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Abstract—Knowledge of the ego-vehicle's motion state is essen-
tial for assessing the collision risk in Advanced Driver Assistance
Systems (ADASs) or autonomous driving. Vision-based method
for estimating the ego-motion of vehicle, i.e. visual odometry,
faces a number of challenges in uncontrolled realistic urban
environments. Existing solutions fail to achieve a good trade-
off between high accuracy and low computational complexity. In
this paper, a framework for ego-motion estimation that integrates
runtime-efficient strategies with robust techniques at various core
stages in visual odometry is proposed. Firstly, a pruning method
is employed to reduce the computational complexity of KLT
feature detection without compromising on the quality of the
features. Next, three strategies, i.e. smooth motion constraint,
adaptive integration window technique and automatic tracking
failure detection scheme, are introduced into the conventional
KLT tracker to facilitate generation of feature correspondences
in a robust and runtime efficient way. Finally, an early RANSAC
termination condition is integrated with the Gaussian-Newton
optimization scheme to enable rapid convergence of the motion
estimation process while achieving robustness. Experimental
results based on the KITTI odometry dataset show that the
proposed technique outperforms state-of-the-art visual odometry
methods by producing more accurate ego-motion estimation in
notably lesser amount of time.

Index Terms—Visual odometry, ego-motion, collision avoid-
ance, feature detection, feature tracking, motion estimation,
ADASs, autonomous vehicles

I. INTRODUCTION

THE knowledge of ego-vehicle's motion state relative to
the road serves as the foundation for assessing the risk

of collision in Advanced Driver Assistance Systems (ADASs)
and autonomous driving. Conventional means of obtaining the
ego-motion of the vehicle rely on Inertial Measuring Units
(IMUs) or Global Positioning System (GPS). However, IMUs
cannot provide all the necessary information like the pitch
angle and the roll rate [1], while GPS cannot be relied upon
to obtain the vehicle's ego-motion in GPS-denied environment
e.g. under bridges or urban jungles [2]. As such, vision based
methods for ego-motion estimation are becoming increasingly
popular as they overcome the drawbacks of IMUs and GPS.
In addition, camera-based systems offer other advantages e.g.
ease of maintenance and integration into other functionality
modules, and reduced cost [3]. Ego-motion estimation that
relies solely on vision-based sensing is referred to as visual
odometry [4].

Visual odometry in the context of external traffic envi-
ronment faces huge challenges. Firstly, unlike the indoor
environment, the external traffic scene is totally uncontrolled.
The scene can be cluttered and contains a lot of moving
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objects. The scene can also be subjected to inconsistent il-
lumination. As such, visual odometry algorithms must be able
to work robustly under such challenging situations. Secondly,
computing systems in vehicles are embedded systems with
restricted computational resources. The proposed algorithm
should therefore be of low computational complexity to allow
for in-vehicle deployment.

In this paper, a framework for robust and runtime-efficient
visual odometry is proposed. The proposed framework inte-
grates runtime-efficient strategies with robust techniques at
each of the core stages in visual odometry. Specifically, a
pruning method is employed to reduce the computational
complexity of KLT feature detection without compromising on
the quality of detected features. Ego-motion prior is leveraged
on to determine a better initial position for KLT tracking
process to increase the chance for correct convergence, which
significantly increases the proposed technique's robustness in
challenging environments. The robustness of the proposed
technique is further enhanced by adopting an automatic
tracking failure detection scheme during feature tracking. In
addition, an adaptive and small integration window for each
feature is set during tracking based on its distance from
the ego-vehicle. This significantly reduces the computational
complexity. Finally, we apply an early RANSAC termination
condition in the Gaussian-Newton based motion estimation
process to further increase the algorithmic robustness and
reduce the algorithmic computation time. Experimental results
based on the KITTI dataset show that the proposed technique
outperforms state-of-the-art visual odometry methods by pro-
ducing more accurate ego-motion estimation in notably shorter
amount of time.

This paper is organized as follows: Section II reviews the
existing works in visual odometry. Section III formulates
visual odometry as a mathematical minimization problem. The
proposed algorithm is presented in Section IV. A comprehen-
sive evaluation of the proposed method with existing state-of-
the-art methods using the well-known KITTI odometry dataset
is presented in Section V, and Section VI concludes the paper.

II. RELATED WORKS

The core stages of visual odometry typically consist of
feature correspondences setup that relies on feature detection
and feature tracking, and motion estimation that solves a math-
ematical optimization problem on the set of correspondences
[5], [6].

A. Feature Correspondence Setup

In the field of visual odometry, point features rather than
edge features are preferred since they can be accurately posi-
tioned [6]. Point features consist of corner and blob. Popular
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corner feature detectors are Harris [7], KLT [8], FAST [9],
or even much simpler maxima and minima of Sobel filter
response [10], etc. Popular blob feature descriptors include
SIFT [11], SURF [12], FREAK [13], BRIEF [14], etc. Once
features are extracted, they will be tracked or matched to find
their correspondences across frames. The former like Harris
and KLT aims to detect features in the first frame and track
them in the second frame using local search techniques. The
latter like SIFT, SURF aims to detect features independently
in both of the images and matches them based on a certain
similarity measure.

The extraction of reliable feature correspondences across
frames in realistic environments plays a deterministic role in
the success of visual odometry [15]. In addition, as illustrated
in [10], [15], the computational hot spots of visual odometry
lies in feature correspondences extraction.

B. Motion Estimation

Existing techniques for motion estimation can be divided
into two categories [5]: monocular vision based [3], [4],
[16]–[19] and stereo vision based [4], [10], [15], [20]–[23],
depending on the dimension of the features. In the first case,
since the features are encoded in 2D, a relative scale factor
needs to be determined using methods like trifocal tensor [4].
At least 5 feature pairs are required to obtain the solution
[4], which is found by determining the transformation that
minimizes the re-projection error of the triangulated points
in each image. For stereo vision, the 3D scene structure can
be directly reconstructed through triangulation of the stereo
rig. The minimal-case solution involves 3 non-collinear cor-
respondences [4]. When feature correspondences are specified
in Euclidean space, i.e. 3D-to-3D, the solution is found by
determining the alignment transformation that minimizes the
distances between the correspondences. Instead of minimizing
the residuals in Euclidean space, a better solution is to work
in the image space (i.e. 3D-2D) [23]. In this case, the solution
is determined by minimizing the re-projection error.

In order to increase the robustness of motion estimation,
robust estimation methods like M-estimations [24], RANSAC
[25], [26] have been utilized to increase the accuracy of motion
estimation in the presence of noisy or erroneous feature corre-
spondences. In addition, visual odometry is a dead-reckoning
algorithm and is prone to error accumulation over time [15].
Therefore, the estimated camera pose can easily drift from
the real path. To deal with this problem, some works combine
other sensor data from GPS [27] or IMUs [28]–[30] to improve
the positioning accuracy. Another popular solution is the bun-
dle adjustment algorithm [28], [31] that imposes geometrical
constraints over multiple frames. However, this approach is
time consuming. Recently, [15] proposes a technique to reduce
the motion drift by introducing an augmented feature set that
contains the accumulated information of tracked features over
all frames.

C. Main Contributions of Our Work

The existing solutions fail to achieve a good balance be-
tween high accuracy and low computational complexity [32].

For example, the work in [10] is able to achieve real-time
performance at the expense of sacrificing estimation accuracy.
On the contrary, the work in [15] achieves high estimation
accuracy, but is time consuming. The proposed work aims to
bridge this gap with a solution for visual odometry that can
produce accurate results in short computation time. Hence,
an ego-motion estimation framework that integrates suitable
runtime-efficient strategies with robust techniques at various
core stages in visual odometry is proposed. The main contri-
butions of the proposed method are as follow:

1) A fast corner detector with pruning technique that re-
duces the computational complexity of detecting high
quality corner features.

2) A robust and compute-efficient KLT tracker that em-
ploys smooth motion constraint, adaptive window tech-
nique and automatic tracking failure detection scheme.

3) A robust and fast motion estimation method that is based
on Gaussian-Newton optimization scheme with early
RANSAC termination condition.

4) The above contributions are integrated into a framework
for fast and robust visual odometry. Experimental results
on the widely known KITTI evaluation platform [32]
demonstrate that the proposed framework can produce
accurate ego-motion estimation. In terms of accuracy,
the proposed algorithm is ranked highly in the KITTI
odometry evaluation platform. In addition, the proposed
algorithm performs notably faster than most of the
techniques in the KITTI odometry evaluation platform.

III. PROBLEM FORMULATION

A camera installed on a moving vehicle is subjected to six
degrees of freedom (DOF). That is, it can be translated in three
perpendicular x-y-z axes, denoted as (tx, ty, tz) (in meter), and
rotated about the three axes, denoted as (rx, ry, rz) (in radian).
The goal of visual odometry is to obtain the value of X =
(tx, ty, tz, rx, ry, rz)T at each discrete time instance.

The motion of a camera installed on the moving vehicle
from the previous frame In−1 to current frame In can be
represented by the matrix Mn ∈ R4∗4 as shown in Eq. 1:

Mn =

[
ROn trn

0 1

]
(1)

ROn = cy ∗ cz −cy ∗ sz sy
sx ∗ sy ∗ cz + cx ∗ sz −sx ∗ sy ∗ sz + cx ∗ cz −sx ∗ cy
−cx ∗ sy ∗ cz + sx ∗ sz cx ∗ sy ∗ sz + sx ∗ cz cx ∗ cy


(2)

trn = [tx ty tz]T (3)

sx = sin(rx); cx = cos(rx)

sy = sin(ry); cy = cos(ry)

sz = sin(rz); cz = cos(rz)

(4)

The camera pose Cn from the point of initialization can
be obtained by concatenating all the transformations Mn as
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Fig. 1. Overview of the proposed visual odometry framework. The proposed framework consists of two stages. The first stage extracts feature correspondences
by applying a pruning technique to the KLT corner detector for feature detection and improving the KLT feature tracker with three strategies for feature
tracking. The second stage estimates motion parameters based on Gaussian-Newton optimization scheme (GNO) which is integrated with the early RANSAC
termination condition.

shown in Eq. 5. Tn in Eq. 6 represents the scene motion,
which is the inverse of the camera motion.

Cn =

n∏
i=1

Mi (5)

Tn = M−1n =

[
Rn tn
0 1

]
(6)

Assume that the set of static points (features) in Eu-
clidean space observed in frame In−1 are {pin−1 =
(xin−1, y

i
n−1, z

i
n−1)

T |i = 1, 2, . . . , k} and their correspon-
dences in frame In are {pin = (xin, y

i
n, z

i
n)

T |i = 1, 2, . . . , k}.
Then the relationship between a pair of correspondences pi

n−1
and pin through Tn is shown in Eq. 7:

pi
n = Rn ∗ pin−1 + tn (7)

Therefore the ego-motion parameters Xn =
(tx, ty, tz, rx, ry, rz)T can be found by minimizing the
residual function in Eq. 8, where wi is the weighting factor
that denotes the contribution of point i to the least square
solution.

E = arg min
{Xn}

k∑
i=1

wi‖pin − Rn ∗ pin−1 − tn‖2 (8)

Eq. 8 calculates the residual in Euclidean space. However,
as discussed in [23], [33], stereo triangulation error can be
highly anisotropic and correlated. As such, a recommended
approach is to compute the residual in image space, where the
noise level is similar for all components of the measurement
vector:

E = arg min
{Xn}

k∑
i=1

wi‖mi
n − h(Rn ∗ g(mi

n−1) + tn)‖2 (9)

Where mi
n = (uin, v

i
n, d

i
n)

T is the projection of pin in the
image frame In. g is the triangulation equation, while h =
g−1 is the projection function. b and f are the corresponding
baseline and focus length.

pi
n = g(mi

n) =

 xin = (uin − u0) ∗ b/din
yin = (vin − v0) ∗ b/din
zin = f ∗ b/din

(10)

mi
n = h(pin) =


uin = f ∗ xi

n

zi
n
+ u0

vin = f ∗ yi
n

zi
n
+ v0

din = f ∗ b/zin

(11)

The aim of feature detection is to identify a set of points
{mn−1} in frame In−1, while the aim of feature tracking is
to identify {mn}, which are the correspondences of {mn−1}
in frame In. Motion estimation computes the ego-motion
parameters Xn = (tx, ty, tz, rx, ry, rz)T by solving Eq. 9.

IV. PROPOSED ALGORITHM

As highlighted in [15], the extraction of reliable feature
correspondences that correspond to the static scene plays
an essential role in the success of visual odometry. The
KLT feature tracker [8], which consists of corner feature
detection and tracking, is a widely accepted method for feature
correspondence extraction [22], [34]–[37]. Although KLT has
been shown to be one of the best feature tracker, direct
adoption of KLT can lead to inaccurate tracking results in
highly complex urban environments as will be shown in the
following discussion and experimental results. In addition,
KLT is time consuming [38]. On the other hand, the extracted
feature correspondences may come from self-moving objects.
Direct motion estimation based on feature correspondences
that are contaminated with self-moving or inaccurately tracked
features will lead to inaccurate results.

The proposed technique aims to overcome the limitations
of existing solutions by integrating strategies to achieve robust
visual odometry at low computational complexity at various
core stages of the ego-motion estimation framework. Fig.1
shows the overview of the proposed framework. Taking the
image sequence from the stereo rig and the corresponding
disparity map as the input, the proposed visual odometry
framework consists of the following two stages: 1) Feature
correspondences setup, and 2) Motion estimation.

The first stage incorporates techniques for robust and low-
complexity feature correspondences setup. This stage further
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consists of the following two steps: (i) Low-complexity corner
detection with pruning, and (ii) Robust and low-complexity
feature tracking using improved KLT tracker. For each time
step n, corner detection is applied on the previous left image
In−1 to extract a set of corner features {mn−1} using a pruning
technique. The computational complexity of corner detection
is significantly reduced due to the pruning process without
compromising on the quality of the extracted corner features.
Next, for each feature mi

n−1 in {mn−1}, its correspondence
mi

n in current left image In is identified using an improved
KLT tracker. Smooth motion constraint is utilized to determine
a better starting point for KLT tracking process, which leads to
fast and accurate convergence during the tracking. In addition,
an adaptive window technique, which is based on the distance
of the feature from the ego-vehicle and the smooth motion
constraint, is employed to track each feature. This significantly
reduces the runtime complexity. Finally, an automatic tracking
failure detection scheme is adopted during feature tracking to
further increase the robustness of the method.

The second stage incorporates techniques for robust and
fast motion estimation. Given the set of feature correspon-
dences {mn−1} and {mn}, the motion parameters Xn =
(tx, ty, tz, rx, ry, rz)T are computed by solving the function
formulated in Eq. 9 using Gaussian-Newton method. In order
to increase the robustness and also decrease the computation
time, RANSAC with an early termination condition is enabled
to remove the outliers that do not exhibit coherent movement.

In the following sub-sections, detailed descriptions of each
stage for the proposed framework are provided.

A. Low Complexity Corner Detection with Pruning

In order to detect corners, KLT computes a corner response
λ2 for each pixel:

λ2 =
(a+ c)−

√
(a− c)2 + 4b2

2
(12)

λ2 corresponds to the minimum eigen-value of the matrix
A, which approximates a local auto-correlation function:

A =

[ ∑
w α(x)I

2
x

∑
w α(x)IxIy∑

w α(x)IxIy
∑

w α(x)I
2
y

]
=

[
a b
b c

]
(13)

Where Ix and Iy are the horizontal and vertical gradients
respectively, and α(x) is the weight function, which can be a
simple box window or Gaussian window. The eigen-values λ1
and λ2 of A (where λ1 >= λ2) represent the two dominant
directions of intensity change.

A threshold is applied on the corner response λ2 to remove
the obvious non-corners. The rest of the pixels are then ranked
in descending order of their corner response and the pixels
with the highest corner response are selected as corners after
applying non-maximal suppression.

In order to identify good features, KLT computes the
complex corner measure λ2 for each pixel and chooses the
ones with high λ2 value. However, the obvious non-corners,
i.e. the smooth and low curvature regions, constitute a large
majority of the image in most cases. This incurs a lot of

computational redundancies when the complex corner measure
for the obvious non-corners are computed. As such, a pruning
method to select only the most relevant features for tracking
is employed. The pruning method is explained as follows.

Expanding Eq. 12, we obtain:

λ2 =
(a+ c)−

√
(a− c)2 + 4b2

2

=
(a+ c)−

√
(a+ c)2 − 4(ac− b2)

2

(14)

It can be observed that λ2 is heavily influenced by the term
(ac−b2) as the two (a+c) terms get cancelled out. Hence the
goal of identifying pixels with large λ2 can be simplified as
one that identifies pixels with large (ac − b2). In addition, in
order to maximize (ac− b2), the first term ac should be large.
In other words, pixels that have small ac values are less likely
to be good features.

Based on the analysis above, when applying an appropriate
threshold to discard pixels with low ac values, the remaining
pixels contain the final good KLT corners. Fig. 2(b) shows
the corner candidates selected by applying threshold = 0.05 *
max(ac).

In addition, the I2x and I2y terms in the a and c value
can be approximated with the absolute values of Ix and Iy
respectively as follows:

a′ =
∑
|Ix|; c′ =

∑
|Iy| (15)

This eliminates the multiplication operations involved in the
squared gradients. As such, pixels that have high a′c′ values
will also have high ac values and therefore are highly likely
to be good KLT corners. Fig. 2(c) shows that the a′c′ map
does not lose the distinctive corner regions. In addition, as
shown in Fig. 3, when the threshold for a′c′ map is reduced,
distinctive corner and edge features are released before texture
and flat regions. Hence, a′c′ can be used as a corner indicator
measure as it can effectively distinguish the corner regions
from the non-corner regions.

Therefore, as illustrated in Algorithm 1, instead of comput-
ing the complex corner measure as formulated in Eq. 12 for
every pixel, a much simpler corner candidate indicator a′c′

as formulated in Eq. 15 is utilized as a pruning measure to
remove the non-corner regions quickly and generate a small
set of corner candidates. The final KLT corner measure is
computed only on the small set of corner candidates and
corners with highest measure value are chosen. By doing this,
the computational complexity for corner detection is reduced
and the quality of the extracted features is not compromised.
Readers are referred to [39] for a detailed discussion.

We would like to point out that compared to the Sobel edge
key points which are calculated based on the sobel response
over only a single point, the pruning metric a′c′ is the product
of the value of a′ and c′ that are calculated based on the
sum of sobel response over their respective neighborhood
window. A point that has a high sobel response may not
necessarily have a large a′c′ value and vice versa. The pruning
metric a′c′ has a tighter association with the conventional KLT
corner measure and it ensures that corners are detected in the
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(a) (b)

(c) (d)

Fig. 2. Illustration of corner detection using different metrics: (a) Original image; (b) Corner candidates selected using ac at threshold=0.05*max(ac); (c)
Corner candidates selected using a′c′ at threshold=0.05*max(a′c′); (d) Corner regions with λ2 > 0.05*max(λ2).

(a) (b)

(c) (d)

Fig. 3. a′c′ map at various thresholds: (a) 0.5; (b) 0.1; (c) 0.05; (d) 0.01.

same order as the conventional KLT corner detection method,
that is, corners with higher KLT corner quality are detected
earlier than those that are of lower corner quality. As such
the proposed pruning technique enables rapid corner detection
without losing distinctive KLT corners.

B. Feature Tracking using Improved KLT Tracker

Mathematically, the KLT tracking process is formulated as
a least square problem to minimize a residual function over
an integration window as defined in Eq. 16.

E = arg min
{dx,dy}

ux+r∑
x=ux−r

uy+r∑
y=uy−r

( In−1(x, y)−

In(x+ dx, y + dy))
2

(16)

Where In−1(ux, uy) and In(ux + dx, uy + dy) are the
correspondence located in image In−1 and In respectively.
d = [dx dy]

T is the optical flow for feature In−1(ux, uy). r
is the radius of the integration window.

The way KLT solves Eq. 16 using an iterative Newton
Raphson method consists of a sequence of search operations
that try to find a image patch with size [2r+1, 2r+1] in image
In such that there is minimum intensity difference between it
and the image patch in image In−1 of size [2r + 1, 2r + 1]
with feature In−1(ux, uy) in the center. As observed in [40],

starting the search process in the position (ux, uy) in image
In, a small integration window size is preferred to increase
the accuracy by avoiding smoothing out the image details.
However, the integration window must also be sufficiently
large to cater to the displacement of feature that undergoes
large motion to increase robustness. In order to obtain a good
tradeoff between local accuracy and robustness when choosing
the integration window size, the pyramidal implementation of
KLT has been introduced in [40]. However, this approach is
time-consuming as tracking needs to be performed at different
levels of the pyramid. In addition, we will show in the
following that the pyramidal implementation of KLT can still
lead to inaccurate results in highly complex urban driving
environment.

In order to evaluate the accuracy of the conventional KLT
in complex urban driving environment, an experiment is
conducted based on the KITTI's stereo/flow benchmark [32],
which provides 194 training images with ground truth flow
fields and disparity maps. For each consecutive pair of images,
up to 500 good features are extracted and tracked using
OpenCV's implementation of KLT. The computed optical
flows are compared with the ground truth. Fig. 4 illustrates the
distribution of estimated flow error for all features in the order
of descending corner measure for one of the image pairs. It can
be observed that the conventional KLT results in high tracking
error even for the features with high quality. The tracking error
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Fig. 5. An example of road scenario: Features that are detected in previous
frame (a) are tracked in current frame (b).

becomes more prominent when the feature quality decreases.
This indicates that the conventional KLT for feature tracking
is highly susceptible to noise.

1) Improving Tracking Robustness using Smooth Motion
Constraint: In the conventional KLT tracker, the optimization

Algorithm 1 Pruning based Corner Detector
Input: Image I, feature quality threshold t
Output: A set of corners {mi} in image I

/* Pruning */
1: Compute horizontal and vertical gradient image Ix, Iy;
2: Compute |Ix|, |Iy| for each pixel in I;
3: Compute a′c′ =

∑
|Ix| ∗ |Iy| for each pixel in I;

4: Threshold a′c′ map with threshold = t * max(a′c′) to
obtain corner candidate set K;
/* Corner Response Function */

5: for each pixel in K do
6: Compute a =

∑
I2x, c =

∑
I2y , b =

∑
IxIy;

7: Compute corner response C = λ2;
8: end for
9: Threshold K with threshold = t * max(C) to obtain

candidate set Q;
10: Sort Q in descending order of C;
11: Apply non-maximal suppression to obtain {mi}.

process as indicated in Eq. 16 starts the search of a feature in
the current frame at its same position in the previous frame.
This can easily lead to KLT tracking failure if the starting
point is too far from the convergence region. Such cases are
common in scenarios where ego-mtion is large or when the
features are not distinctive enough from their surroundings. We
will explain such a scenario with the help of Fig. 5. Assume
that feature A has been detected in the previous frame. Its
ground truth correspondence in the current image is A1 but
the conventional KLT tracker results in A2. The reason that
the KLT tracker fails in detecting the correct correspondence is
due to the fact that it starts the search for A's correspondence at
A3 (the same position as A in the previous image). Since A3 is
closer to A2 and the local patches around A2 and A are largely
similar, the KLT algorithm converges to A2 and terminates
the search. This demonstrates that the initial position for the
correspondence search significantly affects the accuracy of
KLT.

The authors in [38] also observed the importance of setting
a proper starting point for KLT tracker. To ensure that the
starting point falls as close as possible to the convergence
point, the work in [38] relies on inertial sensor that is at-
tached to the camera. However, this requires additional effort
for sensor calibration and synchronization. Unlike [38], the
proposed method determines a better starting point for KLT
with the aid of the ego-motion estimated in previous step. In
general, when the frame rate is high enough, a smooth motion
pattern is presented between consecutive frames [22]. That
is, the motion at time n is highly likely to be similar to the
immediate previous motion at time n-1. Such phenomenon is
referred to as Smooth Motion Constraint (SMC) [22].

Let Mn−1 denotes the motion estimated from frame In−2
to frame In−1. When frame In is available, by projecting the
features detected in frame In−1 to frame In using the previous
motion Mn−1, the projected location in frame In is highly
likely to reside in the convergence region of KLT and therefore
serves as a good starting point for KLT tracking process. We
will describe this phenomenon again with the help of Fig. 5.
By transforming A with the previously estimated motion and
projecting it onto the current image, the new position locates
in A4, which is much closer to the ground truth. Using A4 as
the starting point, KLT is able to adapt to the motion in the
current frame and finally correctly converge to A1.

There exist works that utilize SMC for ego-motion compu-
tation in a different manner from the proposed method. For
example, the work in [22] utilizes SMC to remove outliers
that exhibit incoherent movement. The work in [15] utilizes
SMC to generate an additional set of augmented features
that try to complement the original features. The work in
[41] utilizes camera motion to define a specific search region
in the image for normalized cross-correlation based feature
matching. In order to avoid the danger that the predicted search
region misses the target, a computationally complex two-step
projection operation together with uncertainty calculation is
performed in [41]. Moreover, an additional step is required
for re-localization in the presence of high uncertainty. Unlike
existing works, the proposed method utilizes SMC to increase
the chance of correct convergence for KLT tracking process
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by determining a better starting point.
2) Improving Tracking Accuracy and Efficiency Using

Adaptive Integration Window Technique: The size of the
integration window for KLT tracker will affect not only the
tracking accuracy but also the computational complexity. The
conventional KLT tracker employs uniform window size and
pyramid levels for all features. This easily violates the fact
that a small window size is preferred to avoid smoothing out
the details contained in the images while a large integration
window is required to handle large motions.

In order to determine a suitable window size for KLT
feature tracking, the relationship between the optical flow and
the corresponding disparity field has been analyzed using the
KITTI's flow/stereo benchmark. It can be observed from Fig. 6
that pixels at a near distance from the camera are prone to large
motion and pixels at a far distance are prone to small motion.
Inspired by this idea, an adaptive window size for the KLT can
be employed based on the disparity information. For features
in the near region, a larger window size or more pyramid
levels are used. For features in the far region, a small window
size or lesser pyramid levels are employed. This scheme helps
to avoid the deployment of unnecessary large window size
or pyramid levels for the features that undergo small motion,
which will therefore improve the accuracy of the KLT tracker
and also the compute efficiency.

In addition, large KLT window size or more pyramid levels
which are typically required for features undergoing large
motion can be further avoided by utilizing SMC. As shown in
Fig. 5, given the feature B detected in the previous frame, its
ground truth correspondence is B1 in the current frame. The
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Fig. 8. Error distribution of optical flows estimated using KLT with automatic
tracking failure detection.

initial search position employed by the conventional KLT is
at B2, which is far from B1. As such, a large window size
is needed to track feature B correctly. However, following the
strategy proposed in previous sub-section to identify the initial
point with the aid of SMC, the initial position to track feature
B by the proposed method is set at B3. It can be observed that
B3 is close to B1 and the required window size and pyramid
levels can therefore be set to a smaller value.

3) Improving Tracking Robustness using Automatic Track-
ing Failure Detection Scheme: As pointed out in [22], track-
ing error is unavoidable. In order to identify such tracking
failures, an automatic tracking failure detection scheme that is
presented in [42] is adopted. As illustrated in Fig. 7, the basic
idea is to check the forward-backward error during tracking.
That is, forward and backward tracking is performed and the
discrepancy between the starting point of the forward trajec-
tory and the end-point of the backward trajectory is computed.
If the forward-backward error is larger than some threshold,
the corresponding feature pair is regarded as wrong setup
and is therefore rejected. Fig. 8 shows the new distribution
of estimated flow error after applying the automatic tracking
failure detection scheme. It can be observed that the majority
of features with high tracking error in Fig. 4 has been removed.

Based on the discussion above, we propose to improve
the conventional KLT tracker as follows: 1) improve the
tracking robustness by determining a better starting point
for KLT tracking process with the aid of SMC; 2) improve
tracking accuracy and efficiency by setting the integration
window adaptively; 3) further improve the tracking robustness
by enabling the automatic tracking failure detection scheme.
The improved KLT feature tracking method is outlined in
Algorithm 2.

C. Robust Gaussian-Newton based Motion Estimation with
Early RANSAC Termination Condition

Given the set of feature correspondences, motion estimation
computes the six motion parameters by solving the nonlinear
least square problem as defined in Eq. 9. The Gaussian-
Newton optimization algorithm is chosen to solve this residual
function as it avoids computing the second derivatives.

Starting with an initial estimate X0, the Gaussian-Newton
algorithm iteratively converges to a local minimum through
Eq. 17, where f is the set of residual functions and Jf ∈ R2k∗6

represents the Jacobian matrix.
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Algorithm 2 Improved KLT Tracker
Input: Consecutive images In−1 and In;

Detected feature set {mi
n−1} in frame In−1;

Previous ego-motion Mn−1;
Disparity maps Dn−1 and Dn;
Calibrated camera parameters.

Output: Tracked feature correspondences {mi
n} in In.

/* Forward Tracking */
1: for each feature mi

n−1 in frame in−1 do
2: - Get its disparity value din−1;
3: - Set qi

n as its initial estimate in frame In:
4: pin−1 = g(mi

n−1);
5: pin = (Mn−1)

−1 ∗ pi
n−1;

6: qin = h(pi
n);

7: - Perform KLT pyramid setup:
8: Level = 1 (2 levels only);
9: if din−1 < 10 then

10: integration window size r = 3;
11: else if din−1 < 20 then
12: integration window size r = 5;
13: else
14: integration window size r = 7;
15: end if
16: - Generate the new position of mi

n by applying the KLT
tracker.

17: end for
/* Backward Tracking */

18: for each feature mi
n in frame In do

19: - Get its disparity value din;
20: - Set qi

n−1 as its initial estimate in frame In−1:
21: pin = g(mi

n);
22: pin−1 = Mn−1 ∗ pi

n;
23: qin−1 = h(pin−1);
24: - Perform KLT pyramid setup:
25: Level = 1 (2 levels only);
26: if din < 10 then
27: integration window size r = 3;
28: else if din < 20 then
29: integration window size r = 5;
30: else
31: integration window size r = 7;
32: end if
33: - Generate the new position of oin−1 by applying the

KLT tracker.
34: end for
35: Reject feature correspondences where dist(mi

n−1, oi
n−1) >

1 pixel.

Xs+1 = Xs − (JTf ∗ Jf)
−1 ∗ JT

f ∗ f(Xs) (17)

fi = wi(mi
n − h(Rn ∗ g(mi

n−1) + tn)), i = 1, 2, . . . , k (18)

(Jf)ij =
∂fi(Xs)

∂Xj
, i = 1, 2, . . . , 2k; j = 1, 2, . . . , 6 (19)

Eq. 17 is repeatedly computed until the residual ε in Eq.
20 is smaller than some predefined threshold.

ε = |Xs+1 − Xs| = |(JTf ∗ Jf)
−1 ∗ JT

f ∗ f(Xs)| (20)

The feature correspondences are usually contaminated with
outliers. This is typically exhibited in feature correspondences
extracted from moving objects such as pedestrians or vehicles.
In addition, some feature points will be wrongly tracked. All of
these noisy correspondences contribute to outliers and should
be eliminated from the motion computation in order to increase
the robustness of the estimated motion. In order to ensure
robust estimation, the RANSAC algorithm [25] is adopted to
identify outliers. The basic idea of RANSAC is to compute
a fitting model from a set of samples selected randomly and
check the number of points that are in consensus with the
current estimated fitting model, i.e. inliers. This process is
iteratively repeated until the maximum number of iterations
has elapsed. Finally, the final model parameters are estimated
using the largest set of inliers.

Instead of setting the maximum number of iterations man-
ually, it has been pointed out in [25] that the number of
iterations for RANSAC needed to achieve a desired accuracy
requirement can be theoretically derived as shown below:

RANSACiter =
log(1− p)
log(1− wn)

(21)

Where n is the number of minimum points needed for
estimating a model, w is the percentage of inliers in the data
points, p is the requested probability of success. Due to the
formulation equation adopted in Eq. 9, at least three points
are needed for estimating a model, therefore n = 3. It can
be observed from Eq. 21 that RANSACiter is dynamically
determined based on the number of inliers found in current
iteration. This means that once a set of inliers that are
large enough are identified, there is no need to continue
repeating the RANSAC sampling operation anymore. We refer
to this phenomenon as Early RANSAC Termination Condition
(ERTC). The proposed method has employed strategies to in-
crease the accuracy of the extracted feature correspondences in
previous sections. With the accurate feature correspondences
provided from Stage 1, the Gaussian-Newton optimization
with ERTC enabled is able to converge faster.

Based on the above discussion, given the set of correspon-
dences {mi

n−1} and {mi
n}, the method proposed for motion

estimation is given in Algorithm 3 and Algorithm 4.

V. EVALUATION

In this section, the proposed method will be thoroughly
evaluated using a large scale benchmark. We will first describe
the benchmark, evaluation criteria and baseline algorithms
that are adopted in this experiment. We will then evaluate
the proposed algorithm in terms of accuracy and computation
time by comparing the proposed algorithm with the state-of-art
baseline algorithms.
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Algorithm 3 Motion Estimation
Input: Feature correspondences {mi

n−1} and {mi
n};

Successful probability p;
Output: X = (tx, ty, tz, rx, ry, rz)

/* Initialization */
1: Transform features from 2D to 3D via triangulation:
2: pin−1 = g(mi

n−1) for each i = 1, 2, . . . , k;
3: largest inlier set α = ∅;
4: RANSACiter = 50;
5: trialcount = 0;

/* RANSAC Iterative Refinement */
6: while trialcount < RANSACiter do
7: {Ci} ← 3 correspondences selected randomly;
8: X = GNO({Ci});
9: Calculate current inlier set incurr based on X;

10: if incurr.size > α.size then
11: α = incurr;
12: end if
13: Update RANSACiter based on Eq. 21;
14: (trialcount)++;
15: end while
16: X = GNO(α)

Algorithm 4 Gaussian-Newton Optimization Method (GNO)
Input: Feature correspondences {Ci};

Successful probability p;
Maximum Gaussian Newton iteration GNmax;
Residual threshold tres;

Output: X = (tx, ty, tz, rx, ry, rz).
/* Initialization */

1: X0 = 0;
2: s = 0;

/* Start Gaussian Newton Minimization Circle */
3: while not converged and s < GNmax do
4: s = s + 1;
5: Calculate Jf at Xs−1;
6: Xs = Xs−1 − (JTf ∗ Jf)

−1 ∗ JT
f ∗ f(Xs−1);

7: ε = Xs − Xs−1;
8: if |ε| < tres then
9: Successfully converged;

10: end if
11: end while
12: X = Xs.

A. Experimental Setup

Experiments are conducted based on the widely known
KITTI odometry evaluation platform [32]. The KITTI's odom-
etry benchmark consists of 22 stereo 1344*391 sequences,
where the first 11 sequences (00-10) are provided with ground
truth trajectories for training and the remaining 11 sequences
do not have ground truth. These 22 sequences were collected
from stereo cameras installed in a vehicle that was driven
around Karlsruhe, Germany. This benchmark covers a variety
of road scenarios and provides a very challenging test-bed.
Some samples of the benchmark are illustrated in Fig. 9.

The evaluation criteria suggested by KITTI [32] is adopted,

that is, translational and rotational errors for all possible
subsequences of length (100, ..., 800) meters. Translational
errors are measured in percentage while rotational errors are
measured in degrees per meter. The average of these errors
are used to compare the performance of various approaches in
the KITTI evaluation platform.

1) Baseline Algorithms: Many works have been submitted
to the KITTI platform for evaluation. It can be observed that
the existing solutions in KITTI evaluation platform fail to
achieve a good balance of high accuracy and low compu-
tational complexity [32]. For example, [15] outperforms all
other visual odometry methods in terms of translational and
rotational accuracy till 2015, but it is time consuming. On
the contrary, the work in [10] is able to achieve a real-time
performance, but suffers from low accuracy. In the following,
we will denote the work from [15] as MFI and the work from
[10] as VISO2-S.

MFI: In order to reduce the motion drift caused by accu-
mulation of feature tracking errors from frame to frame, MFI
uses the whole history of the tracked feature points to compute
the ego-motion. In their technique, the key idea is to integrate
the features measured and tracked over all past frames into
a single and improved estimate. An augmented feature set,
obtained by the sample mean of all previous measured features
which are transformed into the current frame, is added to
the optimization formula. The importance of each feature is
weighted in terms of their life age.

VISO2-S: In order to reduce the computational complexity,
VISO2-S adopts a much simpler feature detector and descrip-
tor. Feature locations are found by extracting the maximum
or minimum Sobel filter response. In addition, instead of
using the compute-intensive rotation and scale invariant feature
descriptors like SURF or SIFT, features are described by
concatenating the response over a sparse set of 16 locations
within the 11*11 block and matched based on the sum of
absolute differences (SAD) dissimilarity metric. Finally, the
inputs to the visual odometry algorithm are features matched
between four images, namely the left and right images of
two consecutive frames. Given these ‘circular’ feature corre-
spondences, the camera motion is computed by minimizing
the sum of re-projection errors using the Gaussian-Newton
optimization.

Fig. 9. Some samples of the benchmark.
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TABLE I
OVERVIEW OF THE BASELINE AND PROPOSED ALGORITHMS

Feature Correspondence Setup Motion Estimation
Feature Detection Feature Tracking Optimization Scheme Robust Estimation

MFI Harris+FREAK Feature matching by brute-force
combinatorial search

Newton method based mini-
mization of re-projection resid-
ual in left image space

Iteratively reject outliers whose
re-projection residual is larger
than some threshold

VISO2-S

Minima and maxima of blob
and corner filter responses +
concatenation of sobel filter re-
sponses based descriptor

SAD dissimilarity metric based
two-passes circle feature match-
ing

Gaussian-Newton method based
minimization of re-projection
residual in both of left and right
image space + Kalman Filter
Refinement

RANSAC

ORG-KLT Conventional KLT corner detec-
tor

conventional KLT tracker with
automatic tracking failure de-
tection ability

Gaussian-Newton method based
minimization of re-projection
residual in left image space

RANSAC with early termina-
tion condition

Proposed KLT corner detector with prun-
ing Improved KLT tracker

Gaussian-Newton method based
minimization of re-projection
residual in left image space

RANSAC with early termina-
tion condition

ORG-KLT: The proposed work is capable of rapidly extract-
ing a set of accurate feature correspondences by improving
the KLT feature tracker. In order to illustrate this improve-
ment, the proposed algorithm will also be compared to the
visual odometry algorithm that uses conventional KLT with
automatic tracking failure detection ability and the motion
estimation method proposed in Algorithm 3. This baseline
algorithm is denoted as ORG-KLT.

The differences between the baseline algorithms and the
proposed algorithm have been highlighted in Table I.

2) Implementation Details: For the proposed and ORG-
KLT algorithm, up to 500 features are extracted for each
frame and tracked in the consecutive frame. The required
disparity information for features are provided by the OpenCV
implementation of the Semi-Global Matching algorithm [43].
We use the default parameter settings in OpenCV and do
not enable the multi-thresholding programming functionality
inside OpenCV. Both of the proposed algorithm and ORG-
KLT are implemented in C++ on a CPU @ 3.5 GHz machine.
It is noteworthy that unlike the implementation of MFI, we
currently do not employ any code optimization technique like
multi-threshold programming or GPU programming. For MFI
and VISO2-S, we directly use the experimental figures reported
in their papers.

B. Accuracy Evaluation

First, an extensive quantitative evaluation between ORG-
KLT and the proposed algorithm is conducted based on the
11 training sequences. Fig. 10 and Fig. 11 show the ground-
truth and estimated vehicle's trajectories from ORG-KLT and
the proposed algorithm for these 11 training sequences. This
provides an intuitive way to visualize the evaluation results.
It can be observed that the estimated trajectories from the
proposed algorithm are closer to the ground truth than the
ones from ORG-KLT.

In particular, interesting phenomenons can be observed from
Fig. 10(b) corresponding to Sequence 01, where there exists
a lot of challenging scenarios in the mid trajectory segments
as discussed in Section IV.B. Firstly, it can be observed that
the reconstructed paths from both of the ORG-KLT and the
proposed algorithm deviate from the ground truth at Position

A and persist for certain amount of time. At Position B,
the reconstructed path from ORG-KLT deviates again. This
means that the proposed method is more robust than ORG-KLT
in dealing with challenging environment. Secondly, although
the proposed method fails at position A, the reconstructed
path from the proposed algorithm shows the same shape as
the ground-truth at the end. This means that the proposed
algorithm is able to automatically recover from wrong previous
motion estimation when the scene is not challenging. The
reason that the proposed algorithm is capable of recovering
from wrong motion estimation in scenarios where the scene is
not challenging is due to the fact that the utilization of SMC in
the proposed method aims to increase the chance that the start-
ing search point for KLT falls within the convergence region,
thereby enabling the KLT tracker to more likely converge to
the true global minimum. However, as pointed out by [38],
KLT tracking process is tolerant to an initial parameter error
as long as the initial point falls within the convergence region.
Therefore, if the initial position guided by wrong motion still
falls in the convergence region, KLT is still able to converge
correctly and the proposed method is therefore able to recover
from wrong previous motion estimation.

In addition, the average translational and rotational errors
relative to the ground truth for both of the proposed algorithm
and ORG-KLT for the 11 training sequences are presented
in Fig. 12. On average, the translation and rotation errors
for ORG-KLT and the proposed algorithm for the 11 train-
ing sequences are (1.3974%, 0.0061[deg/m]) and (0.9768%,
0.0056[deg/m]). Therefore, the proposed algorithm is 30%
better than ORG-KLT.

We have also submitted the results of the proposed method
for the 11 test sequences to the KITTI odometry evaluation
platform. The average translation and rotation errors relative to
the ground truth for proposed algorithm, MFI and VISO2-S for
the 11 test sequences are presented in Fig. 13. In addition, the
corresponding estimated trajectories from proposed algorithm,
MFI and VISO2-S over sequences 11-15 (the website only
provide the computed trajectories relative to the ground-truth
for sequences 11-15) are depicted in Fig. 14. On average,
the translational and rotational errors for MFI, VISO2-S and
the proposed algorithm for the 11 testing sequences are
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(1.30%, 0.0030[deg/m]), (2.44%, 0.0114[deg/m]) and (1.26%,
0.0038[deg/m]) respectively. It can be observed that the pro-
posed algorithm performs approximately 3% better than MFI
and 48% better than VISO2-S. At the time of submission
into the KITTI odometry evaluation platform, the proposed
method was ranked in the 8th place in terms of accuracy,
while MFI and VISO2-S were ranked in the 10th and 38th

places respectively. Currently, the proposed method is ranked
in 14th place in terms of accuracy, while MFI and VISO2-S
are ranked in the 15th and 37th places respectively.

C. Computation Time Evaluation

Table II shows the computation time for the proposed
algorithm and all the three baseline algorithms. In the current
implementation, the dense disparity map is directly provided
for the proposed algorithm and ORG-KLT. For a fair compar-
ison, the computation time for disparity computation is not
included for all the four algorithms. The proposed algorithm
is 28% faster than ORG-KLT. It can be observed that both of
the two stages in the proposed method contribute to runtime
performance gain. This is due to the low computational
complexity strategies adopted in the feature correspondence
setup. In addition, since robust techniques during the KLT
tracking process and the RANSAC with early termination
rule are employed, the set of accurate feature correspondences
allows the Gaussian-Newton process to converge faster.

MFI is able to reduce pose error compared to their earlier
work [22], [23], however this is achieved at the expense
of huge computational complexity. Up to 4,096 features
are tracked between consecutive frames. The key-points are
matched between consecutive frames by brute-force combina-
torial search. The computation time reported by MFI is only
possible after they enable the multi-thresholding programming
technology OpenMP and intense code optimization using the
Intel Performance Primitives library on 2.7 GHz CPU with 4
cores. Finally, VISO2-S achieves a short computation time at
the price of reduced estimation accuracy.

The proposed method also exhibits lower computational
complexity when compared to other methods that are recently
submitted to the KITTI evaluation platform. For example, the
computation time for the top three visual odometry methods
in the KITTI platform (at the time this paper is submitted) are
between 0.1 to 0.3 seconds/frame on 2.0Ghz or 2.5 Ghz plat-
forms with dual cores. The computation time for the proposed
algorithm is 0.03 seconds/frame on a 3.5GHz platform (one
core) without utilizing any code optimization technique (e.g.
multi-threshold programming or GPU programming). We are
confident that the computation time of the proposed method
will further reduce if such code optimization techniques are
enabled.

VI. CONCLUSION

It has been shown that the proposed method for estimating
the ego-motion of vehicle overcomes the limitations of exist-
ing solutions by integrating runtime-efficient strategies with
robust techniques at various core stages in visual odometry.
A novel pruning technique is adopted to notably reduce the

TABLE II
COMPUTATION TIME COMPARISON

Feature Cor-
respondence

Setup

Motion
Estimation Total Platform

MFI 37.1 ms 8.8 ms 45.9 ms 2.7GHz
(4 Cores)

VISO2-S 36.6 ms 4.3 ms 40.9 ms 2.5GHz
(1 Core)

ORG-
KLT 40.8 ms 1.1 ms 41.9 ms 3.5GHz

(1 Core)

Proposed 29.5 ms 0.8 ms 30.3 ms 3.5GHz
(1 Core)

computational complexity of detecting corner features without
compromising on the quality of the extracted corner features.
A robust and compute-efficient KLT tracker is proposed to
facilitate the generation of the feature correspondences in a
robust and runtime efficient way. The accuracy of extracted
feature correspondences is improved by leveraging on ego-
motion prior to determine a better initial point for fast and
accurate feature convergence during tracking and incorporating
an automatic tracking failure detection scheme to exclude the
feature correspondences with large tracking error. In addition,
the computational complexity of the conventional KLT has
been improved by setting the integration window size adap-
tively. With the accurate feature correspondences provided,
Gaussian-Newton optimization scheme supported by an early
RANSAC termination condition is shown to converge faster
in the motion estimation process. The above contributions
are integrated into a framework for fast and robust visual
odometry. The experimental results based on a widely used
evaluation platform clearly demonstrate the advantages of the
proposed framework over existing state-of-the-art solutions for
robust and runtime-efficient visual odometry.
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Fig. 10. Reconstruction of paths from ORG-KLT and proposed algorithm for Sequences 00-05.
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Fig. 11. Reconstruction of paths from ORG-KLT and proposed algorithm for Sequences 00-05.
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Fig. 12. Average translational and rotational error for ORG-KLT and proposed algorithm over sequences 00-10. The proposed algorithm is 30% better than
ORG-KLT.
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Fig. 13. Average translational and rotational error for MFI, VISO2-S and proposed algorithm over Sequences 11-21. The proposed algorithm performs 3%
better than MFI and 48% better than VISO2-S.
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Fig. 14. Reconstruction of paths from MFI, VISO2-S and proposed algorithm for Sequences 11-15.


