/ACM International Symposium on
Distributed Simulation and Real Time Applications. Dublin, Ireland:
IEEE, October 25-27, 2012, pp. 243–250.

[6] D. M. Nicol, “Principles of conservative parallel simulation,” in Pro-
ceedings of the 1996 Winter simulation Conference. Coronado, CA,
USA: IEEE, December 08-11, 1996, pp. 128–135.

[7] M. Namekawa, A. Satoh, H. Mori, K. Yikai, and T. Nakanishi, “Clock
synchronization algorithm for parallel road-traffic simulation system in
a wide area,” Mathematics and Computers in Simulation, vol. 48, no.
4-6, pp. 351–359, 1999.

[8] C. Ding and Y. He, “A ghost cell expansion method for reducing
communications in solving pde problems,” in Proceedings of the 2001
ACM/IEEE Conference on Supercomputing. Denver, CO, USA: ACM,
November 10-16, 2001, pp. 1–12.

[9] J. Demmel, “Avoiding communication in sparse matrix computations,”
in Proceedings of the 2008 IEEE International Symposium on Parallel
and Distributed Processing (IPDPS 2008). Miami, FL, USA: IEEE,
April 14-18, 2008, pp. 1–12.

[10] B. G. Aaby, K. S. Perumalla, and S. K. Seal, “Efficient simulation of
agent-based models on multi-gpu and multi-core clusters,” in Proceed-
ings of the 3rd International ICST Conference on Simulation Tools and
Techniques (SIMUTools 2010). Torremolinos, Malaga, Spain: ICST,
March 15-19, 2010, pp. 1–10.

[11] T. Zou, G. Wang, and M. Salles, “Making time-stepped applications
tick in the cloud,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing (SOCC 2011). Cascais, Portugal: ACM, October 26-28,
2011, pp. 1–14.

[12] R. Zunino, “Trading computation time for synchronization time in spatial
distributed simulation,” in Proceedings of the 2011 IEEE Workshop on
Principles of Advanced and Distributed Simulation (PADS). Nice,
France: IEEE, June 14-17, 2011, pp. 1–8.
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