
High Speed Performance Estimation of Embedded
Hard-core Processors in FPGA-based SoCs

Deshya Wijesundera†, Achintha Ihalage?, Alok Prakash†, Thambipillai Srikanthan†

†Nanyang Technological University, Singapore
?University of Moratuwa, Sri Lanka

deshyase001@e.ntu.edu.sg, 130212f@mrt.ac.lk, {alok, astsrikan}@ntu.edu.sg

ABSTRACT
The embedded hard-core processors beside the traditional
FPGA fabric in FPGA-based System-on-Chip (SoC) devices
make them an attractive alternative for realizing the soft-
ware portions of the application while using the FPGA fabric
for hardware acceleration. However, several hard-core pro-
cessor options are becoming available from different man-
ufacturers or even from a single vendor. This necessitates
methodologies for rapid and reliable performance estimation
of such embedded processors so as to enable rapid selection
of a processor given an application at an early design stage.
Architectural features such as superscalar, multi issue and
out-of-order processing, however, make it challenging to ac-
curately estimate their performance for a given application.
In this paper, we propose a high speed performance estima-
tion framework for such processors. Experimental results on
the ARM Cortex-A9 processor in a Xilinx Zynq SoC FPGA
executing applications from the widely used CHStone bench-
mark suite show an average error of less than 6%, completed
in just over a minute.

Keywords
HW-SW codesign; HW-SW partitioning; performance estimation

1. INTRODUCTION
Hardware-software partitioning is an important step in

the hardware-software codesign process, allowing designers
to exploit the benefits offered by both worlds. The flexi-
bility and short development time of software is effectively
combined with performance and low power/low energy con-
sumption of hardware [21]. Modern FPGA-based System-
on-Chip (SoC), such as the ones manufactured by Xilinx [26]
and Altera [11], provide designers the option of partitioning
the design into many computing platforms including both
hard-core and soft-core processors. Figure 1 shows the high
level layout of a typical FPGA-based SoC, which integrates a
traditional hard-core processor alongside the FPGA logic re-
sources. At the same time, a soft-core processor can also be
implemented using the FPGA logic resources such as look-
up-tables (LUT) and Block RAMs (BRAMs). However, the
characteristics of the underlying architecture enables hard-
core processors to dominate soft-cores in terms of perfor-
mance [23] [20], which makes them an obvious choice to

This work was presented in part at the international symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2017)
Bochum, DE, June 7-9, 2017.

Figure 1: Layout of a Modern FPGA-based SoC

implement the software portions in designs where achieving
high performance is paramount. However, with a variety of
FPGAs in the market there are several choices of hard-core
processors used in FPGA-based SoCs, varying across ven-
dors [22] [26] [11] or even from a single vendor that provides
different hard-cores on different FPGA platforms [15] [25].

Hence, the task of selecting the best processor that pro-
vides optimal performance under user constraints for an ap-
plication is a daunting task for the designer as executing
the application on the multitude of processors is practically
infeasible. Alternatively, a designer could rely on simulators
to estimate performance. However, simulators are typically
slow, complex and require specialized knowledge [16].

Estimating the application performance on an embedded
hard-core processor is itself challenging due to the sophis-
ticated branch prediction schemes, pipeline hazards, etc..
The advent of superscalar architectures and out-of-order
processing further exacerbates this problem [7]. Existing
work in this area has mostly been focused on single-issue,
in-order processors [4] [24] or need significant effort for every
new target processor [4]. Hence, in this paper, we present
a methodology for rapid performance estimation of applica-
tions on dual-issue, out-of-order, superscalar embedded hard-
core processors that relies solely on estimation based tech-
niques. The proposed methodology uses a one-time, offline
processor characterization step to allow rapid and accurate
performance prediction of any application and can be easily
re-targeted for new processors. This can also be used along
with existing estimation tools for FPGAs, e.g. [28], to enable
rapid design space exploration on FPGA-based SoCs at an
early design stage during hardware-software codesign step.

Next, section 2 discusses the existing literature followed
by the methodology in section 3. Section 4 discusses the
results with our conclusions in section 5.

2. RELATED WORK
Performance estimation could be carried out using ana-

lytical models or by simulation. Analytical models can be
linear or non-linear. Simulation based models are classified
as instruction set simulation based (ISSB), virtual platform
based (VPB) and native execution based (NEB) [18].

Giusto et al.[9] and Lattuada et al.[14] have proposed an-
alytical estimation models based on regression techniques
and feature extraction. However, these methods are accu-
rate only when considerably large benchmarks are used to
train the models or when the characteristics of the applica-
tion closely resemble the training set. ISSB methods could
provide either cycle accurate or instruction accurate per-
formance but have slow simulation speeds and do not allow
the system designer to modify the behavior of the tool. VPB
methods are based on either hardware VPs or software VPs.
The hardware VP modelling process is complex, time con-
suming and requires specialized knowledge. Software VPs
are not cycle accurate and thus, it is hard to deploy for
performance estimation. NEB methods can be heavily de-
pendent on the target processor architecture [16].

Obeidat [17] proposed a framework for embedded pro-
cessor performance estimation, however, the method relies
on hardware profilers. Aung et al. [4] relied on the com-
plex binary level control flow graph (CFG) to extract in-
formation and back annotate the details to estimate per-
formance using intermediate representation (IR) level CFG
for a PowerPC 405 processor. The authors stated that the
availability of LLVM backend for the target processor is
critical for their approach. Hence, unlike the method pro-
posed in this paper, their technique is not readily transfer-
able to new processor architectures. Wijesundera et al. [24]
proposed an estimation methodology for processor perfor-
mance estimation based on the LLVM IR. However, their
methodology only considers single-issue in-order processing
and is limited to soft-core processors. Eyerman et al. [8]
proposed a method to model various characteristics of pro-
cessors to estimate its performance. But, their approach re-
quires the user to possess a deep understanding of the micro-
architectural details that might not be feasible for commer-
cially available processors. Ivoševic et al. [12] proposed
a model for function-level performance estimation for het-
erogeneous MPSoC platforms. However, they only showed
results for a few functions, unlike the work proposed in this
paper that estimates the performance of the entire applica-
tion instead of just a few functions in the application.

From the discussion above, it can be observed that exist-
ing methodologies for performance estimation are focused on
single-issue, in-order processors [24] or are limited to specific
processor architectures [4]. Methodologies for estimation of
out-of-order processors require high levels of architectural
knowledge [8]. In this paper, we propose a performance es-
timation technique for dual-issue, out-of-order, superscalar
processors that are typically found in modern FPGA-based
SoCs [11] [26] and even in other current embedded systems.
The proposed work also performs estimation at LLVM IR
level instead of the binary level, which lends well to easier
re-targeting to new processors, unlike the existing work [4].

3. METHODOLOGY
In this section, we discuss the proposed methodology, shown

in Figure 2, to estimate application performance on dual-
issue out-of-order superscalar processors. The technique
is based on the application’s IR obtained from the LLVM
compiler and can be extended to other similar processor ar-

chitectures. The methodology is implemented using Shell
scripting and C programming languages.

We estimate the clock cycle count of each instruction,
hereafter referred to as execution count, considering data
hazards, control hazards etc. and accumulate them to ob-
tain the full application execution time. The method consti-
tutes of 4 phases, Processor Characterization, Application
Profiling, Instruction Analysis and Performance Estimation.

3.1 Processor Characterization
This is a onetime phase for each processor. In this phase,

we map the instruction set architecture (ISA) of the target
processor to the LLVM ISA used in the IR. We have clas-
sified these LLVM instructions into 4 categories for clarity:

• Data Processing Instructions: Instructions corresponding
to ALU operations
• Data Transfer Instructions: Instructions corresponding to

loading/storing data between memory and registers
• Flow Control Instructions: Instructions which determine

the value of the program counter
• Remaining Instructions: Instructions which could not be

mapped to any category mentioned above

However, the process of mapping instructions under each
category is non-trivial. We identify the following types of
mapping between processor ISA and LLVM ISA:

• One-to-one mapped instructions: One processor instruc-
tion maps to one instruction in LLVM ISA
• One-to-many mapped instructions: One processor instruc-

tion maps to many instructions in LLVM ISA
• Many-to-many mapped instructions: Many processor in-

structions map to many instructions in LLVM ISA
• Other instructions: Type of mapping which does not be-

long to the categories above. For example, in the case
of the ARM Cortex-A9 any number of subsequent alloca
instructions in the LLVM ISA maps to a single sequence
of push, move, sub, bic in the processor ISA

An example instruction mapping under the classified cat-
egories for the case of the ARM Cortex-A9 processor [3] is
shown in Table 1, where M is a positive integer. In order
to obtain the execution count of each instruction we either
use datasheets or run micro-benchmarks. We use the LLVM
reference manual to create micro-benchmarks [1]. Figure 3
shows a sample output ISA mapping file.

3.2 Application Profiling
In this phase, the application is first profiled using the

LLVM compiler to obtain an IR of the application. The
profiling information is used to extract basic blocks, instruc-
tions in each basic block and execution frequency of basic
blocks in the application. This information is used during
scheduling in phase 4.

3.3 Instruction Analysis
We use the IR and other profile information from section

3.2 to identify the pipeline hazards between instructions and
annotate each instruction with this information. Also, we
identify multi-cycle instructions as this is a special case of
processor pipeline behavior. Further, we annotate each in-
struction with the execution count obtained in section 3.1.

As mentioned in section 1, modern processors incorporate
sophisticated execution mechanisms and advanced micro-
architectural features, which makes the process of estimating

Figure 2: Framework for Out-of-Order Processor Performance Estimation

Table 1: Classification of LLVM Instructions and
Example Mapping for ARM Cortex-A9 Processor

Instruction
Category

Processor
Instruction

LLVM
Instruction

Data Processing
Instructions

add add
mls [mul,sub]

[bfc,movw,movt] getelementptr
cmp icmp

[cmp,movne] icmp
[bic,pop] [srem,ret]

[smmul,mov] [sext,mul]
[push,mov,sub,bic] alloca x M

... ...

Data Transfer
Instructions

ldr load
ldrb load
str store
stm store
... ...

Flow Control
Instructions

b br
bl call

[b,blt] br
[beq,b] br

... ...

Remaining
Instructions

vadd fadd
vcvt sitofp
vmla [fmul,fadd]
vfma [fmul,fadd]

... ...

performance of an application on a given processor signifi-
cantly challenging. Thus, analysing the inter-dependencies
between the instructions is of utmost importance to improve
the accuracy of the estimation process. Therefore, the pro-
posed methodology incorporates the following steps in order
to analyze the instruction profile.

• Pipeline Hazard Analysis

• Multi-cycle Instruction Analysis

3.3.1 Pipeline Hazard Analysis

1 ISA Mapping File: ARM Cortex-A9
2
3 **************** Data Processing Instructions ***************
4
5 [Instruction] [Type] [Clock Cycle

Count]

6 add i32 1
7 add i64 1
8 mul i32 3
9 mul i64 4

10 icmp n/a 1
11 alloca i32 1
12 alloca i64 2
13 sdiv i32 4
14 ------ ---- --
15
16 ***************** Data Transfer Instructions ****************
17
18 [Instruction] [Type] [Clock Cycle

Count]

19 load i32 1
 20 load i64 2
 21 store i32 1
 22 store i64 2
23 ------ ---- --
24
25 ****************** Flow Control Instructions ****************
26
27 [Instruction] [Type] [Clock Cycle

Count]

28 br n/a 1
29 br (mis-predicted) n/a 11
30 call n/a 1
31 ------- ---- --
32
33 ******************* Remaining Instructions **************
34 sitofp float 4
35 fptosi float 4
36 ------- ---- --
37

Figure 3: Sample ISA Mapping File

A modern processor typically integrates deep pipelines
within the processor execution path in order to achieve in-
struction-level parallelism. However, due to the interaction
of instructions with each other leading to data, control and
structural hazards, the execution count of a given appli-
cation varies significantly in each scenario. These hazards
affecting the processor pipeline could result in flushing or
stalling of the processor pipeline. With deep pipelines (for
an example the ARM Cortex-A9 processor pipeline has 8-
11 stages) the number of clock cycles required to re-fill the
pipeline would incur a significant penalty adding to the ex-
ecution count of the application [3]. Thus, identifying the
aforementioned hazards from the IR level instruction profile

is a critical step in the estimation process. We propose ana-
lytical techniques in order to identify pipeline hazards in the
processor. Subsequent sections explain these techniques.

• Data Hazards

A data hazard is created whenever there is a dependency
between instructions, and the overlap caused by pipelining
of spatially localized instructions would change the order of
access to an operand [19]. The proposed methodology anal-
yses data hazards using the dependency analysis technique.

Dependency analysis is the process of analysing the in-
struction profile to identify instructions which are dependent
on the data produced by the previous instructions or subse-
quent instructions which have the same destination address
[19] [3]. A single-issue processor would only execute a single
instruction at any given time. Also, an in-order processor
would only consider dependencies with the subsequent in-
struction, and hence does not require extensive dependency
analysis. However, an out-of-order processor requires an ex-
tensive dependency analysis within the instruction window.
This is further exacerbated by the dual-issue feature com-
pared to a single-issue processor. Hence, since the proposed
model is focused on dual-issue, out-of-order processors, we
analyze the dependencies among instructions in order to
identify suitable candidate instructions that could be pro-
cessed in parallel and also to identify their order of execu-
tion. We annotate instructions with identified dependencies
and use this information later in the scheduling phase.

For example, load-use dependency is a common data de-
pendency occurring in processors. Load-use dependencies
occur when the data to be loaded is used in subsequent in-
structions prior to the correct data being written to the reg-
isters. The proposed model analyses such dependencies and
compensates the execution count in the scheduling phase.

• Control Hazards

Control hazards occur due to the instructions that alter
the control flow of a program by modifying the program
counter. Therefore, we analyze instructions such as condi-
tional branches and calculate the additional latency incurred
due to branch mis-predictions.

Branches could be either conditional or unconditional.
Unconditional branches do not stall or flush the pipeline.
In the case of conditional branches, the execution count
depends on whether or not the branch was correctly pre-
dicted. Correctly predicted branches behave similar to un-
conditional branches. However, mis-predicted branches cause
pipeline flushing. Thus, it is important to identify branch
mis-predictions. In this work, we use the branch predic-
tion accuracy for the relevant processor to compensate for
branch mis-prediction. This value can be obtained from the
datasheet of the relevant processor [13]. We make an ap-
proximation by multiplying the frequency of the basic block
by the accuracy of prediction to obtain the number of times
an instruction is predicted correctly and the remaining num-
ber is considered as the number of times it is mis-predicted.

• Structural Hazards

Structural hazards occur due to the limited resources in the
processor. For example, due to instruction-level parallelism
there could be multiple instructions requesting the service
of a common resource. In such a scenario, the processor
pipeline will be stalled while the hazard is resolved.

The proposed method analyses load/store instructions to
identify structural hazards. Load/store analysis identifies
load and store instructions in the instruction profile as some
processors could have limitations in dual issuing load/store
instructions [3]. The proposed method analyses the load/store
instructions and annotates the information into the instruc-
tion trace. The scheduler in the subsequent phase analyses
the annotated information in order to compensate, whenever
necessary, during the scheduling process.

3.3.2 Multi-cycle Instruction Analysis
Multi-cycle instructions may or may not be handled in

parallel, depending on the processor architecture [3]. Thus,
our models identify these instructions, and annotate them
for identification by the scheduler.

3.4 Performance Estimation
In this phase, we use the annotated instruction trace from

section 3.3 to model the schedule of instructions. Firstly, the
model checks if the pipeline is free and if so the instructions
are scheduled. The instruction schedule is later used to es-
timate the performance of the application.

3.4.1 Scheduling and Execution Cycle Estimation
Scheduling is performed on each basic block obtained from

the application profiling phase. We use Algorithm 1 for
scheduling the application. Here, PQ stands for priority
queue, N is the size of the instruction window and ti is the
execution count of the instruction under consideration.

Typically, out-of-order processing is performed within a
specified instruction window which is dependent on the pro-
cessor [6]. Our implementation utilizes a configurable in-
struction window size. During dual issue, if the subsequent
instruction is not feasible for scheduling, the scheduler checks
the next instruction and continues this process within the
specified instruction window until an independent schedu-
lable instruction is identified. The proposed model imple-
ments a priority queue to store the dependent instructions as
obtained from the previous phase. This process is repeated
until the end of the basic block.

The schedule provides the execution count of each basic
block on the two pipelines. However, we select the higher
execution count as the execution count of the basic block,
since execution requires a minimal time equivalent to the
pipeline which consumes the larger amount of time.

Nbb =

{
tp ∗ fbb, br = 0

tp ∗ fbb ∗ Pp + tmp ∗ fbb ∗ Pmp, br = 1
(1)

where,
fbb = Execution frequency of the basic block,
Pp = Branch prediction probability,
Pmp = Branch mis-prediction probability

(Pmp = 1− Pp),
tp = Execution count of the basic block,
tmp = Execution count of the mis-predicted basic block

(tmp = tp + branch mis-prediction penalty),
Nbb = Total execution count of the basic block

We use the method proposed in section 3.3.1 to estimate
the execution count of a basic block incorporating branch
prediction. According to the definition of a basic block [1],
a basic block could contain only one terminator instruction
such as a branch instruction. Thus, we use Equation 1 to

Algorithm 1 Scheduling Algorithm

Input: Annotated Instruction Trace
Output: Instruction Schedule of Basic Blocks
1: loop:
2: if initial or last issue is a dual issue then
3: if PQ is non-empty then
4: issue 1st instruction of PQ;
5: stall other pipeline for (ti-1);
6: issued pipeline = busy;
7: other pipeline = non-busy;
8: dual-issue← 0;
9: remove issued instruction from PQ;

10: endif
11: else
12: issue next instruction from instruction window;
13: stall other pipeline for (ti-1);
14: issued pipeline = busy;
15: other pipeline = non-busy;
16: dual-issue← 0;

17: endif
18: if issued instruction = load or store then
19: load/store← 1

20: endif
21: else if last issue is a single issue then
22: if PQ is non-empty then
23: while read PQ do
24: check for dependencies;
25: check previous issue for a load/store;
26: check previous issue for multi-cycle;
27: if current instruction is dual issuable then
28: issue instruction;
29: stall other pipeline for (ti-1);
30: issued pipeline = busy;
31: other pipeline = non-busy;
32: remove issued instruction from PQ;
33: dual-issue← 1;

34: endif
35: done
36: endif
37: if no instruction from PQ is issued then
38: for i in next N instructions do
39: check for dependencies;
40: check previous issue for a load/store;
41: check previous issue for a multi-cycle;
42: if current instruction is dual issuable then
43: issue instruction;
44: stall other pipeline for (ti-1);
45: issued pipeline = busy;
46: other pipeline = non-busy;
47: remove issued instruction from PQ;
48: dual-issue← 1;
49: break
50: else
51: add current instruction to PQ;

52: endif
53: done
54: if not issued from next N instructions then
55: stall non-busy pipeline;

56: endif
57: endif
58: endif
59: goto loop.

compute the total execution count of a basic block depend-
ing on the presence of a branch instruction. Here, the value
of br represents the presence of a branch instruction.

Next, we accumulate the total execution count of all the
basic blocks to obtain the execution count of the full appli-
cation using Equation 2. Equation 3 is used to obtain the
estimated execution time of the application in seconds.

Ncc =

n∑
i=1

Nbbi (2)

Tex = Ncc ∗
1

f
(3)

where,
f = Frequency of the processor,
Nbbi = Total execution count of basic block i,
Ncc = Total execution count of the application,
Tex = Estimated execution time of the application

4. RESULTS
Next, we discuss the results obtained by the proposed

methodology. We use the AVNET ZedBoard development
kit [2] with Xilinx Zynq-7000 All Programmable SoC plat-
form and the Xilinx Vivado 2015.3 development environ-
ment for the experiments. This FPGA-based SoC contains
an ARM Cortex-A9 hard-core processor, which is a dual-
core, dual-issue, out-of-order, superscalar processor running
at 667MHz [2]. Level 1 instruction and data caches are
32kB in size and the Level 2 cache is 1MB [5]. The instruc-
tion window is set to hold 50 instructions [6]. We have as-
sumed a branch prediction accuracy of 95% similar to [13].
Similarly, branch mis-prediction penalty is set to 11 clock
cycles. We run applications from the CHStone Benchmark
suite in bare-metal mode on the processor [10]. The gprof
profiler of Vivado SDK is used to measure the runtimes of
applications [27]. The proposed methodology was run on a
6-core virtual machine with 8GB RAM, running OpenSUSE
13.2 on an Intel Xeon E5-1650V2 CPU host at 3.5 GHz.

Figure 4 shows a comparison between the actual and es-
timated results. Both axes of the graph are represented in
log2 scale for clarity. Here, blue circles represent actual re-
sults depicted in the horizontal axis while the orange trian-
gles represent estimated results depicted in the vertical axis.
The distance of the data points from the (y = x) line shown
in green indicates the accuracy of results. A lower deviation
of the data points from the line depicts higher accuracy.

The proposed technique has an average estimation error of
5.84% averaged across all 9 applications from the CHStone
suite. The estimated results for the MOTION application
initially exhibited a relatively higher error. Upon closer
inspection of the actual results by accessing the processor
performance counters, we identified that it was due to the
branch prediction accuracy for the application being lower
than the value stipulated in the data sheets and not due to
a short coming of our approach. Thus, for the MOTION
application we adjusted the branch prediction accuracy to
reflect the actual numbers. In future, we will automate this
manual adjustment process.

The runtime of the proposed technique averaged across all
these applications is 1 minute and 8 seconds. Table 2 shows
the individual estimation errors and run times for all appli-
cations. It can be observed that unlike [4], we do not need
to obtain the binary level information for each application,

12

13

14

15

16

17

18

19

20

21

22

23

24

12 13 14 15 16 17 18 19 20 21 22 23 24

lo
g

2
(E

st
im

a
te

d
 E

x
ec

u
ti

o
n

 C
y

cl
es

)

log2(Actual Execution Cycles)

Actual Estimated

DFMUL

DFDIV

GSMMOTION

AES ADPCM

DFSIN

SHA

JPEG

𝑦=𝑥

Figure 4: Comparison of Results

Table 2: Estimation Error and Runtime
ApplicationADPCMAESDFDIVDFMULDFSINGSMJPEGMOTIONSHA AVG.

Estimation
Error (%)

7.03 0.10 9.84 4.90 4.57 9.04 7.18 1.14 8.76 5.84

Runtime
(min:sec)

1:20 2:09 0:42 0:31 1:25 1:11 1:46 0:39 0:33 1:08

that necessitates a LLVM backend for the target proces-
sor. Instead, the proposed method relies only on the target-
independent LLVM IR information and yet obtains rapid
and accurate performance estimation for more complex and
widely prevalent dual-issue, out-of-order processor.

5. CONCLUSION
This paper proposes a rapid technique for performance es-

timation of dual-issue, out-of-order superscalar processors,
typically integrated in FPGA-based SoCs. The approach
can also be adapted to other out-of-order embedded proces-
sor architectures. The proposed technique has been shown
to be accurate with an average estimation error of only
5.84% for 9 test applications. The runtime of the approach
is in the order of minutes. In future, we will consider es-
timating power consumption in order to generate not only
performance efficient designs but also power and energy ef-
ficient systems.

6. REFERENCES
[1] LLVM Language Reference Manual.

http://llvm.org/docs/LangRef.html.

[2] Zed Board Hardware User’s Guide.
http://zedboard.org/sites/default/files/

documentations/ZedBoard_HW_UG_v2_2.pdf.

[3] ARM Ltd. Cortex-A9 Technical Reference Manual.
http:

//infocenter.arm.com/help/topic/com.arm.doc.

ddi0388f/DDI0388F_cortex_a9_r2p2_trm.pdf.

[4] Y. L. Aung et al. Compiler-assisted Technique for
Rapid Performance Estimation of FPGA-based
Processors. In SOCC, 2011.

[5] C. Celio. Kayla (1.4 GHz ARM Cortex A9).
https://github.com/ucb-bar/ccbench/wiki/Kayla-(1.4-
GHz-ARM-Cortex-A9).

[6] Y. Etsion et al. Computer Architecture - Out-of-order
Execution. https://webcourse.cs.technion.ac.il/
234267/Spring2014/ho/WCFiles/5-ca-oooe.pdf,
2014.

[7] S. Eyerman et al. Efficient Design Space Exploration
of High Performance Embedded Out-of-Order
Processors. In DATE, volume 1, 2006.

[8] S. Eyerman et al. A Mechanistic Performance Model
for Superscalar Out-of-order Processors. In TOCS,
2009.

[9] P. Giusto et al. Reliable Estimation of Execution
Time of Embedded Software. In DATE, 2001.

[10] Y. Hara et al. CHStone: A Benchmark Program Suite
for Practical C-based High-level Synthesis. In ISCAS,
2008.

[11] Intel Inc. SoCs - SoCs - Overview. https:
//www.altera.com/products/soc/overview.html.

[12] D. Ivoevic et al. Function-level Performance
Estimation for Heterogeneous MPSoC Platforms. In
ZINC, 2016.

[13] J. A. Langbridge. Professional Embedded ARM
Development. Wiley, 2013.

[14] M. Lattuada et al. Performance Modeling of
Embedded Applications with Zero Architectural
Knowledge. In CODES+ISSS, 2010.

[15] J. Lazzaro. Xilinx Parts Family History.
http://www-inst.eecs.berkeley.edu/

\textasciitidlecs294-59/fa10/resources/

Xilinx-history/Xilinx-history.html.

[16] T. Nakada et al. Design and Implementation of a
Workload Specific Simulator. In ANSS, 2006.

[17] F. Obeidat. Embedded Processor Selection
/Performance Estimation using FPGA-based Profiling.
PhD thesis, Virginia Commonwealth University, 2010.

[18] R. Patel et al. Recent Trends in Embedded System
Software Performance Estimation. Des. Autom. Emb.
Syst., 2013.

[19] G. Prabhu. Data Hazard Classification.
https://web.cs.iastate.edu/~prabhu/Tutorial/

PIPELINE/dataHazClass.html.

[20] A. K. B. Salem et al. Hard and Soft-core
Implementation of Embedded Control Application
Using RTOS. In ISIE, 2008.

[21] M. U. Sharif et al. Hardware-software Codesign of
RSA for Optimal Performance vs. Flexibility
Trade-off. In FPL, 2016.

[22] SourceTech411. Top FPGA Companies For 2013 -
Sourcetech411. http://sourcetech411.com/2013/04/
top-fpga-companies-for-2013/.

[23] D. Wijesundera et al. Exploiting Configuration
Dependencies for Rapid Area-efficient Customization
of Soft-core Processors. In SCOPES, 2016.

[24] D. Wijesundera et al. Rapid Design Space Exploration
for Soft Core Processor Customization and Selection.
In FPT, 2016.

[25] Xilinx Inc. Embedded Processors. https://www.
xilinx.com/products/intellectual-property/

embedded/nav-embedded-processors.html.

[26] Xilinx Inc. Zynq-7000 All Programmable SoC.
https://www.xilinx.com/products/

silicon-devices/soc/zynq-7000.html.

[27] Xilinx Inc. EDK Profiling User Guide.
https://www.xilinx.com/support/documentation/

sw_manuals/xilinx14_4/edk_prof.pdf, 2009.

[28] G. Zhong et al. Design Space Exploration of
FPGA-based Accelerators with Multi-level
Parallelism. In DATE, 2017.

