Relaxing Synchronization in Parallel Agent-based Road Traffic
Simulation

YADONG XU, Nanyang Technological University
WENTONG CAI, Nanyang Technological University
HEIKO AYDT, TUM CREATE Ltd

MICHAEL LEES, University of Amsterdam
DANIEL ZEHE, TUM CREATE Ltd

Large-scale agent-based traffic simulation is computationally intensive. Parallel computing can help to
speed-up agent-based traffic simulation. Parallelization of agent-based traffic simulations is generally
achieved by decomposing the road network into subregions. The agents in each subregion are executed
by a Logical Process (LP). There are data dependencies between LPs which require synchronization of LPs.
An asynchronous protocol allows LPs to progress and communicate asynchronously. LPs use lookahead to
indicate the time to synchronize with other LPs. Larger lookahead means less frequent synchronization
operations. High synchronization overhead is still a major performance issue of large-scale parallel agent-
based traffic simulations. In this paper, two methods to increase the lookahead of LPs for an asynchronous
protocol are developed. They take advantage of uncertainties in traffic simulation to relax synchronization
without altering simulation results statistically. Efficiency of the proposed methods is investigated in the
parallel agent-based traffic simulator SEMSim Traffic. Experiment results showed that the proposed meth-
ods are able to reduce overall running time of the parallel simulation compared to existing methods.

Categories and Subject Descriptors: 1.6.8 [Simulation and Modeling]: Types of Simulation—Parallel, Dis-
crete event; 1.6.3 [Simulation and Modeling]: Applications

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Agent-based road traffic simulation, asynchronous and conservative
synchronization, relaxation

ACM Reference Format:

Yadong Xu, Wentong Cai, Heiko Aydt, Michael Lees, and Daniel Zehe, 2015. Relaxing Synchronization in
Parallel Agent-based Road Traffic Simulation. ACM Trans. Model. Comput. Simul. 0, 0, Article 0000 (2016),
24 pages.

DOI: http:/dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Today, road traffic in many large cities and mega-cities is facing severe problems such
as congestion and high emissions. They diminish the comfort and health of urban
inhabitants. To study road traffic and solve urban traffic problems, modeling and
simulation of road traffic has been a useful tool to evaluate certain infrastructure

This work was financially supported by the Singapore National Research Foundation under its Campus for
Research Excellence And Technological Enterprise (CREATE) programme. Michael Lees acknowledges the
support of the Russian Scientific Foundation, Project #14-21-00137.

Authors’ addresses: Y. Xu and D. Zehe, TUMCREATE Ltd, 1 CREATE Way, Singapore 138602; emails:
{yadong.xu, daniel.zehe}@tum-create.edu.sg; W. Cai, School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798; email: aswtcai@ntu.edu.sg; H. Aydt, Singapore-ETH
Centre, Future Cities Laboratory, Singapore 138602; email: aydt@arch.ethz.ch; M.Lees, Instituut voor In-
formatica, University of Amsterdam, Science Park 904, 1098 XH Amsterdam; email: m.h.lees@uva.nl.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

© 2016 ACM. 1049-3301/2016/-ART0000 $15.00

DOI: http:/dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

0000:2 Yadong Xu et al.

or traffic control strategies. Road traffic can be modeled with different levels of de-
tail: macroscopic [Lighthill and Whitham 1955; Richards 1956], mesoscopic [Paveri-
Fontana 1975], microscopic [Gipps 1981], and nanoscopic (a.k.a., sub-microscopic) [Ni
2003]. It is a complex adaptive system whose behavior is influenced by the behaviors
of constituent components. The modeling of the behaviors of individual components,
i.e., driver-vehicle-units (DVUs), falls within the scope of microscopic and nanoscopic
levels of detail. Both microscopic and nanoscopic simulations can be conducted in an
agent-based manner. DVUs are agents that interact with the environment and aim to
reach certain goals by performing some actions. Agent-based traffic simulation is use-
ful in studying the impact of individual DVU behaviors on the road traffic, for instance,
the impact of risky driving on the traffic, and the influence of adopting electric vehicles
(EVs) or automatic vehicles on the transportation system.

SEMSim Traffic is a nanoscopic traffic simulator that is able to capture this level
of detail [Xu et al. 2012]. It is designed to study how different vehicle designs and
different infrastructures may influence the transportation system when EVs are in-
troduced at a large-scale in mega-cities. However, one of the challenges to conduct
a simulation at a large-scale (e.g., the whole city) is the issue of high computational
resource requirements. To make large-scale agent-based traffic simulations computa-
tionally feasible, parallel computing techniques should be employed. There are many
critical considerations in developing a parallel simulation, for example, time synchro-
nization [Fujimoto 2000], and partitioning and load balancing [Deelman and Szyman-
ski 1998]. The problem of time synchronization is addressed in this study. The focus is
to reduce the overhead of time synchronization in agent-based traffic simulation.

A common way to parallelize agent-based traffic simulation is to decompose the road
network into multiple spatial subregions (partitions). The agents in a subregion are
executed by a Logical Process (LP) which is usually assigned to a physical processing
unit. An agent (i.e., a DVU) interacts with other agents that are spatially situated in
its proximity. It subscribes to certain state variables of those agents. If any of the sub-
scribed agents is executed by another LP, the subscription of the state variables incurs
data dependencies between the LPs. These agents are usually near the boundaries
of the spatial subregions. To maintain the correctness of the simulation, when an LP
has data dependencies with other LPs, it can only progress the simulation if the data
required are received from relevant LPs. Synchronization between LPs is performed
to exchange data. In a distributed memory environment, synchronization is usually
achieved by messages passing among LPs.

Synchronization in agent-based traffic simulation is generally achieved using global
barriers [Nagel and Rickert 2001; Suzumura and Kanezashi 2012]. At a synchro-
nization barrier, all LPs temporarily pauses the execution of agent models. Then all
the subscribed states are exchanged among LPs. After the exchange, all LPs resume
execution at the same time. Agent models are executed at discrete time intervals
which usually have a fixed length that is referred to as time-step or update inter-
val. Global barriers can be deployed at the end of update intervals. This is equivalent
to a synchronous and conservative synchronization protocol in parallel and distributed
discrete-event simulation. A conservative synchronization protocol does not allow vi-
olation of data dependencies [Nicol 1996]. The limitation is that all LPs have to wait
at global barriers despite that some LPs do not have dependencies at certain barriers.
This method does not fully exploit the parallelism in the simulation. Another type of
conservative synchronization protocol allows LPs to fulfill data dependency require-
ments asynchronously [Nicol 1996; Namekawa et al. 1999]. LPs synchronize with each
other in a peer-to-peer manner. The frequencies of synchronization can be different
for different LP pairs. A critical element of an asynchronous protocol is the lookahead.
Lookahead of an LP towards another LP at a certain simulation time is a time interval

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

Relaxing Synchronization in Parallel Agent-based Road Traffic Simulation 0000:3

in the simulated future within which the LP will not have data dependencies with the
other LP. The larger the lookahead values are, the less the synchronization operations
are required. However, due to the frequent interactions of agents, agent-based traffic
simulation usually has small lookahead. Using an asynchronous protocol alone does
not solve the issue of high synchronization overhead in agent-based traffic simulation.

In this work, the aim is to develop heuristics to increase lookahead of LPs to re-
duce synchronization overhead in agent-based traffic simulation. A simulation is an
abstraction of the real system and there is always uncertainty in the processing of
modeling and simulation [Helton 1997; Oberkampf et al. 2002]. This fact applies to
traffic simulation as well. For example, there is stochastic uncertainty since the traffic
at a location in the real world varies from day to day; and there is model uncertainty
in the models describing the movement of vehicles. Usually, a traffic simulation is run
many times in order to obtain statistical results.

The uncertainties are exploited to reduce synchronization overhead. In our earlier
work presented in [Xu et al. 2015], we developed a relaxed synchronization strat-
egy with a heuristic that makes use of uncertainty of the simulation. Relaxation is
achieved by skipping some synchronization operations. A dead-reckoning function is
utilized to adjust the agent states which should have been updated by synchroniza-
tion. This paper further extends our earlier work. We propose an alternative approach
to relax synchronization with the same philosophy: uncertainty in agent-based traffic
simulation allows a certain amount of violation of data dependencies between LPs in
the parallel simulation. The new approach reduces synchronization by increasing the
update interval of some models of those agents that incur data dependencies (e.g., the
agents at boundaries of partitions). Increasing the size of update intervals reduces the
temporal resolution of the models. In different traffic conditions, the influence of re-
laxation can be different. The method should ensure that the simulation results of the
parallel simulation are statistically equivalent to those of the sequential simulation.

Our contribution to the literature is the two heuristics that improve the efficiency of
synchronization by relaxing it without affecting simulation results statistically (Sec-
tion 4). The heuristics can be potentially used to make large-scale traffic simulation
run at or faster than real-time. This is particularly important when agent-based traf-
fic simulation is used as a forecasting tool in time-critical decision making situations.
The challenge is to determine how much relaxation can be introduced without distort-
ing results of the simulation.

The remainder of the paper is organized as follows: Section 2 describes the related
work. Synchronization methods in parallel microscopic traffic simulations and work
on making use of uncertainties of simulation to improve synchronization in discrete-
event simulations are presented. Section 3 introduces some background information:
models used in the simulation, partitioning of the simulation, and the synchronization
protocol used in the parallel simulation. Section 4 describes the two heuristics of relax-
ing synchronization, starting with a discussion on uncertainties in traffic simulation.
Section 5 presents experiment results and analysis of the results. Section 6 provides a
summary of this work and recommendations for future work.

2. RELATED WORK

The synchronization issue of parallel discrete-event simulations has been extensively
studied in the literature [Fujimoto 2000; Nicol 1996]. Nevertheless, developing syn-
chronization protocols usually involves tuning the protocols to the models used in
particular simulations. For parallel agent-based traffic simulations, there have been
many approaches to conduct synchronization. Employing global barriers is the most
frequently used approach due to its simplicity. LPs are blocked from executing agent
models at the end of update intervals, then they exchange messages with relevant

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

0000:4 Yadong Xu et al.

LPs and proceed to the next update interval simultaneously [Nagel and Rickert 2001,
Suzumura and Kanezashi 2012]. For the simulations parallelized by multi-threading,
all threads access the shared memory directly at barriers instead of communicating
with each other by message passing [Barcel6 et al. 1998]. This simplicity frequently
comes at the cost of LPs waiting at global barriers. It does not fully exploit the par-
allelism of the simulation. The work in [Namekawa et al. 1999] used a conservative
time window synchronization. It is a similar approach to our mutual appointment pro-
tocol introduced in [Xu et al. 2015] which allows LPs to communicate asynchronously
(which is also briefly described in Section 3.3). LPs analyze their event lists and deter-
mine lower bounds of simulation time for neighboring LPs in which they do not affect
the neighboring LPs. LPs collect the time bounds from all neighboring LPs and take
the minimum values as their time windows. LPs execute local events within the time
windows, then they synchronize again. This is inefficient since LPs still need to com-
municate with all neighbors during synchronization. Communicating to all neighbors
is unnecessary.

Another attempt is to use an optimistic approach [Yoginath and Perumalla 2008;
Hanai et al. 2015]. LPs are allowed to progress over the synchronization point and
violations of data dependencies are examined. If there is a violation, the simulation is
rolled-back to the point before the violation happens. An optimistic approach may be
able to explore more parallelism compared to a conservative approach. However, the
disadvantage of the optimistic approach is the overhead of state saving and performing
roll-back operations. Some optimistic simulation frameworks use reverse computation
to avoid state saving overhead [Carothers et al. 2000]. Our work aims to improve the
efficiency of conservative synchronization methods in agent-based traffic simulation.
Particularly, we focus on improving lookahead by exploring uncertainty in traffic sim-
ulation.

Utilizing uncertainty to improve the performance of parallel and distributed simu-
lation has also been studied. An approximate time causal order was proposed in [Fu-
jimoto 1999] to increase the concurrency of events. It relaxes the conventional strict
time stamp order of events. Events can be executed in an approximate order instead
of exact time order. More events can be executed concurrently. It takes advantage of
the fact that temporal uncertainty of events always exists in simulation. The approach
was later studied with a queuing model in [Loper and Fujimoto 2004]. Another similar
work is reported in [Nicol 2012]. The simulation application analyzes the delays that
packets experience when they pass through switches in a switch network. Certain ap-
proximation of individual latencies of packets is accepted provided that the average
latency is preserved. Allowing such approximation improves the performance of the
simulation significantly. Our relaxed synchronization strategy follows the same direc-
tion. However, the way to achieve relaxation depends on the characteristics of models
in the simulation. The behaviors of traffic models must be studied for an effective re-
laxation synchronization method for agent-based traffic simulation.

There is also work on trading the accuracy of simulation for performance. In [Park
and Fishwick 2011], events are clustered into intervals and synchronization is only
performed at the end of the intervals. It is intended to organize synchronization op-
erations into a synchronous manner which is more suitable for the GPU architecture.
Another study is presented in [Rihawi et al. 2013] which studies the effect of relax-
ing the synchronization of distributed agent-based simulations. However, it was not
investigated how to maintain the correctness of a distributed simulation using relaxed
synchronization.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

Relaxing Synchronization in Parallel Agent-based Road Traffic Simulation 0000:5

3. PARALLEL AGENT-BASED TRAFFIC SIMULATION
3.1. Models and Model Execution

The simulation space of an agent-based traffic simulation is a road network which is
a spatial network. The spatial network consists of links and nodes. Links represent
roads, and they are the containers of agents. A link has one or more lanes. Nodes do
not represent any physical entities. They contain the connectivity information of links
and lanes. There are two nodes at the two ends of a link. The traffic flow on a link is
unidirectional from the start node to the end node. A small road network is illustrated
in Figure 1. For simplicity, lanes are not shown. In the figure, nodes and nodesz are the
start node and end node of links respectively.

= @] Tfoe— o 5

sensing range of agent B §_
back front -
sensing sensing @
range y, range yy

{nodey
N ’ ’

Fig. 1. Agents with front sensing ranges v, and back sensing ranges ~, in a road network. Agent C is in
the sensing range of agent B; thus, agent B subscribes to the agent-based state variables of agent C.

The agent in the simulation contains driver behavior models and vehicle component
models. Examples of driver behavior models are the acceleration model and the lane-
changing model, and examples of vehicle component models are the motor model and
the battery model for EVs. An agent has a state at a certain instant of the simulation
time. The state contains multiple state variables. Agent-based state variables are vis-
ible to other agents, e.g., velocity and position. Component-based state variables are
not visible to other agents, e.g., a state-of-charge state variable in the battery model.
An agent has a sensing range which is the area around the agent within which the
states of other agents affect the agent’s behavior. An agent subscribes to certain state
variables of other agents inside its sensing range, in order to perform certain actions.
An illustration is shown in Figure 1.

The state of an agent changes as the simulation progresses with the execution of
timestamped events which contain certain update functions. Events are scheduled by
driver behavior models and vehicle component models [Xu et al. 2012]. We assume
that agent-based state variables that affect other agents are updated periodically. The
period is referred to as an update interval. Denote it as 4. In agent-based traffic simu-
lation, the update interval ¢ can be interpreted as drivers’ finite attention to the traffic:
drivers only look at the traffic and instantaneously adapt the acceleration to the situ-
ation with a resolution of § [Kesting and Treiber 2008]. A detailed description of the
driver behavior models used in this work is presented in the appendix.

3.2. Partitioning and Dependency of Logical Processes

Denote the whole simulation space (i.e., road network) as GG, and agent population at
simulation time ¢ as A;. To parallelize the simulation, the simulation space is parti-
tioned into I disjoint spatial subregions, G; (0 < i < I), where G = U{;&G,—. An LP is
responsible for executing events of the agents in one partition. We assume that LPs
only have access to the agents in their local spaces. The subset of A; that resides in
partition G; at the simulation time ¢ is denoted as A; ;. By definition, A; = Uf;olAM.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

0000:6 Yadong Xu et al.

The LP that executes events in partition G; is LP;. The partitioning of the network
is performed on links. The links that are cut are named boundary links. A boundary
link is evenly divided between two partitions. For instance, in Figure 2a, links is a
boundary link. The left half belongs to 1, and the right half belongs to G5. Since the
direction of traffic on link, is from G to G, we say link, is an outgoing boundary link
of G1, and an incoming boundary link of G5. LP, and LP; are neighboring processes.

Logical Process 1 Logical Process 2
inode link; [GBLY) @< — inodes)
N —~ N
buffer | buffer S5
region | region T
Gpop | G0
size=y, | size=y,
i
i !
node;) boundary cut \'nodeZ;,
(a)
link, @BD— linkz Y @D —

(b) (¢

Fig. 2. Road network partitioning: (a) illustration of boundary cut and buffer regions; (b) view of links from
LPy; and (c) view of links from LP5.

As mentioned earlier, agents subscribe to the state variables of other agents in their
sensing ranges. The subscription incurs data read dependencies between LPs which is
defined as follows:

Definition 3.1 (data read dependency). Data read dependency between LP; and LP;
(i # j) at simulation time ¢ is a condition in which there exists an agent in LP; that
has subscription of state variables of an agent in LP; at simulation time ¢.

An example is shown in Figure 2a: the position of agent C in LP, is inside the sensing
range of agent B in LP;. Agent B subscribes to the agent-based state variables of agent
C. The state variables should be sent over to LP; by LP, and kept updated. In this
case, there is a data read dependency between LP; and LP, at this simulation time.
The subscribed state variables are referred to as shared states. The LPs that receive
shared states use the shared states to create proxy agents which act as representatives
of the real agents in the original LPs. There is a proxy agent C’ in LP; of real agent C
(Figure 2b), and a proxy agent B’ in LP, of real agent B (Figure 2c). The set of proxy
agents in LP; at the simulation time ¢ is denoted as P, ;.

To update agents in an LP, states of agents in the neighboring LP near the par-
tition boundary cut are required. To identify those agents whose states need to be
shared, buffer regions are defined. They are the regions along the boundary cut of par-
titions with the size equal to the sensing range of agents. So, if an agent falls inside a
buffer region, it is possible that the agent is in the sensing range of some agents in the
neighboring LP. Denote the buffer region for partition G; inside partition G; as Gp(; ;)
(0<i<I,0<j<I,i# j). For example, in Figure 2a, Gz(2,1) is the buffer region for
G> in Gy, and Gy 2 is the buffer region for G, in G3. Given the traffic flow direction
of the link, the size of G'p(2,1) equals to the back sensing range of agents, and the size
of G'p(1,2) equals to the front sensing range of agents.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

Relaxing Synchronization in Parallel Agent-based Road Traffic Simulation 0000:7

Agents move in the road network. When an agent moves beyond the boundary of one
partition and enters another partition, migration of the agent from one LP to another
LP happens. In Figure 2a, suppose agent B in LP; continues moving on link, and its
new position falls inside G2 which is executed by LP,, LP, would be responsible for
executing future events of agent B. Agent B is removed from LP; and created anew in
LP;. The information about the entire agent B should be sent from LP; to LP, through
a synchronization message. In this case, there is a data write dependency between LP;
and LP, at time ¢t. Data write dependency is defined as follows:

Definition 3.2 (data write dependency). Data write dependency between LP; and
LP; (i # j) at simulation time ¢ is a condition in which there exists an agent that
was inside partition G; and changes its position to be inside partition G, at simulation
time t.

Data dependencies between LPs are only affected by agent-based state variables.
For instance, an event that updates the position, velocity, and acceleration of a vehicle
affects surrounding vehicles; on the contrary, an event scheduled by a battery model
of a vehicle that updates the state-of-charge of the battery in a vehicle does not affect
surrounding vehicles. Hence, events that update component-based state variables are
not considered in the following discussions.

3.3. Mutual Appointment Synchronization Protocol

The synchronization protocol used in this work is named mutual appointment (MA)
protocol [Xu et al. 2015]. The idea of MA synchronization is that an LP communicates
with other LPs by making appointments individually with them at certain mutually
agreed simulation time. An appointment contains two tasks: exchange data required
by data read and write dependencies and make the next appointment. Appointments
are scheduled as synchronization events. The processing of an MA synchronization
event in LP; with time stamp ¢ is shown in Algorithm 1.

ALGORITHM 1: MA synchronization event in LP; at simulation time ¢

Data:

A;: setoflocal agentsin LP; at ¢

P;, set of proxy agents in LP; at ¢

Ci;+ set of LPs having appointments with LP; at ¢

M; ;+ setof agents migrating from LP; to LP; at ¢

Si,;,+ set of shared states that should be sent by LP; to LP; at t

li,j lookahead of LP; towards LP; att

Result: time interval before the next appointment between LP; and LP;, At; ;.

1 foreach LP; € C;, do

// 1. prepare the content of the message

2 determine M; ; ¢+, Si jt, and l; j+;

// 2. exchange messages

3 send Mi,j,t, Si,j,t, and li’j’t to LP],

4 receive M ; ¢, Sjit, and l;; + from LP;j;

// 3. update the set of local agents

5 Aj = At UMy \ Mi g5

// 4. update the set of proxy agents

6 update the set of proxy agents P; ; with S;; +;

// 5. make a new appointment

7 Ati’j,t — IIlin(li,j,t7 lj_’i,t);
8 make an appointment with LP; at time t + At; ; ;
9 end

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

0000:8 Yadong Xu et al.

Associated with each synchronization event, there is a set of LPs that currently
have appointments with LP;, denoted as C; ;. An LP only synchronizes with its direct
neighbors; therefore, C; ; only contains neighboring LPs. Note that C; ; includes all or
only a subset of the neighboring LPs of LP,. For each LP; in the set C; ;, LP; performs
the following five steps.

(1) The first step is to prepare the data for fulfilling data dependencies (migrating
agents and shared states). The lookahead for the next appointment is calculated.

(2) In the second step, LP; sends all that information to LP;. A single synchronization
message is used. At the same time, it receives a message from LP; which contains
the migrating agents MM, ; ;, shared states S; ; ;, and lookahead [; ;.

(3) The third step is to update the local agent set A; ;. It is done by removing the agents
in M; ;:, and adding the agents in M, ;.

(4) The fourth step is to update the proxy agent set P, ; with the latest shared state
S;,i,t. Proxy agents outside of buffer regions are removed. Remaining proxy agents
are updated, and new proxy agents are created if necessary.

(5) The last step is to make the next appointment. The next synchronization event
with LP; will be scheduled at time ¢ + At; ; ,, where At; ; ,=min(l; j,i,1;i)-

The initial synchronization event for an LP is scheduled at the beginning of the
simulation. Lookahead is calculated using the initial positions of agents. The targets
of the initial synchronization event of an LP are all its neighboring LPs. Subsequent
synchronization events are scheduled based on lookahead of LPs.

l;;,¢ is the lookahead of LP; towards LP; at time ¢. It is the minimum time that LP;
needs to update its shared states (i.e., agents’ states in buffer region G, ;) to LP;. If
there are agents that are already inside G p(; ;) or ready to be migrated to LP;, since
agents’ states are updated periodically with an interval 6, [; ; ; is set to §. Otherwise,
l; ;¢ is set to the minimum time that any agent in A4, ; or any agent to be created in LP,
requires to travel to buffer region Gp(; ;). So, the worst case of lookahead is that there
are always agents inside G'p(; ;) or ready for migration, in which case the lookahead
always equals to one update interval.

4. RELAXATION ON THE SYNCHRONIZATION
4.1. Uncertainty in Traffic Modelling and Simulation

When modeling and simulation of a physical system is conducted, it always involves
uncertainty and error [Helton 1997; Oberkampf et al. 2002]. This is also true for traf-
fic simulation. Traffic simulation mimics the behavior of the real world traffic but can
never duplicate the real world. There is always uncertainty in a traffic simulation
[de Jong et al. 2006]. Uncertainty is categorized into two types in the literature ac-
cording to their sources. The first category is aleatory uncertainty, a.k.a., stochastic
uncertainty, irreducible uncertainty, inherent uncertainty, or variability. It is the in-
herent variation associated with the physical system, in this context, real road traffic.
It is highly unlikely that the traffic conditions of two days at the same location are
identical. The traffic always varies from day to day. Aleatory uncertainty in a com-
puter simulation is represented as a number of streams of random variables drawn
from specified probability distributions, for example, the distribution of the trip start-
ing time of agents in traffic simulation. Aleatory uncertainty can be quantified by re-
peated simulation runs with different random variable streams. In scientific studies,
simulations are usually run multiple times to get statistically meaningful results. The
second category of uncertainty is epistemic uncertainty, a.k.a., reducible uncertainty,
subjective uncertainty, or cognitive uncertainty. It results from a lack of knowledge
about the simulated system and is further classified into input uncertainty and model

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

Relaxing Synchronization in Parallel Agent-based Road Traffic Simulation 0000:9

uncertainty. The input for traffic simulation, such as traffic demand, is usually an
estimation from observed or forecast real world data. Input uncertainty arises from
the process of estimation and forecast. Models used in the traffic simulation are the
abstraction of the real world. Model uncertainty exists in both the model equation
(e.g., certain assumption on the function form and omitted variables) and the values
of model coefficients (usually estimated by calibration) [de Jong et al. 2006]. The mod-
els shown in the appendix are all based on certain assumptions. They are the major
models in microscopic traffic simulation. Various car-following models exist based on
different assumptions. A review of car-following models can be found in [Brackstone
and McDonald 1999].

Traffic simulations have inherent stochastic uncertainties. The result of the simu-
lations has certain variability and there is no single correct result of the simulation.
This indicates that the parallel simulation needs not to produce the exact result as the
sequential simulation; instead, a statistically equivalent result is sufficient. Thus, the
synchronization of LPs can be relaxed to improve the performance of parallel traffic
simulation as long as the relaxation preserves the result of the simulation statisti-
cally. This is similar to the ideas proposed by Fujimoto in [Fujimoto 1999] and Nicol in
[Nicol 2012] respectively, where uncertainties of models are exploited to improve the
synchronization of parallel and distributed simulations. Our relaxation strategies are
presented in the remainder of this section.

4.2. Synchronization Skipping and Dead-reckoning

Consider a scenario where the traffic is jammed on a boundary link, and all agents
are not moving, the states of the agents such as positions and velocities do not change.
Since buffer regions on the link are always non-empty, synchronization is performed
every update interval. This frequent synchronization is not necessary since skipping
some synchronization operations here does not have much influence on the result of
the simulation.

A convenient way of relaxing the synchronization is to simply increase lookahead
values and skip some synchronization operations. It is imperative to analyze the influ-
ence of skipping synchronization operations. Some agents may not be migrated in time
and some proxy agents may not be updated in time either. So, the consequence is that
some agents use obsolete states of proxy agents as input in their models. The states
of proxy agents can be estimated with a dead-reckoning function. However, discrep-
ancy may exist between the states obtained by dead-reckoning and synchronization.
An illustration of possible discrepancy is shown in Figure 3.

Agent B is a local agent and agent C’ is a proxy agent in LP; at time ¢ (Figure 3a).
The real agent C of proxy agent C’ is in LP; (i # j). As the simulation progresses to
time ¢+46, states of agent B and C are calculated by LP; and LP; respectively. The proxy
agent C’ should be updated by a synchronization operation with the shared states of
agent C. When synchronization is not performed, C’ is updated by dead-reckoning. The
state of C’ may be different due to the difference between the update function and the
dead-reckoning function. Figures 3b and 3c show a case where there is discrepancy
of positions between the dead-reckoned C’ and the updated C’ by synchronization.
Figure 3d shows another case where the real agent C has performed lane-change. The
lanes of the dead-reckoned C’ and the updated C’ by synchronization are different.
The discrepancy of states of proxy agent C' may or may not lead to a discrepancy on
agent B in the simulated future depending on their relative position, relative speed,
and the sensitivity of the driver’s behavior models. If there is a discrepancy on agent
B, the discrepancy may affect the results of the simulation.

It is not difficult to see that for a large-scale simulation, the amount of relaxation
on synchronization is influenced by the dead-reckoning function as well as traffic con-

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

0000:10 Yadong Xu et al.

time t+o without
synchronization

disprepancy between dead-rekoned C'
and updated C'by synchronization —

time ¢+ with
synchronization
(C accelerated)

time ¢+ with
synchronization
(C changed lane)

Fig. 3. Positions of agent B and proxy agent C’ on a boundary link seen by LP;. The real agent C of proxy
agent C’ isin LP; (i # j). (a) Agents are at time ¢t. (b) Synchronization is skipped at time ¢ + 6. The position
of proxy agent C’ is calculated by dead-reckoning. (¢) Synchronization is performed normally at time ¢ + 4.
Proxy agent C’ is updated by synchronization. Agent C accelerated in this case. (d) Synchronization is
performed normally at time ¢ + §. Agent C changed its lane in this case.

dition on the boundary links. A simple dead-reckoning function can just assume that
agents move at a constant speed until the next synchronization. It keeps the veloc-
ity of the proxy agents constant and updates the positions accordingly. In this case,
the discrepancy is correlated with how much the velocities of the real agents change.
Lookahead can be increased in the traffic conditions where the discrepancy is poten-
tially insignificant.

Traffic condition is typically characterized by traffic density, speed, and flow. Den-
sity is the number of vehicles per unit length of a roadway. Speed is the average
distance that vehicles travel per unit time. Flow is the number of vehicles passing
a reference point per unit time. Flow is the product of speed and density. Stabil-
ity of traffic describes how traffic is affected by perturbations (e.g., a sudden drop
of speed of a vehicle). A traffic is unstable if it has a tendency to oscillations of
speed, traffic waves, and stop-and-go traffic [Treiber and Kesting 2013c]. A stability
diagram which plots the different stabilities of traffic under different traffic density
ranges is shown in Figure 4 [Helbing et al. 2009]. Traffic density is denoted as p.
In the entire density range [0, paz], there are four thresholds p.i1, pe2, pes, and pe,
(0 < pe1 € pe2 < pey < Pes < Pmaz)- They are the densities where traffic transitions be-
tween different stability states. In the stable range (p < p.1 or p > p.4), perturbations
in traffic remain small and eventually dissolve. In the metastable range (p.; < p < pe2
or pes < p < pes), sufficiently small initial perturbations dissolve while larger perturba-
tions develop into persistent traffic waves. In the linear unstable range (p.2 < p < pe3),
arbitrarily small perturbations will grow through time. A stability state may not exist
for certain traffic models or parameter specifications. For example, under some config-
urations, a traffic may not transition from an unstable state to a stable state as the
traffic density increases (pc.3=pca=pmaz)-

We consider skipping synchronization as a source of perturbation to traffic since
it exerts certain disturbance on the normal movement of vehicles. Synchronization
operations can be skipped more under stable traffic and less in unstable traffic. We
notice from Figure 4 that when traffic flow is very low, density is either less than
pe1 or greater than p.,. Therefore, the conceptual basis for our first heuristic is that
lookahead can be larger when flow is lower (more stable traffic) and lookahead should
be smaller when flow is higher (more unstable traffic).

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

Relaxing Synchronization in Parallel Agent-based Road Traffic Simulation 0000:11

2000 2000

N
QCZ 'Qout Q 1 ch ’QOUt
1500] 1500 '
= Qer =
< 1000 ¢ < 1000 ¢
(9] (9]
500 |] 506" H]
/ /r(
0 ! 0
0 Pc1Pc2 Pc3 Pca 125 0 Pct1 Pc2 Pc3Pcs 125
Density (1/km) Density (1/km)

(a) (b)

Fig. 4. Illustration of stable, linearly unstable, and metastable density regimes within flow-density dia-
grams Q.(p) [Helbing et al. 2009]. Traffic is stable for density p < pc1 and p > pca; metastable in the
intervals p.1 < p < pe2 and pe3 < p < pea; and linearly unstable for pco < p < pc3. The relative position
of the thresholds with respect to the density at maximum flow Qnq. (denoted as pg,,,.) influences the pos-
sible types of congested traffic patterns. (a) shows the situation for pc2 < pg,,,., (b) shows the situation for
Pc2 > PQua.- The traffic flows at densities pc1, pe2, pe3, and pes are Qc1, Qc2, Qc3, and Q4 respectively.
Qout 1s the out flow of traffic.

A simplistic but effective heuristic for relaxation is proposed. It contains only one
input parameter. We first define a time window window; ; of a link [as the longest time
period at time ¢ in which synchronization can be skipped without affecting the traffic
flow of link [. Here, [is an outgoing boundary link from partition G; to G;. The window
is calculated using

(1

nd 1
window; ; = - —~—
T Que
where « is a sensitivity factor, and @);, is the traffic flow on link [at time . When
Q1+ = 0, window; ; = mazw;, where mazrw; is a maximum window. In fact, the physical
meaning of & is the time headway which is the time difference between two consec-

utive vehicles passing a reference point on the road. Thus, this equation can also be
interpreted as the time window on a link is proportional to the time headway on the
link. The lookahead between two LPs should be the minimum of the time windows of
all boundary links between them. Since the appointments are negotiated by both of
the synchronizing LPs, it is sufficient to consider only outgoing boundary links of the
partition for an LP. The lookahead from LP; to LP; at time ¢ is

Lijie= zgloi?j(wmdowl’t) (2)
where O; ; is the set of outgoing boundary links from G; to G;. The sensitivity fac-
tor «a controls the amount of relaxation introduced. The optimal value of « is the one
that maximizes lookahead and does not distort the statistical result of the simulation
(e.g., traffic flow of roads, or trip durations of agents). The value of « is influenced by
the models used in the traffic simulation, the road network topology, and partitioning.
When a large-scale road network is simulated, discrepancy that occurs on boundary
links may propagate to the upstream and downstream directions of the traffic. There-
fore, it is not straightforward to obtain the optimal « value. An appropriate o value
can be obtained by conducting trial experiments if this heuristic is used in practical
applications.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

0000:12 Yadong Xu et al.

The lookahead determination algorithm for this relaxation method is shown in Al-
gorithm 2. The algorithm begins with checking the local agent population: if the local
agent set is empty, the lookahead is set to the minimum value of maximum windows
directly; otherwise, the outgoing boundary links are checked one by one and the min-
imum value of time windows is taken as the lookahead. If the lookahead is less than
one update interval, it will be set to one update interval. It is evident that the [, ;; is
limited by the link with the highest flow. The maximum window of [is calculated using
the minimum traveling time of [(length divided by speed limit).

ALGORITHM 2: Lookahead of synchronisation relaxed with skipping and dead-
reckoning

Data:

Ai set of agents in LP; at time ¢

O,,; set of outgoing boundary links from G; to G, at time ¢
Qut traffic flow on link [at time ¢, € O; ;

mazw; maximum window of link [, [€ O, ;

1) an update interval

Result: lookahead from LP; towards LP; at time ¢, [; ;

1 Initialize [; ;: < mazimum double;

w N

® g @ ok

©

10
11
12
13

if Ai,t = @ then

‘ li,j,t < min (maa:wl);

€0, ;
else
foreach ! € O; ; do
if Q;: = 0 then
lij,t ¢ min (li,j,t7 maacu)l);
else
‘ li,j,t < min (li,j,t7 - Q%yt),
end
end
end

lijo < max(li e, 9);

4.3. Reducing Temporal Resolution of Agent-based Models

The necessity of synchronization is originated from the update of agent-based states
near boundaries of partitions. If the update interval of those agent-based states is
increased, synchronization will be required less frequently. This inspired another way
of relaxing synchronization. A heuristic that relaxes synchronization by increasing
the update interval of agent-based models is introduced in this section. Increasing
update interval reduces temporal resolutions of agent-based models, which may alter
simulation results. The challenge is not to alter simulation results statistically.
Acceleration, lane-changing, and gap-acceptance models are the common behav-
iors that agents possess. Acceleration models describe the longitudinal movement of
agents. Agents update their accelerations every update interval and the acceleration
is kept constant within an update interval. The positions and velocities of agents are
calculated using numerical integration of the acceleration through time [Treiber and
Kesting 2013a]. Lane-changing and gap-acceptance models describe the discrete de-
cisions of an agent whether to change its lane and enter another lane [Treiber and
Kesting 2013b]. At time ¢, agents scan the surrounding environment and calculate
their states for time ¢ + 6. The update interval represents a driver’s finite attention to

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

Relaxing Synchronization in Parallel Agent-based Road Traffic Simulation 0000:13

traffic, that is, how fast an agent is able to adapt to the surrounding traffic condition
[Kesting and Treiber 2008]. Update interval varies in different studies of agent-based
traffic simulation. It ranges from a fraction of a second to a few seconds [Gipps 1981;
Park and Qi 2005; Kesting and Treiber 2008; Basak et al. 2013]. It is also reported that
lengthening the update interval within a certain range does not significantly influence
the stability of traffic [Kesting and Treiber 2008].

(a)
time t+6 (b)
update interval=6
time t+20 (©)
update interval=o
| —disprepancy of agent B between
resolution § and 24 at time #+25
timet+26 | B)

update interval=2¢

Fig. 5. Positions of agent B and proxy agent C’ on a boundary link seen by LP;. (a) Agents are at time ¢.
(b) Agents are at time ¢ + §, updated from ¢ with update interval §. (c) Agents are at time ¢ + 26, updated
from t 4+ § with update interval 4. (d) Agent are at time ¢ + 2§, updated from ¢ with update interval 24.

Increasing update interval reduces the frequency of agents making decisions on
their movement. An illustration is given in Figure 5. The positions of agent B in two
update intervals from time ¢ to ¢ + 26 are shown in Figures 5a, 5b, and 5¢. Agent B and
proxy agent C’ are in LP;. Real agent C of the proxy agent C’ is in LP; (i # j). When
the update interval equals to 0, agent B makes driving decisions twice. The accelera-
tions it exerts from ¢ to ¢ + § and from ¢ + 0 to t + 20 are v5(¢t) and v (t + J) respectively.
In comparison, Figure 5d is evolved from Figure 5a with the update interval equal to
20. Agent B only makes driving decisions once. It has an acceleration 05 (t) from ¢ to
t+2¢ in Figure 5d. If v5(t) # 0p(t+0), there will be a discrepancy between the position
of agent B in the two cases. Note that state of agent B will be used to update its proxy
in LP;. So, LP; will see different positions of agent B under the two cases.

To minimize discrepancy, the number of agents simulated with reduced temporal
resolution should be as small as possible. We know that an agent affects other LPs
when its position is inside a buffer region. Therefore, only the agents that are inside
buffer regions are required to be simulated with a relaxed update interval (i.e., reduced
temporal resolution). The buffer regions between LP; and LP; are G(; ;) and Gp(;i)-
Denote the relaxed update interval as d;;; for Gp(; ;) and Gp(;; at time t, where
di,jt=k-0 (k € Z,k > 1). Note that ¢; j ; = 0, ;. The agents inside Gp(; ;) and Gg(; ;) are
simulated with update interval ¢, ;, at time ¢. Other agents outside of buffer regions
are simulated with the original update interval §. Since agents move in the road net-
work, when they move into G'z(; ;) and G, ;), their update intervals are increased to
d; j.+- When they exit the buffer regions, their update intervals are reverted to the orig-
inal value, §. In other words, update intervals of agents will change when they move
through a boundary link between partitions.

Recall that traffic density is segmented into five ranges in the stability diagram in
Figure 4. We propose another heuristic that applies suitable relaxed update intervals
according to which ranges the traffic densities of boundary links fall in. The amount
of relaxation should be customized to stable, metastable, and unstable traffic states.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0000, Publication date: 2016.

0000:14 Yadong Xu et al.

The heuristic utilizes four density thresholds pi, p2, p3 and p4. They correspond to the
thresholds p.1, pe2, pes, and p.4 in the stability diagram respectively. Denote the traffic
density on boundary link / at time ¢ as p; ;, and the relaxed update interval allowed on
boundary link [as §; +, then J; ; is determined by the following rules:

6gena if pLe < p1Or P > P4
517t = 6m0d7 lfpl < Pt < p2 O p3 < Lt < p4
9, otherwise

where 0gen, = kgen - 6 and dpod = kmoa - 0 Which satisfy kgep, € Z, kioa € Z, and 1 <
kmod < kgen. The rationale for the relaxation heuristic is as follows:

(1) When the traffic density of a link is below p;, vehicles are traveling freely on the
road. When the density is higher than p,, the traffic is jammed. In both cases,
relevant agent-based models can have a generously relaxed update interval d4e,.

(2) When the density of a link is between p; and ps, or between p; and p4, the traffic is
in a metastable state. A moderate amount of relaxation can be applied. Relevant
agent-based models have a moderately relaxed update interval §,,,.4.

(3)