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Large-scale agent-based traffic simulation is computationally intensive. Parallel computing can help to
speed-up agent-based traffic simulation. Parallelization of agent-based traffic simulations is generally
achieved by decomposing the road network into subregions. The agents in each subregion are executed
by a Logical Process (LP). There are data dependencies between LPs which require synchronization of LPs.
An asynchronous protocol allows LPs to progress and communicate asynchronously. LPs use lookahead to
indicate the time to synchronize with other LPs. Larger lookahead means less frequent synchronization
operations. High synchronization overhead is still a major performance issue of large-scale parallel agent-
based traffic simulations. In this paper, two methods to increase the lookahead of LPs for an asynchronous
protocol are developed. They take advantage of uncertainties in traffic simulation to relax synchronization
without altering simulation results statistically. Efficiency of the proposed methods is investigated in the
parallel agent-based traffic simulator SEMSim Traffic. Experiment results showed that the proposed meth-
ods are able to reduce overall running time of the parallel simulation compared to existing methods.
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1. INTRODUCTION
Today, road traffic in many large cities and mega-cities is facing severe problems such
as congestion and high emissions. They diminish the comfort and health of urban
inhabitants. To study road traffic and solve urban traffic problems, modeling and
simulation of road traffic has been a useful tool to evaluate certain infrastructure
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or traffic control strategies. Road traffic can be modeled with different levels of de-
tail: macroscopic [Lighthill and Whitham 1955; Richards 1956], mesoscopic [Paveri-
Fontana 1975], microscopic [Gipps 1981], and nanoscopic (a.k.a., sub-microscopic) [Ni
2003]. It is a complex adaptive system whose behavior is influenced by the behaviors
of constituent components. The modeling of the behaviors of individual components,
i.e., driver-vehicle-units (DVUs), falls within the scope of microscopic and nanoscopic
levels of detail. Both microscopic and nanoscopic simulations can be conducted in an
agent-based manner. DVUs are agents that interact with the environment and aim to
reach certain goals by performing some actions. Agent-based traffic simulation is use-
ful in studying the impact of individual DVU behaviors on the road traffic, for instance,
the impact of risky driving on the traffic, and the influence of adopting electric vehicles
(EVs) or automatic vehicles on the transportation system.

SEMSim Traffic is a nanoscopic traffic simulator that is able to capture this level
of detail [Xu et al. 2012]. It is designed to study how different vehicle designs and
different infrastructures may influence the transportation system when EVs are in-
troduced at a large-scale in mega-cities. However, one of the challenges to conduct
a simulation at a large-scale (e.g., the whole city) is the issue of high computational
resource requirements. To make large-scale agent-based traffic simulations computa-
tionally feasible, parallel computing techniques should be employed. There are many
critical considerations in developing a parallel simulation, for example, time synchro-
nization [Fujimoto 2000], and partitioning and load balancing [Deelman and Szyman-
ski 1998]. The problem of time synchronization is addressed in this study. The focus is
to reduce the overhead of time synchronization in agent-based traffic simulation.

A common way to parallelize agent-based traffic simulation is to decompose the road
network into multiple spatial subregions (partitions). The agents in a subregion are
executed by a Logical Process (LP) which is usually assigned to a physical processing
unit. An agent (i.e., a DVU) interacts with other agents that are spatially situated in
its proximity. It subscribes to certain state variables of those agents. If any of the sub-
scribed agents is executed by another LP, the subscription of the state variables incurs
data dependencies between the LPs. These agents are usually near the boundaries
of the spatial subregions. To maintain the correctness of the simulation, when an LP
has data dependencies with other LPs, it can only progress the simulation if the data
required are received from relevant LPs. Synchronization between LPs is performed
to exchange data. In a distributed memory environment, synchronization is usually
achieved by messages passing among LPs.

Synchronization in agent-based traffic simulation is generally achieved using global
barriers [Nagel and Rickert 2001; Suzumura and Kanezashi 2012]. At a synchro-
nization barrier, all LPs temporarily pauses the execution of agent models. Then all
the subscribed states are exchanged among LPs. After the exchange, all LPs resume
execution at the same time. Agent models are executed at discrete time intervals
which usually have a fixed length that is referred to as time-step or update inter-
val. Global barriers can be deployed at the end of update intervals. This is equivalent
to a synchronous and conservative synchronization protocol in parallel and distributed
discrete-event simulation. A conservative synchronization protocol does not allow vi-
olation of data dependencies [Nicol 1996]. The limitation is that all LPs have to wait
at global barriers despite that some LPs do not have dependencies at certain barriers.
This method does not fully exploit the parallelism in the simulation. Another type of
conservative synchronization protocol allows LPs to fulfill data dependency require-
ments asynchronously [Nicol 1996; Namekawa et al. 1999]. LPs synchronize with each
other in a peer-to-peer manner. The frequencies of synchronization can be different
for different LP pairs. A critical element of an asynchronous protocol is the lookahead.
Lookahead of an LP towards another LP at a certain simulation time is a time interval
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in the simulated future within which the LP will not have data dependencies with the
other LP. The larger the lookahead values are, the less the synchronization operations
are required. However, due to the frequent interactions of agents, agent-based traffic
simulation usually has small lookahead. Using an asynchronous protocol alone does
not solve the issue of high synchronization overhead in agent-based traffic simulation.

In this work, the aim is to develop heuristics to increase lookahead of LPs to re-
duce synchronization overhead in agent-based traffic simulation. A simulation is an
abstraction of the real system and there is always uncertainty in the processing of
modeling and simulation [Helton 1997; Oberkampf et al. 2002]. This fact applies to
traffic simulation as well. For example, there is stochastic uncertainty since the traffic
at a location in the real world varies from day to day; and there is model uncertainty
in the models describing the movement of vehicles. Usually, a traffic simulation is run
many times in order to obtain statistical results.

The uncertainties are exploited to reduce synchronization overhead. In our earlier
work presented in [Xu et al. 2015], we developed a relaxed synchronization strat-
egy with a heuristic that makes use of uncertainty of the simulation. Relaxation is
achieved by skipping some synchronization operations. A dead-reckoning function is
utilized to adjust the agent states which should have been updated by synchroniza-
tion. This paper further extends our earlier work. We propose an alternative approach
to relax synchronization with the same philosophy: uncertainty in agent-based traffic
simulation allows a certain amount of violation of data dependencies between LPs in
the parallel simulation. The new approach reduces synchronization by increasing the
update interval of some models of those agents that incur data dependencies (e.g., the
agents at boundaries of partitions). Increasing the size of update intervals reduces the
temporal resolution of the models. In different traffic conditions, the influence of re-
laxation can be different. The method should ensure that the simulation results of the
parallel simulation are statistically equivalent to those of the sequential simulation.

Our contribution to the literature is the two heuristics that improve the efficiency of
synchronization by relaxing it without affecting simulation results statistically (Sec-
tion 4). The heuristics can be potentially used to make large-scale traffic simulation
run at or faster than real-time. This is particularly important when agent-based traf-
fic simulation is used as a forecasting tool in time-critical decision making situations.
The challenge is to determine how much relaxation can be introduced without distort-
ing results of the simulation.

The remainder of the paper is organized as follows: Section 2 describes the related
work. Synchronization methods in parallel microscopic traffic simulations and work
on making use of uncertainties of simulation to improve synchronization in discrete-
event simulations are presented. Section 3 introduces some background information:
models used in the simulation, partitioning of the simulation, and the synchronization
protocol used in the parallel simulation. Section 4 describes the two heuristics of relax-
ing synchronization, starting with a discussion on uncertainties in traffic simulation.
Section 5 presents experiment results and analysis of the results. Section 6 provides a
summary of this work and recommendations for future work.

2. RELATED WORK
The synchronization issue of parallel discrete-event simulations has been extensively
studied in the literature [Fujimoto 2000; Nicol 1996]. Nevertheless, developing syn-
chronization protocols usually involves tuning the protocols to the models used in
particular simulations. For parallel agent-based traffic simulations, there have been
many approaches to conduct synchronization. Employing global barriers is the most
frequently used approach due to its simplicity. LPs are blocked from executing agent
models at the end of update intervals, then they exchange messages with relevant
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LPs and proceed to the next update interval simultaneously [Nagel and Rickert 2001;
Suzumura and Kanezashi 2012]. For the simulations parallelized by multi-threading,
all threads access the shared memory directly at barriers instead of communicating
with each other by message passing [Barceló et al. 1998]. This simplicity frequently
comes at the cost of LPs waiting at global barriers. It does not fully exploit the par-
allelism of the simulation. The work in [Namekawa et al. 1999] used a conservative
time window synchronization. It is a similar approach to our mutual appointment pro-
tocol introduced in [Xu et al. 2015] which allows LPs to communicate asynchronously
(which is also briefly described in Section 3.3). LPs analyze their event lists and deter-
mine lower bounds of simulation time for neighboring LPs in which they do not affect
the neighboring LPs. LPs collect the time bounds from all neighboring LPs and take
the minimum values as their time windows. LPs execute local events within the time
windows, then they synchronize again. This is inefficient since LPs still need to com-
municate with all neighbors during synchronization. Communicating to all neighbors
is unnecessary.

Another attempt is to use an optimistic approach [Yoginath and Perumalla 2008;
Hanai et al. 2015]. LPs are allowed to progress over the synchronization point and
violations of data dependencies are examined. If there is a violation, the simulation is
rolled-back to the point before the violation happens. An optimistic approach may be
able to explore more parallelism compared to a conservative approach. However, the
disadvantage of the optimistic approach is the overhead of state saving and performing
roll-back operations. Some optimistic simulation frameworks use reverse computation
to avoid state saving overhead [Carothers et al. 2000]. Our work aims to improve the
efficiency of conservative synchronization methods in agent-based traffic simulation.
Particularly, we focus on improving lookahead by exploring uncertainty in traffic sim-
ulation.

Utilizing uncertainty to improve the performance of parallel and distributed simu-
lation has also been studied. An approximate time causal order was proposed in [Fu-
jimoto 1999] to increase the concurrency of events. It relaxes the conventional strict
time stamp order of events. Events can be executed in an approximate order instead
of exact time order. More events can be executed concurrently. It takes advantage of
the fact that temporal uncertainty of events always exists in simulation. The approach
was later studied with a queuing model in [Loper and Fujimoto 2004]. Another similar
work is reported in [Nicol 2012]. The simulation application analyzes the delays that
packets experience when they pass through switches in a switch network. Certain ap-
proximation of individual latencies of packets is accepted provided that the average
latency is preserved. Allowing such approximation improves the performance of the
simulation significantly. Our relaxed synchronization strategy follows the same direc-
tion. However, the way to achieve relaxation depends on the characteristics of models
in the simulation. The behaviors of traffic models must be studied for an effective re-
laxation synchronization method for agent-based traffic simulation.

There is also work on trading the accuracy of simulation for performance. In [Park
and Fishwick 2011], events are clustered into intervals and synchronization is only
performed at the end of the intervals. It is intended to organize synchronization op-
erations into a synchronous manner which is more suitable for the GPU architecture.
Another study is presented in [Rihawi et al. 2013] which studies the effect of relax-
ing the synchronization of distributed agent-based simulations. However, it was not
investigated how to maintain the correctness of a distributed simulation using relaxed
synchronization.
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3. PARALLEL AGENT-BASED TRAFFIC SIMULATION
3.1. Models and Model Execution
The simulation space of an agent-based traffic simulation is a road network which is
a spatial network. The spatial network consists of links and nodes. Links represent
roads, and they are the containers of agents. A link has one or more lanes. Nodes do
not represent any physical entities. They contain the connectivity information of links
and lanes. There are two nodes at the two ends of a link. The traffic flow on a link is
unidirectional from the start node to the end node. A small road network is illustrated
in Figure 1. For simplicity, lanes are not shown. In the figure, node2 and node3 are the
start node and end node of link2 respectively.
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Fig. 1. Agents with front sensing ranges γf and back sensing ranges γb in a road network. Agent C is in
the sensing range of agent B; thus, agent B subscribes to the agent-based state variables of agent C.

The agent in the simulation contains driver behavior models and vehicle component
models. Examples of driver behavior models are the acceleration model and the lane-
changing model, and examples of vehicle component models are the motor model and
the battery model for EVs. An agent has a state at a certain instant of the simulation
time. The state contains multiple state variables. Agent-based state variables are vis-
ible to other agents, e.g., velocity and position. Component-based state variables are
not visible to other agents, e.g., a state-of-charge state variable in the battery model.
An agent has a sensing range which is the area around the agent within which the
states of other agents affect the agent’s behavior. An agent subscribes to certain state
variables of other agents inside its sensing range, in order to perform certain actions.
An illustration is shown in Figure 1.

The state of an agent changes as the simulation progresses with the execution of
timestamped events which contain certain update functions. Events are scheduled by
driver behavior models and vehicle component models [Xu et al. 2012]. We assume
that agent-based state variables that affect other agents are updated periodically. The
period is referred to as an update interval. Denote it as δ. In agent-based traffic simu-
lation, the update interval δ can be interpreted as drivers’ finite attention to the traffic:
drivers only look at the traffic and instantaneously adapt the acceleration to the situ-
ation with a resolution of δ [Kesting and Treiber 2008]. A detailed description of the
driver behavior models used in this work is presented in the appendix.

3.2. Partitioning and Dependency of Logical Processes
Denote the whole simulation space (i.e., road network) as G, and agent population at
simulation time t as At. To parallelize the simulation, the simulation space is parti-
tioned into I disjoint spatial subregions, Gi (0 ≤ i < I), where G = ∪I−1i=0Gi. An LP is
responsible for executing events of the agents in one partition. We assume that LPs
only have access to the agents in their local spaces. The subset of At that resides in
partition Gi at the simulation time t is denoted as Ai,t. By definition, At = ∪I−1i=0Ai,t.
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The LP that executes events in partition Gi is LPi. The partitioning of the network
is performed on links. The links that are cut are named boundary links. A boundary
link is evenly divided between two partitions. For instance, in Figure 2a, link2 is a
boundary link. The left half belongs to G1, and the right half belongs to G2. Since the
direction of traffic on link2 is from G1 to G2, we say link2 is an outgoing boundary link
of G1, and an incoming boundary link of G2. LP1 and LP2 are neighboring processes.
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Fig. 2. Road network partitioning: (a) illustration of boundary cut and buffer regions; (b) view of link2 from
LP1; and (c) view of link2 from LP2.

As mentioned earlier, agents subscribe to the state variables of other agents in their
sensing ranges. The subscription incurs data read dependencies between LPs which is
defined as follows:

Definition 3.1 (data read dependency). Data read dependency between LPi and LPj

(i 6= j) at simulation time t is a condition in which there exists an agent in LPi that
has subscription of state variables of an agent in LPj at simulation time t.

An example is shown in Figure 2a: the position of agent C in LP2 is inside the sensing
range of agent B in LP1. Agent B subscribes to the agent-based state variables of agent
C. The state variables should be sent over to LP1 by LP2 and kept updated. In this
case, there is a data read dependency between LP1 and LP2 at this simulation time.
The subscribed state variables are referred to as shared states. The LPs that receive
shared states use the shared states to create proxy agents which act as representatives
of the real agents in the original LPs. There is a proxy agent C ′ in LP1 of real agent C
(Figure 2b), and a proxy agent B′ in LP2 of real agent B (Figure 2c). The set of proxy
agents in LPi at the simulation time t is denoted as Pi,t.

To update agents in an LP, states of agents in the neighboring LP near the par-
tition boundary cut are required. To identify those agents whose states need to be
shared, buffer regions are defined. They are the regions along the boundary cut of par-
titions with the size equal to the sensing range of agents. So, if an agent falls inside a
buffer region, it is possible that the agent is in the sensing range of some agents in the
neighboring LP. Denote the buffer region for partition Gi inside partition Gj as GB(i,j)

(0 ≤ i < I, 0 ≤ j < I, i 6= j). For example, in Figure 2a, GB(2,1) is the buffer region for
G2 in G1, and GB(1,2) is the buffer region for G1 in G2. Given the traffic flow direction
of the link, the size of GB(2,1) equals to the back sensing range of agents, and the size
of GB(1,2) equals to the front sensing range of agents.
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Agents move in the road network. When an agent moves beyond the boundary of one
partition and enters another partition, migration of the agent from one LP to another
LP happens. In Figure 2a, suppose agent B in LP1 continues moving on link2 and its
new position falls inside G2 which is executed by LP2, LP2 would be responsible for
executing future events of agent B. Agent B is removed from LP1 and created anew in
LP2. The information about the entire agent B should be sent from LP1 to LP2 through
a synchronization message. In this case, there is a data write dependency between LP1

and LP2 at time t. Data write dependency is defined as follows:

Definition 3.2 (data write dependency). Data write dependency between LPi and
LPj (i 6= j) at simulation time t is a condition in which there exists an agent that
was inside partition Gi and changes its position to be inside partition Gj at simulation
time t.

Data dependencies between LPs are only affected by agent-based state variables.
For instance, an event that updates the position, velocity, and acceleration of a vehicle
affects surrounding vehicles; on the contrary, an event scheduled by a battery model
of a vehicle that updates the state-of-charge of the battery in a vehicle does not affect
surrounding vehicles. Hence, events that update component-based state variables are
not considered in the following discussions.

3.3. Mutual Appointment Synchronization Protocol
The synchronization protocol used in this work is named mutual appointment (MA)
protocol [Xu et al. 2015]. The idea of MA synchronization is that an LP communicates
with other LPs by making appointments individually with them at certain mutually
agreed simulation time. An appointment contains two tasks: exchange data required
by data read and write dependencies and make the next appointment. Appointments
are scheduled as synchronization events. The processing of an MA synchronization
event in LPi with time stamp t is shown in Algorithm 1.

ALGORITHM 1: MA synchronization event in LPi at simulation time t
Data:
Ai,t set of local agents in LPi at t
Pi,t set of proxy agents in LPi at t
Ci,t set of LPs having appointments with LPi at t
Mi,j,t set of agents migrating from LPi to LPj at t
Si,j,t set of shared states that should be sent by LPi to LPj at t
li,j,t lookahead of LPi towards LPj at t
Result: time interval before the next appointment between LPi and LPj , ∆ti,j,t

1 foreach LPj ∈ Ci,t do
// 1. prepare the content of the message

2 determine Mi,j,t, Si,j,t, and li,j,t;
// 2. exchange messages

3 send Mi,j,t, Si,j,t, and li,j,t to LPj ;
4 receive Mj,i,t, Sj,i,t, and lj,i,t from LPj ;

// 3. update the set of local agents

5 Ai,t ← Ai,t ∪Mj,i,t \Mi,j,t;
// 4. update the set of proxy agents

6 update the set of proxy agents Pi,t with Sj,i,t;
// 5. make a new appointment

7 ∆ti,j,t ← min(li,j,t, lj,i,t);
8 make an appointment with LPj at time t+ ∆ti,j,t;
9 end
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Associated with each synchronization event, there is a set of LPs that currently
have appointments with LPi, denoted as Ci,t. An LP only synchronizes with its direct
neighbors; therefore, Ci,t only contains neighboring LPs. Note that Ci,t includes all or
only a subset of the neighboring LPs of LPi. For each LPj in the set Ci,t, LPi performs
the following five steps.

(1) The first step is to prepare the data for fulfilling data dependencies (migrating
agents and shared states). The lookahead for the next appointment is calculated.

(2) In the second step, LPi sends all that information to LPj . A single synchronization
message is used. At the same time, it receives a message from LPj which contains
the migrating agents Mj,i,t, shared states Sj,i,t, and lookahead lj,i,t.

(3) The third step is to update the local agent setAi,t. It is done by removing the agents
in Mi,j,t, and adding the agents in Mj,i,t.

(4) The fourth step is to update the proxy agent set Pi,t with the latest shared state
Sj,i,t. Proxy agents outside of buffer regions are removed. Remaining proxy agents
are updated, and new proxy agents are created if necessary.

(5) The last step is to make the next appointment. The next synchronization event
with LPj will be scheduled at time t+ ∆ti,j,t, where ∆ti,j,t=min(li,j,t, lj,i,t).

The initial synchronization event for an LP is scheduled at the beginning of the
simulation. Lookahead is calculated using the initial positions of agents. The targets
of the initial synchronization event of an LP are all its neighboring LPs. Subsequent
synchronization events are scheduled based on lookahead of LPs.
li,j,t is the lookahead of LPi towards LPj at time t. It is the minimum time that LPi

needs to update its shared states (i.e., agents’ states in buffer region GB(j,i)) to LPj . If
there are agents that are already inside GB(j,i) or ready to be migrated to LPj , since
agents’ states are updated periodically with an interval δ, li,j,t is set to δ. Otherwise,
li,j,t is set to the minimum time that any agent in Ai,t or any agent to be created in LPi

requires to travel to buffer region GB(j,i). So, the worst case of lookahead is that there
are always agents inside GB(j,i) or ready for migration, in which case the lookahead
always equals to one update interval.

4. RELAXATION ON THE SYNCHRONIZATION
4.1. Uncertainty in Traffic Modelling and Simulation
When modeling and simulation of a physical system is conducted, it always involves
uncertainty and error [Helton 1997; Oberkampf et al. 2002]. This is also true for traf-
fic simulation. Traffic simulation mimics the behavior of the real world traffic but can
never duplicate the real world. There is always uncertainty in a traffic simulation
[de Jong et al. 2006]. Uncertainty is categorized into two types in the literature ac-
cording to their sources. The first category is aleatory uncertainty, a.k.a., stochastic
uncertainty, irreducible uncertainty, inherent uncertainty, or variability. It is the in-
herent variation associated with the physical system, in this context, real road traffic.
It is highly unlikely that the traffic conditions of two days at the same location are
identical. The traffic always varies from day to day. Aleatory uncertainty in a com-
puter simulation is represented as a number of streams of random variables drawn
from specified probability distributions, for example, the distribution of the trip start-
ing time of agents in traffic simulation. Aleatory uncertainty can be quantified by re-
peated simulation runs with different random variable streams. In scientific studies,
simulations are usually run multiple times to get statistically meaningful results. The
second category of uncertainty is epistemic uncertainty, a.k.a., reducible uncertainty,
subjective uncertainty, or cognitive uncertainty. It results from a lack of knowledge
about the simulated system and is further classified into input uncertainty and model
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uncertainty. The input for traffic simulation, such as traffic demand, is usually an
estimation from observed or forecast real world data. Input uncertainty arises from
the process of estimation and forecast. Models used in the traffic simulation are the
abstraction of the real world. Model uncertainty exists in both the model equation
(e.g., certain assumption on the function form and omitted variables) and the values
of model coefficients (usually estimated by calibration) [de Jong et al. 2006]. The mod-
els shown in the appendix are all based on certain assumptions. They are the major
models in microscopic traffic simulation. Various car-following models exist based on
different assumptions. A review of car-following models can be found in [Brackstone
and McDonald 1999].

Traffic simulations have inherent stochastic uncertainties. The result of the simu-
lations has certain variability and there is no single correct result of the simulation.
This indicates that the parallel simulation needs not to produce the exact result as the
sequential simulation; instead, a statistically equivalent result is sufficient. Thus, the
synchronization of LPs can be relaxed to improve the performance of parallel traffic
simulation as long as the relaxation preserves the result of the simulation statisti-
cally. This is similar to the ideas proposed by Fujimoto in [Fujimoto 1999] and Nicol in
[Nicol 2012] respectively, where uncertainties of models are exploited to improve the
synchronization of parallel and distributed simulations. Our relaxation strategies are
presented in the remainder of this section.

4.2. Synchronization Skipping and Dead-reckoning
Consider a scenario where the traffic is jammed on a boundary link, and all agents
are not moving, the states of the agents such as positions and velocities do not change.
Since buffer regions on the link are always non-empty, synchronization is performed
every update interval. This frequent synchronization is not necessary since skipping
some synchronization operations here does not have much influence on the result of
the simulation.

A convenient way of relaxing the synchronization is to simply increase lookahead
values and skip some synchronization operations. It is imperative to analyze the influ-
ence of skipping synchronization operations. Some agents may not be migrated in time
and some proxy agents may not be updated in time either. So, the consequence is that
some agents use obsolete states of proxy agents as input in their models. The states
of proxy agents can be estimated with a dead-reckoning function. However, discrep-
ancy may exist between the states obtained by dead-reckoning and synchronization.
An illustration of possible discrepancy is shown in Figure 3.

Agent B is a local agent and agent C ′ is a proxy agent in LPi at time t (Figure 3a).
The real agent C of proxy agent C ′ is in LPj (i 6= j). As the simulation progresses to
time t+δ, states of agentB and C are calculated by LPi and LPj respectively. The proxy
agent C ′ should be updated by a synchronization operation with the shared states of
agent C. When synchronization is not performed, C ′ is updated by dead-reckoning. The
state of C ′ may be different due to the difference between the update function and the
dead-reckoning function. Figures 3b and 3c show a case where there is discrepancy
of positions between the dead-reckoned C ′ and the updated C ′ by synchronization.
Figure 3d shows another case where the real agent C has performed lane-change. The
lanes of the dead-reckoned C ′ and the updated C ′ by synchronization are different.
The discrepancy of states of proxy agent C ′ may or may not lead to a discrepancy on
agent B in the simulated future depending on their relative position, relative speed,
and the sensitivity of the driver’s behavior models. If there is a discrepancy on agent
B, the discrepancy may affect the results of the simulation.

It is not difficult to see that for a large-scale simulation, the amount of relaxation
on synchronization is influenced by the dead-reckoning function as well as traffic con-
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B C'

B C'

B C'
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time t+δ with 
synchronization
(C accelerated)

time t+δ without 
synchronization

(a)

(b)

(c)

(d)B

C'

time t+δ with 
synchronization

(C changed lane)

disprepancy between dead-rekoned C' 
and updated C' by synchronization

Fig. 3. Positions of agent B and proxy agent C′ on a boundary link seen by LPi. The real agent C of proxy
agent C′ is in LPj (i 6= j). (a) Agents are at time t. (b) Synchronization is skipped at time t+ δ. The position
of proxy agent C′ is calculated by dead-reckoning. (c) Synchronization is performed normally at time t + δ.
Proxy agent C′ is updated by synchronization. Agent C accelerated in this case. (d) Synchronization is
performed normally at time t+ δ. Agent C changed its lane in this case.

dition on the boundary links. A simple dead-reckoning function can just assume that
agents move at a constant speed until the next synchronization. It keeps the veloc-
ity of the proxy agents constant and updates the positions accordingly. In this case,
the discrepancy is correlated with how much the velocities of the real agents change.
Lookahead can be increased in the traffic conditions where the discrepancy is poten-
tially insignificant.

Traffic condition is typically characterized by traffic density, speed, and flow. Den-
sity is the number of vehicles per unit length of a roadway. Speed is the average
distance that vehicles travel per unit time. Flow is the number of vehicles passing
a reference point per unit time. Flow is the product of speed and density. Stabil-
ity of traffic describes how traffic is affected by perturbations (e.g., a sudden drop
of speed of a vehicle). A traffic is unstable if it has a tendency to oscillations of
speed, traffic waves, and stop-and-go traffic [Treiber and Kesting 2013c]. A stability
diagram which plots the different stabilities of traffic under different traffic density
ranges is shown in Figure 4 [Helbing et al. 2009]. Traffic density is denoted as ρ.
In the entire density range [0, ρmax ], there are four thresholds ρc1, ρc2, ρc3 , and ρc4
(0 < ρc1 ≤ ρc2 ≤ ρc3 ≤ ρc4 ≤ ρmax). They are the densities where traffic transitions be-
tween different stability states. In the stable range (ρ < ρc1 or ρ ≥ ρc4), perturbations
in traffic remain small and eventually dissolve. In the metastable range (ρc1 < ρ < ρc2
or ρc3 < ρ < ρc4), sufficiently small initial perturbations dissolve while larger perturba-
tions develop into persistent traffic waves. In the linear unstable range (ρc2 < ρ < ρc3),
arbitrarily small perturbations will grow through time. A stability state may not exist
for certain traffic models or parameter specifications. For example, under some config-
urations, a traffic may not transition from an unstable state to a stable state as the
traffic density increases (ρc3=ρc4=ρmax).

We consider skipping synchronization as a source of perturbation to traffic since
it exerts certain disturbance on the normal movement of vehicles. Synchronization
operations can be skipped more under stable traffic and less in unstable traffic. We
notice from Figure 4 that when traffic flow is very low, density is either less than
ρc1 or greater than ρc4. Therefore, the conceptual basis for our first heuristic is that
lookahead can be larger when flow is lower (more stable traffic) and lookahead should
be smaller when flow is higher (more unstable traffic).
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Fig. 4. Illustration of stable, linearly unstable, and metastable density regimes within flow-density dia-
grams Qe(ρ) [Helbing et al. 2009]. Traffic is stable for density ρ < ρc1 and ρ ≥ ρc4; metastable in the
intervals ρc1 < ρ < ρc2 and ρc3 < ρ < ρc4; and linearly unstable for ρc2 < ρ < ρc3. The relative position
of the thresholds with respect to the density at maximum flow Qmax (denoted as ρQmax ) influences the pos-
sible types of congested traffic patterns. (a) shows the situation for ρc2 < ρQmax , (b) shows the situation for
ρc2 > ρQmax . The traffic flows at densities ρc1, ρc2, ρc3, and ρc4 are Qc1, Qc2, Qc3, and Qc4 respectively.
Qout is the out flow of traffic.

A simplistic but effective heuristic for relaxation is proposed. It contains only one
input parameter. We first define a time window windowl,t of a link l as the longest time
period at time t in which synchronization can be skipped without affecting the traffic
flow of link l. Here, l is an outgoing boundary link from partition Gi to Gj . The window
is calculated using

windowl,t = α · 1

Ql,t
(1)

where α is a sensitivity factor, and Ql,t is the traffic flow on link l at time t. When
Ql,t = 0, windowl,t = maxwl, where maxwl is a maximum window. In fact, the physical
meaning of 1

Ql,t
is the time headway which is the time difference between two consec-

utive vehicles passing a reference point on the road. Thus, this equation can also be
interpreted as the time window on a link is proportional to the time headway on the
link. The lookahead between two LPs should be the minimum of the time windows of
all boundary links between them. Since the appointments are negotiated by both of
the synchronizing LPs, it is sufficient to consider only outgoing boundary links of the
partition for an LP. The lookahead from LPi to LPj at time t is

li,j,t = min
l∈Oi,j

(windowl,t) (2)

where Oi,j is the set of outgoing boundary links from Gi to Gj . The sensitivity fac-
tor α controls the amount of relaxation introduced. The optimal value of α is the one
that maximizes lookahead and does not distort the statistical result of the simulation
(e.g., traffic flow of roads, or trip durations of agents). The value of α is influenced by
the models used in the traffic simulation, the road network topology, and partitioning.
When a large-scale road network is simulated, discrepancy that occurs on boundary
links may propagate to the upstream and downstream directions of the traffic. There-
fore, it is not straightforward to obtain the optimal α value. An appropriate α value
can be obtained by conducting trial experiments if this heuristic is used in practical
applications.
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The lookahead determination algorithm for this relaxation method is shown in Al-
gorithm 2. The algorithm begins with checking the local agent population: if the local
agent set is empty, the lookahead is set to the minimum value of maximum windows
directly; otherwise, the outgoing boundary links are checked one by one and the min-
imum value of time windows is taken as the lookahead. If the lookahead is less than
one update interval, it will be set to one update interval. It is evident that the li,j,t is
limited by the link with the highest flow. The maximum window of l is calculated using
the minimum traveling time of l (length divided by speed limit).

ALGORITHM 2: Lookahead of synchronisation relaxed with skipping and dead-
reckoning
Data:
Ai,t set of agents in LPi at time t
Oi,j set of outgoing boundary links from Gi to Gj at time t
Ql,t traffic flow on link l at time t, l ∈ Oi,j

maxwl maximum window of link l, l ∈ Oi,j

δ an update interval
Result: lookahead from LPi towards LPj at time t, li,j,t

1 Initialize li,j,t ← maximum double;
2 if Ai,t = ∅ then
3 li,j,t ← min

l∈Oi,j

(
maxwl

)
;

4 else
5 foreach l ∈ Oi,j do
6 if Ql,t = 0 then
7 li,j,t ← min

(
li,j,t, maxwl

)
;

8 else
9 li,j,t ← min

(
li,j,t, α ·

1

Ql,t

)
;

10 end
11 end
12 end
13 li,j,t ← max(li,j,t, δ) ;

4.3. Reducing Temporal Resolution of Agent-based Models
The necessity of synchronization is originated from the update of agent-based states
near boundaries of partitions. If the update interval of those agent-based states is
increased, synchronization will be required less frequently. This inspired another way
of relaxing synchronization. A heuristic that relaxes synchronization by increasing
the update interval of agent-based models is introduced in this section. Increasing
update interval reduces temporal resolutions of agent-based models, which may alter
simulation results. The challenge is not to alter simulation results statistically.

Acceleration, lane-changing, and gap-acceptance models are the common behav-
iors that agents possess. Acceleration models describe the longitudinal movement of
agents. Agents update their accelerations every update interval and the acceleration
is kept constant within an update interval. The positions and velocities of agents are
calculated using numerical integration of the acceleration through time [Treiber and
Kesting 2013a]. Lane-changing and gap-acceptance models describe the discrete de-
cisions of an agent whether to change its lane and enter another lane [Treiber and
Kesting 2013b]. At time t, agents scan the surrounding environment and calculate
their states for time t+ δ. The update interval represents a driver’s finite attention to
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traffic, that is, how fast an agent is able to adapt to the surrounding traffic condition
[Kesting and Treiber 2008]. Update interval varies in different studies of agent-based
traffic simulation. It ranges from a fraction of a second to a few seconds [Gipps 1981;
Park and Qi 2005; Kesting and Treiber 2008; Basak et al. 2013]. It is also reported that
lengthening the update interval within a certain range does not significantly influence
the stability of traffic [Kesting and Treiber 2008].

B C'

B C'

B C'

time t

time t+2δ

update interval=δ

time t+δ

update interval=δ

disprepancy of agent B between 
resolution δ and 2δ at time t+2δ 

(a)

(b)

(c)

(d)B C'time t+2δ

update interval=2δ

Fig. 5. Positions of agent B and proxy agent C′ on a boundary link seen by LPi. (a) Agents are at time t.
(b) Agents are at time t + δ, updated from t with update interval δ. (c) Agents are at time t + 2δ, updated
from t+ δ with update interval δ. (d) Agent are at time t+ 2δ, updated from t with update interval 2δ.

Increasing update interval reduces the frequency of agents making decisions on
their movement. An illustration is given in Figure 5. The positions of agent B in two
update intervals from time t to t+ 2δ are shown in Figures 5a, 5b, and 5c. Agent B and
proxy agent C ′ are in LPi. Real agent C of the proxy agent C ′ is in LPj (i 6= j). When
the update interval equals to δ, agent B makes driving decisions twice. The accelera-
tions it exerts from t to t+ δ and from t+ δ to t+ 2δ are v̇B(t) and v̇B(t+ δ) respectively.
In comparison, Figure 5d is evolved from Figure 5a with the update interval equal to
2δ. Agent B only makes driving decisions once. It has an acceleration v̇B(t) from t to
t+2δ in Figure 5d. If v̇B(t) 6= v̇B(t+δ), there will be a discrepancy between the position
of agent B in the two cases. Note that state of agent B will be used to update its proxy
in LPj . So, LPj will see different positions of agent B under the two cases.

To minimize discrepancy, the number of agents simulated with reduced temporal
resolution should be as small as possible. We know that an agent affects other LPs
when its position is inside a buffer region. Therefore, only the agents that are inside
buffer regions are required to be simulated with a relaxed update interval (i.e., reduced
temporal resolution). The buffer regions between LPi and LPj are GB(i,j) and GB(j,i).
Denote the relaxed update interval as δi,j,t for GB(i,j) and GB(j,i) at time t, where
δi,j,t=k ·δ (k ∈ Z, k > 1). Note that δi,j,t = δj,i,t. The agents inside GB(i,j) and GB(j,i) are
simulated with update interval δi,j,t at time t. Other agents outside of buffer regions
are simulated with the original update interval δ. Since agents move in the road net-
work, when they move into GB(i,j) and GB(j,i), their update intervals are increased to
δi,j,t. When they exit the buffer regions, their update intervals are reverted to the orig-
inal value, δ. In other words, update intervals of agents will change when they move
through a boundary link between partitions.

Recall that traffic density is segmented into five ranges in the stability diagram in
Figure 4. We propose another heuristic that applies suitable relaxed update intervals
according to which ranges the traffic densities of boundary links fall in. The amount
of relaxation should be customized to stable, metastable, and unstable traffic states.
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The heuristic utilizes four density thresholds ρ1, ρ2, ρ3 and ρ4. They correspond to the
thresholds ρc1, ρc2, ρc3, and ρc4 in the stability diagram respectively. Denote the traffic
density on boundary link l at time t as ρl,t, and the relaxed update interval allowed on
boundary link l as δl,t, then δl,t is determined by the following rules:

δl,t =


δgen, if ρl,t < ρ1 or ρl,t ≥ ρ4
δmod, if ρ1 ≤ ρl,t < ρ2 or ρ3 ≤ ρl,t < ρ4
δ, otherwise

where δgen = kgen · δ and δmod = kmod · δ which satisfy kgen ∈ Z, kmod ∈ Z, and 1 <
kmod < kgen. The rationale for the relaxation heuristic is as follows:

(1) When the traffic density of a link is below ρ1, vehicles are traveling freely on the
road. When the density is higher than ρ4, the traffic is jammed. In both cases,
relevant agent-based models can have a generously relaxed update interval δgen.

(2) When the density of a link is between ρ1 and ρ2, or between ρ3 and ρ4, the traffic is
in a metastable state. A moderate amount of relaxation can be applied. Relevant
agent-based models have a moderately relaxed update interval δmod.

(3) Otherwise, the traffic density is between ρ2 and ρ3. The traffic on the link is highly
sensitive to perturbations. Drivers may tend to be more attentive to traffic, so re-
laxation should not be applied.

The values of ρ1, ρ2, ρ3, and ρ4 can be tuned to adjust the density ranges that allow
different degrees of relaxation. The values of δmod and δgen can be tuned to adjust
the update intervals for different degrees of relaxation. Note that the stable state or
metastable state may not exist when density is high (i.e., ρ3=ρ4=ρmax), which depends
on the traffic models and parameter values used in the simulation. The relaxed update
interval δi,j,t should take the minimum value of the allowed relaxed update intervals
on all boundary links between Gi and Gj . Thus

δi,j,t = min
l∈Oi,j∪Oj,i

(δl,t) (3)

The calculation of the relaxed update interval δi,j,t is shown in Algorithm 3. δi,j,t
is initialized to δgen. Then traffic densities of the outgoing boundary links from Gi to
Gj are checked one after another against the four density thresholds. The minimum
update interval is taken. After this, LPi sends δi,j,t to LPj and receives δj,i,t from LPj .
We need to ensure that relaxation should not be applied too much for any boundary
link. Thus, the smaller one of δi,j,t and δj,i,t is taken as the resultant relaxed update
interval. All agents inside the buffer regions GB(i,j) and GB(j,i) now have update inter-
val δi,j,t (now δi,j,t=δj,i,t). It is evident that relaxation is limited by the boundary link
that allows the least relaxation. The relaxed update intervals may be different for the
buffer regions between different LP pairs. Algorithm 3 is run by every LP for every
neighboring LP.

The relaxed update intervals need to be re-evaluated when the traffic densities of
links have changed as the simulation progresses. One way to do so is to periodically
check the traffic densities of the links in the road network, and trigger Algorithm 3 if a
significant change is detected. In this way, the suitable amount of relaxation between
LP pairs can be automatically adjusted.

The lookahead determination for this relaxation heuristic is similar to the case with-
out relaxation described in Section 3.3. It is shown in Algorithm 4. If there is any agent
inside Gj,i or ready for migration from LPi to LPj , the lookahead is set to δi,j,t. With
relaxed update intervals, δi,j,t will always be greater than or equal to δ, as shown in
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ALGORITHM 3: Relaxed update interval δi,j,t by LPi

Data:
Ai,t set of agents in LPi at time t
Oi,j set of outgoing boundary links from Gi to Gj at time t
ρl,t traffic density on link l at time t, l ∈ Oi,j

δ original update interval
δgen update interval when generous relaxation is applied
δmod update interval when moderate relaxation is applied
ρ1, ρ2, ρ3, ρ4 density thresholds separating different degree of relaxation, ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4
Result: relaxed update interval in buffer regions GB(i,j) and GB(j,i), δi,j,t

1 Initialize δi,j,t ← δgen;
2 if Ai,t 6= ∅ then
3 foreach l ∈ Oi,j do
4 if ρl,t < ρ1 ∨ ρl,t ≥ ρ4 then
5 δi,j,t ← min(δi,j,t, δgen);
6 else if ρ1 ≤ ρl,t < ρ2 ∨ ρ3 ≤ ρl,t < ρ4 then
7 δi,j,t ← min(δi,j,t, δmod);
8 else
9 δi,j,t ← δ;

10 end
11 end
12 end
13 send δi,j,t to LPj , and receive δj,i,t from LPj ;
14 δi,j,t ← min(δi,j,t, δj,i,t)

Algorithm 3. The effectiveness of this relaxation method has been investigated with
experiments which are presented in the next section.

ALGORITHM 4: Lookahead of synchronisation relaxed with reduced temporal res-
olution
Data:
Ai,t set of agents in LPi at time t
Mi,j,t set of agents migrating from LPi to LPj

Si,j,t set of shared states that should be sent by LPi to LPj

∆tnewi,j minimum time for any new agent to travel to the buffer region GB(j,i)

∆texisti,j minimum time for any agent in Ai,t to travel from its current position to buffer
region GB(j,i)

Result: lookahead from LPi towards LPj at time t, li,j,t

1 Initialize li,j,t ← maximum double;
2 if Ai,t = ∅ then
3 li,j,t ← ∆tnewi,j ;
4 else if Mi,j,t = ∅ ∧ Si,j,t = ∅ then
5 li,j,t ← min(∆texisti,j , ∆tnewi,j );
6 else
7 li,j,t ← δi,j,t;
8 end
9 li,j,t ← max(li,j,t, δi,j,t) ;
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5. EXPERIMENTS AND DISCUSSION
5.1. Experiment Set-up
Experiments were conducted using a real-world road network. It is the road network
of Singapore city consisting of approximately 80,000 links and 40,000 nodes in our
representation. The trips of agents are derived from the data of the Household Inter-
view and Travel Survey (HITS). No traffic lights are included in the simulation due
to lack of traffic lights data. The lengths of vehicles are 3 meters. However, no vehicle
component models are included. Agents have a front sensing range of 40 meters and
a back sensing range of 20 meters. The traffic of 19 hours from 5 am to the midnight
of the day is simulated. The update interval is 0.5 seconds. The parallel simulation
is partitioned using a dynamic load-balancing algorithm described in [Xu et al. 2014]
which uses METIS as the graph partitioning algorithm [Karypis and Kumar 1999]. A
partitioning of Singapore road network into four partitions is shown in Figure 6. Dif-
ferent intensities of gray represent different partitions. Work load of LPs is checked
every 10 minutes of simulation time. A repartitioning operation will be triggered if the
imbalance exceeds the threshold of 500 agents. During repartitioning, the partitioning
algorithm attempts to cut the links with lower traffic flow. This is to maximise the
relaxation. The simulation is implemented using C++. Communication between LPs
is realized using OpenMPI. The experiments were run on a cluster that is composed
of three compute nodes each of which has the following hardware configurations: two
Octacore Intel(R)Xeon(R) CPUs with 2.60 GHz clock frequency (i.e., 16 physical pro-
cessors), and 192 GB RAM. The compute nodes are connected via 56Gbps InfiniBand.

Fig. 6. Singapore road network partitioned into four partitions.

5.2. Results
5.2.1. Amount of relaxation. Denote MA synchronization relaxed using dead-reckoning

as MA-DR, and MA synchronization relaxed using lower temporal resolutions as MA-
LR. We first need to find suitable parameter values (i.e, α for MA-DR, ρ1, ρ2, ρ3, ρ4,
δmod, and δgen for MA-LR) for the relaxation heuristics while maintaining equivalence
of results between simulations with and without relaxation. We experimented on a
series of potential parameter values. The sequential simulation is run twelve times
with different random seeds, as the referential group. Then the parallel simulation is
run with different parameter values and different number of LPs. For each parameter
value set and each number of LPs, the parallel simulation is run twelve times as one
group using the same twelve random seeds as in the sequential group. Statistical tests
are conducted to make sure that the parallel simulation with relaxed synchronization
has equivalent results as the sequential simulation. The null hypothesis of the tests,
H0, is that the simulation results of the parallel simulation and the sequential sim-
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ulation in terms of the average trip duration of agents are equivalent. Fail to reject
the hypothesis means that there is insufficient evidence to prove that the results from
both simulations are different.

The statistical test used is the Bootstrap method. Suppose the sequential group
is A={a1, a2, . . . , a12}, and a parallel group is B={b1, b2, . . . , b12}. The first step of
the Bootstrap method is resampling. In each resampling, two new sample groups
A′={a′1, a′2, . . . , a′12} and B′={b′1, b′2, . . . , b′12}, where a′i∈A and b′i∈B, are obtained. Then
the difference of the means of the two resampled groups is calculated by d=A′−B′.
Resampling is performed 1000 times. Then we obtain 1000 values of the difference of
means which follow a certain distribution. Using a 95% confidence interval, H0 will
be rejected if zero falls outside of the percentile range between 2.5% and 97.5%. Oth-
erwise, H0 could not be rejected. Tables I and II show the statistical test results. The
values of δmod and δgen are fixed to 1.0s and 1.5s. They are reasonable values for the
agent-based models and their parameter set-ups used in this experiment.

Table I. Statistical test of equivalence using different sensitivity factor val-
ues in MA-DR

8 LPs 16 LPs 32 LPs
1.0 (rejected) 1.0 (rejected) 1.0 (rejected)
0.4 (rejected) 0.4 (rejected) 0.4 (rejected)

0.3 (not rejected) 0.3 (rejected) 0.3 (rejected)
0.2 (not rejected) 0.2 (rejected)

0.1 (not rejected)
0.15 (not rejected)

Table II. Statistical test of equivalence using different traffic density threshold values in MA-LR

Tested parameter groups (in the order of ρ1, ρ2, ρ3, ρ4)*, δmod=1.0s, δgen=1.5s
8 LPs 16 LPs 32 LPs

50, 100, 250, 333 (rejected) 50, 100, 250, 333 (rejected) 50, 100, 250, 333 (rejected)
50, 100, 333, 333 (rejected) 50, 100, 333, 333 (rejected) 50, 100, 333, 333 (rejected)

25, 100, 333, 333 (not rejected) 25, 100, 333, 333 (rejected) 25, 100, 333, 333 (rejected)
25, 50, 333, 333 (rejected) 25, 50, 333, 333 (rejected)

25, 30, 333, 333 (not rejected) 25, 30, 333, 333 (rejected)
25, 25, 333, 333 (not rejected)

*the unit is vehicle/km/lane

In Tables I and II, the order of the parameter values that are experimented is from
top down. Some estimated values are tried first, and if the statistical test is rejected,
the values are decreased and tried again. According to Table I, the suitable sensitivity
factors in MA-DR are 0.3, 0.2, and 0.15 for 8, 16, and 32 LPs, respectively. For MA-LR,
the suitable parameter values are boldfaced in Table II. There, ρ3=ρ4=ρmax=333 for all
various numbers of LPs. We notice that when there are more partitions, the parameter
values for both MA-DR and MA-LR are smaller. This is because the partitioning of the
simulation also influences the effect of relaxation. More partitions lead to more total
boundary links; thus, there will be less opportunities for synchronization relaxation.
It is worth to notice that it is impractical to traverse all possible parameter values to
look for the optimum for relaxation. Thus, the parameter values used are conservative
estimates.

5.2.2. Running time and speed-up. Denote barrier synchronization as barrier, and MA
synchronization without relaxation MA. We compare the running time and speed-up
of the parallel simulation using different synchronization methods: barrier, MA, MA-
DR, and MA-LR. The parallel simulation is run with various number of LPs: 8, 16, and
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32. LPs are evenly distributed in the three compute nodes and each LP is bonded to
one physical CPU core. The running time and speed-up of the parallel simulation are
shown in Figure 7.
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Fig. 7. Running time of the parallel simulation using different synchronization methods.

From Figure 7, we can observe that both MA-LR and MA-DR relaxation methods
have reduced the running time. The least running time and greatest speed-up are
achieved with 16 LPs for all the methods. There is no significant difference between
the running time of MA-LR and MA-DR for 8 LPs and 32 LPs. The running time of MA-
DR is slightly less than MA-LR for 16 LPs. The performance gain of the two heuristic is
the result of the reduced communication between LPs. The number of synchronization
messages exchanged during the simulation is shown in Figure 8.
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Fig. 8. Number of synchronization messages exchanged in the parallel simulation using different synchro-
nization methods.

Both relaxation heuristics have reduced synchronization messages by a large per-
centage. Since the relaxation parameter values are conservative estimates, the speed-
ups gained are also conservative measures. The optimum speed-up should be larger. A
concrete conclusion cannot be drawn on which heuristic of the two has a better speed-
up either. In theory, the second heuristic possesses more input parameters, and thus
is more flexible in fine-tuning the relaxation.

A question may rise here is whether it is possible to simply skip synchronization
operations or reduce temporal resolutions without considering traffic flow or density.
We have conducted experiments using the same set-up of road network and agent trips
as the previous experiments. Relaxation is achieved by synchronizing LPs every two
update intervals with (a) skipping synchronization operations, and (b) doubling the up-
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date interval of agents in buffer regions. In both scenarios, the simulation result (i.e.,
average trip duration of agents) is distorted. Based on this observation, considering
traffic flow or density is necessary when synchronization is relaxed.

5.2.3. Algorithm Overhead. MA-DR does not incur notable overhead, since the traffic
flow can be easily tracked during the simulation. Algorithm 3 which determines the
suitable relaxed update interval is triggered periodically during the simulation. A re-
evaluation is performed every 30 seconds of simulation time in the experiments. 30
seconds is a conservative estimation of the interval within which traffic densities of
links may change. Thus with a 19 hours simulation, the re-evaluation is performed
2280 times. The overhead of running the algorithm is shown in Table III.

Table III. Total time spent on Algorithm 3 and the average time per invocation

8 LPs 16 LPs 32 LPs
Total (second) 9.8 10.1 15.6

Average (second) 0.0043 0.0044 0.0068

The overhead of the algorithm is not significant compared to the total running time
of the simulation. Because the re-evaluation is performed every 30 seconds, if there
were any emergency, such as vehicle breaking down, the resolution could be adapted
to the situation in less than 30 seconds. The frequency of re-evaluations can be ad-
justed according to the dynamics of traffic flow and density. If it is known prior to the
simulation that traffic flow and density will not vary much during the simulation, the
re-evaluation can be less frequent.

6. CONCLUSION AND FUTURE WORK
Large-scale agent-based road traffic simulation is a useful tool for evaluating new in-
frastructure or control strategies of road traffic. One of the challenges in developing
large-scale agent-based traffic simulation is the computational requirement. Parallel
computing helps to conquer the challenge by utilizing more computational resources.
However, existing synchronization methods of parallel agent-based traffic simulation
are inefficient.

We proposed two heuristics to relax the synchronization of parallel agent-based road
traffic simulation without altering simulation results statistically. The first relaxation
heuristic ignores some data dependencies and skips synchronization operations. The
lookahead at simulation run-time is determined using traffic flow of boundary links.
The second relaxation heuristic reduces the temporal resolution of agent-based mod-
els for the agents at boundaries of partitions so as to reduce data dependencies. The
amount of relaxation of the two heuristics is limited by the equivalence of simulation
results. Experiments have shown that the two approaches are both able to increase
lookahead of LPs and improve speed-up of the parallel simulation.

We suggest three directions of future work. Firstly, the second heuristic can be im-
proved. When the temporal resolution of some models is reduced, input parameters
of the models can be adjusted to minimize the difference of model outputs between
different resolutions. Using this approach, lookahead may be further increased. Alter-
natively, a mesoscopic or macroscopic traffic model can replace the model with reduced
temporal resolution. If the models with coarser resolution are calibrated, statistical
tests may not be required to check simulation results. This makes the relaxation eas-
ier for practical use. Secondly, the heuristics can be tested for simulating emergency
situations, for example, when there is a traffic accident or break-down. It is interesting
to investigate whether the heuristics are responsive to sudden changes of traffic condi-
tions in simulation. Thirdly, the relaxation methods can be made aware of conditions of
the underlying system resources (e.g., CPU and memory usage, latency and available
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bandwidth of interconnection network). The amount of relaxation can then be tuned
to fit certain simulation execution environment.

APPENDIX
This appendix describes the three driver behavior models used in this study.

Acceleration Model
Intelligent Driver Model (IDM) model is a car-following model that describes the dy-
namics of the positions and velocities of single vehicles [Treiber et al. 2000]. It is a
time-continuous car-following model. For a vehicle, the acceleration is assumed to be
a continuous function of its velocity v, the gap s between the vehicle and the vehicle
ahead, and the velocity difference ∆v to the vehicle ahead:

v̇ = a

[
1−

(
v

v0

)4

−
(
s∗(v,∆v)

s

)2
]

(4)

where v0 is the desired velocity of the vehicle, and a is the maximum acceleration of the
vehicle. The expression consists of two terms: a free road acceleration term v̇free(v) =
a[1 − (v/v0)4], and a braking deceleration term v̇brake(s, v,∆v) = −a[s∗(v,∆v)/s]2. The
deceleration term dominates when the vehicle is too close to the vehicle ahead. It de-
pends on the ratio between the effective desired minimum gap and the actual gap s.
The desired minimum gap is determined by:

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

(5)

where s0 is a safe distance to the vehicle ahead, T is the minimum safe time gap,
and b is the comfortable deceleration of the vehicle (b has a positive value). When
there is no vehicle ahead in the same lane, the deceleration term will be excluded from
the acceleration model. IDM is a collision-free model due to the deceleration term.
When the city traffic is simulated, there are always roads with different speed limits
connecting with each other. If it happens that the velocity of a vehicle is greater than
the desired velocity which is usually smaller than or equal to the speed limit, the free
acceleration is replaced by:

v̇free(v) = −b
[
1−

(v0
v

)4]
(6)

The velocities of vehicles are obtained by numerical integration of the acceleration
over time. The positions of vehicles are calculated with the equations of motion. There
is approximation error in the integration while the continuous model IDM is integrated
by discrete time-steps (update intervals). The acceleration is commonly assumed to be
constant within an update interval. The velocity and position of a vehicle at the end
of an update interval are v(t + δ) = v(t) + v̇(t) · δ and x(t + δ) = x(t) + v(t)δ + 1

2 v̇(t)δ2,
where v(t) and x(t) are the velocity and position of the vehicle at time t, and δ is the
update interval of the vehicle.

The size of update intervals should be as small as possible. However, a smaller up-
date interval is computationally inefficient. The update interval is typically set be-
tween 0.1 seconds and 0.2 seconds [Kesting et al. 2008]. When the size of update inter-
val is large (for example, 0.5 seconds or 1 second), the velocity at the end of an update
interval can be greater than the speed-limit. The road network used in our experiment
consists of a large number of links with various speed limits. Due to the large update
interval we use (0.5 seconds), the acceleration output from IDM sometimes results in
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the velocity of a vehicle greater than the speed limit or less than 0. Therefore, the
output of IDM is monitored and v(t + δ) is bounded to be greater than or equal to 0
and less than or equal to the speed limits of roads. Collisions of vehicles may also oc-
cur under some traffic conditions. There is also a collision detection mechanism. If two
vehicles are detected to be overlapping, the vehicle behind will be forced to come to
a halt. Another modification to the original IDM model is the introduction of sensing
range. Agents only take actions when neighboring vehicles are in their sensing ranges,
which is not considered in the IDM model. This is necessary for controlling the data
required for fulfilling data dependencies of LPs.

Lane-changing Model
The lane-changing model outputs a decision whether to stay in the current lane or
change to an alternative lane. We develop a new lane-changing model which is shown
in Figure 9. The lane-changing decision starts with checking whether an alternative
lane exists. All the lanes that belong to the route of an agent are assigned weights.
If there is a turn or a junction, the lanes that allow turning are assigned greater
weights than those that do not allow turn. Therefore, agents should tend to change
to lanes with higher weights. When multiple alternative lanes exist, the lane with
the higher weight is chosen as the target lane. Similar to other lane-changing models,
there are discretionary lane-changing and compulsory lane-changing. If the position
of an agent is within a certain distance to a turn or a junction, it makes a compul-
sory lane-changing decision. The agent changes its lane if the target lane has a higher
weight than the current lane and it is safe to perform lane-changing according to a
gap-acceptance model (presented in the next subsection of this appendix). If the agent
is outside the distance to a turn or a junction, it makes a discretionary lane-change
decision. The decision is based on whether the agent is able to gain an acceleration
benefit after a lane change. The weights of the lanes do not play a role here. The agent
first checks whether there is a slower preceding vehicle blocking its way in the cur-
rent lane. If there is none, the agents stay in the current lane. If there is one, the
agent checks the target lane to see if it can get an acceleration benefit. If it can ob-
tain a higher acceleration, it will check whether there is enough space for it to change
without causing a collision. If so, the agent changes to the target lane. Otherwise, it
remains in the current lane.

Gap-acceptance Model
The gap-acceptance model here describes the judgment of a driver whether the gap
between a lead vehicle and lag vehicle in the target lane allows a safe lane change. It
is a new model.

There are a lead gap and a lag gap between the subject vehicle and the lead and
lag vehicles, respectively, which are shown in Figure 10. The lead gap and the lag gap
should ensure that no collision happens if the subject vehicle changes its lane.

Denote the lead gap as slead, the lag gap as slag, the velocity of the lead vehicle as
vlead, the velocity of the lag vehicle as vlag, and the velocity of the subject vehicle as v.
To accept the gaps in the target lane, the following two conditions must be satisfied:

slead ≥ s0 +
δ

2
· (v + vmax − vlead) (7)

slag ≥ s0 +
δ

2
· (vlag + vlagmax

− v) (8)

where vlagmax
and vmax are the maximum velocities that the lag vehicle and the subject

vehicle can reach at the end of the update interval, respectively. The first condition
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depicts that the lead gap should be at least as big as the safe gap even when the
lead vehicle comes to an emergency stop and the subject vehicle accelerates with the
maximum acceleration. The second condition depicts that the lag gap should be at
least as big as the safe gap even when the subject vehicle comes to an emergency stop
and the lag vehicle accelerates with the maximum acceleration.
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