
Exploiting Configuration Dependencies for Rapid
Area-efficient Customization of Soft-core Processors

Deshya Wijesundera, Alok Prakash, Siew Kei Lam, Thambipillai Srikanthan

School of Computer Engineering,
Nanyang Technological University, Singapore 639798

deshyase001@e.ntu.edu.sg, {alok, assklam, astsrikan}@ntu.edu.sg

ABSTRACT

The large number of possible configurations in modern soft-core

processors make it tedious and time consuming to select the

optimal configuration for a given application. In this paper, we

propose a framework for rapid area-efficient customization of

soft-core processors that exploits the dependencies between the

various configuration options to prune the design space.

Additionally, the proposed technique relies on rapid and accurate

estimation models instead of the time consuming synthesis and

execution techniques proposed in the existing work. Experimental

results based on hand-coded applications and applications from

the popular CHStone benchmark suite show that the proposed

framework can rapidly and reliably select the best processor

configuration for a given application and save an average of

47.58% area over the processor with all the configuration options

enabled while achieving similar performance.

CCS Concepts

• Hardware~Software tools for EDA

Keywords

design space pruning; application-specific customization; soft-

core processors; area constraints; performance-area trade-off;

CSoC; FPGA.

1. INTRODUCTION
Field Programmable Gate Array (FPGA) based Configurable

System-on-Chip (CSoC) has been the attractive alternative over

Application Specific Integrated Circuits (ASICs) for embedded

system implementation in the recent past due to fast Time-to-

Market (TTM) and low Non-Recurring Engineering (NRE) cost

[14]. The re-configurability and heterogeneous real estate of

FPGA provides reusability and shorter development cycles. A

CSoC, typically consists of a processor, hardware accelerators and

a memory subsystem.

In a CSoC, the developer has an option to select either a hard-core

processor, soft-core processor or both. A soft-core processor,

unlike a hard-core processor, offers immense flexibility for further

customization through micro-architectural modifications as well

as instruction set extension. Soft processors continue to be the

choice in providing a level of programmability, allowing non-

experts to configure FPGAs [2], [3], [15]. Soft processors are used

in auxiliary functions of the system, such as managing non-critical

data movement, providing an interface for configuration, or

implementing the cognitive functions in an adaptive system [3].

The domain of improving processor architectures continue to

grow with FPGA architecture-tailored soft processor designs

being proposed [1], [2], [3], [4], [7], [15], [31], [32]. Moreover,

FPGAs are used to implement full applications rather than merely

being used as accelerators, hence soft-cores dominate due to their

ability to be application specific [7]. Cheah et al. [7] further state

that soft-processors continued to dominate since earlier attempts

in introducing hard processors in the Virtex II Pro [28] and Virtex

4 FX [27] were not entirely successful as a particular fixed

processor may not always suit the wide range of applications

which can be implemented on FPGA. The increasing popularity of

partial reconfiguration also makes soft-core processors the

preferred choice over hard-cores [23]. At the same time, soft

processors are increasingly being used in FPGAs for reliable

computing systems [25]. Cheah et al. [3] state that in recent work,

soft processors have been demonstrated as a viable abstraction of

hardware resources, allowing multi-processor systems to be built

and programmed easily.

However, the process of finding the optimal configuration tailored

for a particular application is often tedious and time consuming

due to the large number of configuration options available in

modern soft-core processors. Hence, a methodology that reduces

the runtime and effort for application specific customization of a

soft-core processor is a necessity in the embedded systems

domain with stringent TTM constraints. Further, tight area

constraints imposed on embedded devices require the embedded

designer to create area-efficient designs that achieve high

performance. Growth of a multitude of soft-processor

architectures makes it imperative that the customization

methodology remains adaptable to a given processor architecture.

In this paper, we propose a methodology for rapid design space

exploration and pruning for soft-core processors under area

constraints without performing lengthy synthesis and simulation

runs. The main contributions of this paper are,

1. Analysis of the dependencies for a given processor

architecture

2. Propose a tree based heuristic to prune the design space

in a time-efficient manner

3. A methodology for rapid application specific soft-core

processor customization under area constraints

The rest of the paper is organized as follows. Section 2 discusses

the existing literature. Section 3 describes the proposed

methodology, the identified bottlenecks and the implementation

details. Section 4 presents the experimental results and discussion.

Finally, we conclude in section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

SCOPES '16, May 23-25, 2016, Sankt Goar, Germany
© 2016 ACM. ISBN 978-1-4503-4320-6/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2906363.2906385

mailto:DESHYASE001@e.ntu.edu.sg
mailto:alok@ntu.edu.sg
mailto:ASSKLAM@ntu.edu.sg
mailto:ASTSRIKAN@ntu.edu.sg
mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2906363.2906385

2. RELATED WORK
Methods for micro-architectural modification as well as

instruction set customization have been proposed by researchers

in view of exploiting the benefits of a soft-core processor.

Leading FPGA vendors Altera [12] and Xilinx [29] provide

different versions of their soft-core processors and also support

instruction set customization and extension. For example, Altera

provides 2 versions of the Nios II Gen2 processor [12] with

different pipeline depths, customization options and custom

instructions. Instruction subsetting is defined as creating an

application specific instruction set processor from a more general

processor, by removing the support for unused instructions [5].

The myriad of configuration options in Commercial FPGA-based

soft-core processors [12], [29] facilitate instruction subsetting.

Instruction subsetting provides significant improvements in

performance while reducing area utilization and power

consumption [14], [21].

Application specific customization of processors has been a hot

research topic in the recent past due to its inherent benefits. [17],

[20] and [26] propose methodologies for soft-core processor

customization for specific types of applications. Yiannacouras et

al. [30] and Padmanabhan et al. [17] perform application specific

customization on Nios and LEON processors respectively, with

significant gain in performance and area. However, these

approaches necessitate synthesis and execution of the code thus,

incurring exponentially increasing time with increasing number of

configurable parameters. For example, an exhaustive search for a

suitable configuration in MicroBlaze could take up to 11 hours

[19], [21]. Sheldon et al. [21] propose a synthesis-in-the-loop

approach using impact ordered tree search heuristic. This

approach reduces the search to a fraction of the solution space but

requires synthesis and execution of the code. The application-

specific impact ordered tree based search requires a run time of

3.33 hours. The fixed ordered tree based approach can run in 1.5-2

hours but behaves poorly in certain scenarios. Further, this

approach does not consider dependencies between configurations.

Sheldon et al. propose improvements on the work in [21] using a

design of experiments (DoE) approach [22]. However, this

approach also requires synthesis runs of 2-3 hours and, manual

analysis and exclusion of infeasible configurations. Since the DoE

tool does not analyze infeasible combinations, this methodology

can have scenarios where the considered design space has a

significant component of infeasible combinations which can have

a direct negative impact on the results. Further, the DoE approach

is implemented through manual intervention of the DOE PRO XL

tool [24].

Prakash et al. [19] claim to significantly reduce run time using an

estimation approach. However, this method uses exhaustive

estimation for each possible configuration and thus, will require

significant effort with increasing number of configurations, even

though only 12 configurations of Nios II is used for analysis

purposes in this work. The paper mentions that the LEON

processor has 5*210 configurations. Therefore, such a processor

would increase the run time claimed in [19] by approximately 29

times. Moreover, the work does not analyze dependencies

between configuration options, which can result in the selection of

configurations which have repetitive functionality or are not

feasible. For example, the work mentions that dependency

between the Floating Point unit and Floating Divider unit is not

considered in the analysis.

3. METHODOLOGY
In this section we describe the proposed methodology for rapid

application specific design space exploration for soft-core

processors. Soft-core processors offer user configurable functional

units (FUs) which accelerate the performance by implementing a

given set of instructions directly on hardware. If the mentioned

FU is not selected for the processor, the corresponding instruction

generates an exception which is then served and executed by the

processor similar to other instructions from its Instruction Set

Architecture (ISA). Our approach leverages this fact to identify

the configurable FUs which would benefit the given application

and as a further step we try to optimize the performance-area

usage by finding the most suitable FUs in an area-constrained

design. Our approach can be abstracted into 4 phases namely,

processor characterization, architecture-aware dependency

analysis, application profiling & analysis and selection heuristic.

Even though we use the Nios II soft-core processor for

verification of the proposed methodology, the proposed approach

is generic and can be extended to any soft-core processor. The

framework is shown in Figure 1.

3.1 Processor Characterization
Processor characterization is a one-time process for a given

processor. This phase involves identification of the configurable

FUs of the target processor, the corresponding instructions and the

relevant performance-area characteristics for each FU. For

example, in the Nios II processor, we identified 5 configurable

FUs, namely 32-bit Integer Multiplier, 64-bit Integer Multiplier,

Integer Divider, Shifter and the Floating Point unit. It is important

to mention that the Floating Point unit is provided as a custom

instruction interface in the Nios II Gen2 processor design but it

could be analyzed as an additional FU [8]. Certain FUs can be

implemented with different configurations. This further increases

the complexity of the analysis in phase 2 as each configuration

provides a different performance-area metric.

We need to analyze the area occupied by each FU in the FPGA

real estate as our aim is to identify the configuration which

maximizes the performance, given an area constraint. We initially

derive the area of each configurable unit in hardware using the

Altera Quartus [10] tool. It was observed that certain

configurations utilize the on-chip digital signal processing (DSP)

blocks. In order to compare the results across all the

configurations we replace DSP with the equivalent adaptive logic

modules (ALMs). To derive the equivalent number of ALMs for a

DSP, we switch off the functionality of DSPs in the Altera

Quartus tool when generating the processor.

The next step identifies corresponding instructions which benefit

from the relevant FUs. This data is extracted from the datasheet or

obtained through simulations performed under test conditions.

This process is required as we later map the corresponding LLVM

[12], [18] instructions to the FUs during application profiling in

phase 3. Also, it is important to identify the execution times of

these instructions for both hardware and software based

implementations. Our approach utilizes the gain of these

instructions in order to predict the best possible configuration of a

processor tailored for an application.

Figure 1. Design Space Pruning Framework

3.2 Architecture-aware Dependency Analysis
This is a one-time phase for a given processor. Initially, we

analyze performance-area data for all possible configurations for

each FU and identify the best suited configuration/configurations.

This step removes repetitive functionality and selects the

configuration with optimal performance and minimal area in the

case of configurations with comparable area.

Then, we analyze the dependencies between configurable FUs to

eliminate configurations which are either impossible combinations

or have repetitive functionality. For example, the 64-bit Integer

Multiplier cannot be configured as a standalone FU. It can be

configured only in conjunction with the 32-bit Integer Multiplier.

Also, the functionality of the Shifter FU is automatically included

when the 64-bit Integer Multiplier is configured. Such

architecture-specific dependencies are analyzed in this phase of

the framework.

Our algorithm analyzes all possible configurations for the

processor to derive the best configuration. Hence, we need to

accurately estimate the area utilization of configurations with

multiple FUs. Based on the results of exhaustive synthesis runs

for different configurations in phase 1, we postulate that area

utilization for such configurations has an additive effect. For

example, area estimation for a configuration with the Base

Processor, Integer Divider and 32-bit Integer Multiplier should be

equal to the addition of the individual areas for the Base

Processor, Integer Divider and 32-bit Integer Multiplier. In section

4, we verify our approach with the observed results.

The benefits of the analysis are twofold. It prevents the designer

from analyzing unnecessary configurations and also identifies the

most profitable configuration among configurations with

repetitive functionality. This step is critical as it provides

significant gain to the run-time of the application by pruning the

design space.

3.3 Application Profiling & Analysis
In this phase, the application is compiled and profiled using the

LLVM open-source complier. This process is independent of the

target processor architecture. The application C code is initially

compiled using LLVM to produce the LLVM Intermediate

Representation (IR). We use the LLVM IR to extract function

names, basic blocks, instructions in the basic blocks, the

arguments and data types. We have written a LLVM pass for this

purpose. The LLVM-profiler is used to extract execution

frequencies of basic blocks. The extracted details with the

information obtained in phase 1 are further processed to derive the

execution count of each type of instruction which is then

aggregated to the abstraction level of FUs.

We utilize the extracted instruction counts as well as the area

information to compute the gain and impact of each FU for a

given application using equation (1) and equation (2) respectively.

𝐺𝐹𝑈 = ∑(𝐶𝐶𝑖𝑆𝑊 − 𝐶𝐶𝑖𝐻𝑊) × 𝑁𝑖

𝑛

𝑖=0

 (1)

 𝐼𝐹𝑈 = 𝐺𝐹𝑈 ÷ 𝐴𝐹𝑈 (2)

It is important that we use the derived dependencies among the

FUs from phase 2 in this phase of the methodology. For example,

the 64-bit Integer Multiplier when instantiated, performs 32-bit

integer multiplication and shifting in addition to the 64-bit

multiplication. Similarly, we have utilized the other dependencies

Where,

𝐺𝐹𝑈 : Gain of FU,

𝐼𝐹𝑈 : Impact of FU,

𝐴𝐹𝑈 : Area of FU,

𝑛 : Number of instruction types,

𝐶𝐶𝑖𝑆𝑊 : Clock cycles in software,

𝐶𝐶𝑖𝐻𝑊 : Clock cycles in hardware,

𝑁𝑖 : Instructions/typei

and redundancies for our analysis. Finally, we provide the impact

and area of each FU to the selection heuristic.

3.4 Selection Heuristic
The final phase of the proposed methodology is the area

constrained selection heuristic. The output of phase 3 and user

specified area constraint are the inputs to this phase. In this phase,

our main goal of optimizing performance under area constraints

for a given application is approached using a greedy search

heuristic which is based on a sorted tree structure. This

methodology is simple to implement yet has considerable

accuracy with minimal time complexity.

We have experimented with two variants of the greedy search

heuristic. We call the first approach as the 1-greedy approach

while the second method is called the 2-greedy approach. In the 1-

greedy approach, a tree sorted by the impact is pruned if the local

area constraint is not met by a FU. For example, in Figure 2 for

the ADPCM algorithm, if the area constraint is 1700 ALMs the

element at the root of the tree IM64, cannot be accommodated.

The base processor accommodates 1304 ALM and the remaining

area of 396 ALM is insufficient to incorporate the IM64 FU

(requires 434 ALM). Thus, we prune the root and move to the

next node of the tree that has the second highest impact. This

element, S could be accommodated as the area constraint is met.

This leaves us with 352 ALMs and the next node of the tree that

has an area constraint of 324 can be accommodated. Similarly, we

move to the bottom of the tree until either the area constraint is

met or the leaf node is reached. Finally, we analyze the chosen

configurations with the provided data from previous phases to

eliminate any impossible configurations and derive the final

output.

Figure 2. Ordered tree for 1-greedy search heuristic

In the 2-greedy approach we initially combine all possible

combinations of two FUs. We refer to this as a node in the tree.

Similar to 1-greedy search heuristic we sort them according to the

impact and subsequently prune using the area constraint until the

leaf node is reached. The pseudocode for 1-greedy and 2-greedy

algorithms are given in Algorithm 1 and 2 respectively.

4. RESULTS AND DISCUSSION
This section presents the results of our work. We used the Nios II

fast soft-core processor from Altera [12] for the experiments. Nios

II Gen2 processors provide 2 different variations of processor

cores, i.e. economy (e) and fast (f). The fast core has been selected

as it provides better performance-area than the economy core [30].

In order to verify the results of our algorithm we exhaustively

synthesized the Nios II processor with various combinations of the

configuration options using the Altera Quartus development

environment and Qsys tool [10]. The different benchmark

applications were then executed on these processors under a

ModelSim [16] simulation environment. The selected target FPGA

platform is Altera Cyclone V [9]. However, it should be noted that

the proposed techniques in this work are independent of the

platform. We used all the applications from the popular CHStone

benchmark suite [6] for experimentation. The CHStone

benchmark suite provides a balanced distribution of workloads

with a variation in their compute intensity. However, these

applications do not include single precision floating point

operations. Hence, we have also used 2 hand-coded applications

that contain several single precision floating point operations to

exercise the single precision floating point FU.

4.1 Area Estimation
Area estimation is performed in phase 2 of the methodology and

the estimated area is utilized in calculating the impact of FUs in

phase 3. Further, the selection heuristic in phase 4 also utilizes the

area in pruning the ordered tree. The area of the FUs is calculated

in terms of ALMs and DSPs. In order to use a common metric for

our calculations we derive the area in equivalent ALMs as

described next.

Firstly, we obtained the area utilization of each FU from the

synthesis results after synthesizing the processor twice for every

FU, once with DSP and once without DSP support. In the case of

DSP disabled configuration, the corresponding functionality is

implemented in the ALMs. The area results are shown in Table 1.

Next, we deduce the area for each FU, by deducting the area of

the base processor from the relevant configurations. The results

for this process are given in Table 2. Comparing the area results

for the DSP enabled and disabled runs, the equivalent ALMs

required per DSP for each FU is obtained as shown in Table 2. It

is interesting to note that the equivalent ALM utilization per DSP

is dependent on the FU. We attribute this fact to organization of

the DSP blocks and allocation of resources within the blocks. We

rely on the numbers in Table 2 to estimate the area utilization of

configurations with multiple FUs.

An additive approach is used to estimate the area of

configurations with multiple FUs. Figure 3 presents the results of

area estimation for the pruned design space in phase 2 compared

to the actual values. The maximum error in area estimation is less

than 1.2% and the average error in estimation is 0.55%. Hence,

the additive method could be reliably deployed to estimate the

configurations with multiple FUs.

Algorithm 1: Pseudocode for 1-greedy Search Heuristic

begin:

sort the functional units according to impact;

eliminate functional units with 0 impact;

RA = RA – Area BP;

For each node i :

{

if (Area Ni < RA) :

{

accommodate node i;

RA = RA – Area Ni;

}

else prune node i;

}

 end

Where,

RA: Remaining area,

Area BP: Area of base processor,

Area Ni: Area of ith node,

Area Nj: Area of node for jth combination

Table 1. Area characteristics of configurations

Configuration

Area

DSP

Enabled

DSP

Disabled

ALM DSP ALM

Base Processor (BP) 1304 0 1304

BP + Integer Divider (ID) 1417 0 1417

BP + 32-bit Integer Multiplier

(IM321)

1349 3 1628

BP + 64-bit Integer Multiplier

(IM64)

1330 3 1737

BP + Shifter(S1) 1348 0 1348

BP + Floating Point Hardware 2

(FP2)

2369 5 2750

Table 2. Equivalent ALMs of FUs

FU

Area

DSP Enabled

(Configuration

– Base)

DSP Disabled

ALM DSP ALM

(Configurat

ion – Base)

ALM per DSP

(Configuration –

Base)/DSP

ID 113 0 113 0

IM321 45 3 324 93

IM64 26 3 433 136

S1 44 0 44 0

FP2 1065 5 1446 76

1 The values for the selected method of implementation in Table 3

is mentioned in this case. Similar analysis has been done for all

methods of implementation.

Figure 3. Comparison between actual and estimated area

Table 3. Selected configurations of FUs

Configurable FU Implementation

Methods

Selected Method

32-bit Integer

Multiplier

Logic elements

3 * 16 Multiplier

1 * 32 Multiplier

3 * 16 Multiplier

Shifter Pipelined

Non-pipelined

Pipelined

Table 4. Timing characteristics of configurations

FU

Execution Time

(Clock cycles)

Gain

(SW-HW) Software

(SW)

Hardware

(HW)

BP N/A N/A N/A

ID 56 4 - 66 24

IM32 140 1 139

IM64 150 1 149

S 1 - 32 1 15

FP2

add 196 5 191

sub 218 5 213

div 517 16 501

mul 774 4 770

sqrt 494 4 490

float to int 69 2 67

int to float 115 4 111

min 151 1 150

max 160 1 159

abs 11 1 10

compare 91 1 90

4.2 Dependency Analysis
As mentioned in section 3, some configurable FUs provide several

methods of implementation, thereby increasing the complexity of

exploring the design space. In phase 2, we select one/several

methods for each FU, based on performance optimization under

area constraints. The respective FUs, implementation methods and

selected method are presented in Table 3.

Our observations in phase 2 of the methodology are given below.

0

500

1000

1500

2000

2500

3000

3500

A
re

a
in

 A
L

M
s

Configured FUs

Actual Estimated
Algorithm 2: Pseudocode for 2-greedy Search Heuristic

begin:

generate all possible combinations of 2 configurations;

sort the new combined node array according to impact;

eliminate combinations with 0 impact;

RA = RA – Area BP;

For each combined node j :

{

 if (Area Nj < RA) :

 {

 accommodate node j;

 RA = RA – Area Nj;

 break;

 }

 else prune node j;

}

Apply 1-greedy for the rest of the individual nodes

end

 Nios II provides the 64-bit Integer Multiplier unit as a

separate configurable FU. The implementation of this

unit requires the implementation of the 32-bit Integer

Multiplier as 3 * 16-bit or 1 * 32-bit multipliers

 The execution time of each FU depends on the method

used for implementation. For example, the 32-bit

Integer Multiplier implemented as 3 * 16-bit multipliers,

1 * 32-bit multipliers or using logic elements will have

different performance metrics.

 Area utilization depends on the configuration.

 Double precision floating point instructions are always

implemented in software.

The proposed algorithm is based on the gain achieved by

implementing instructions on dedicated hardware. Table 4

presents the execution time in clock cycles and the corresponding

gain for each configuration, considering the selected method of

implementation in Table 3. All execution times in software have

been obtained through experimental results, except for the Shifter

FU. The execution times in hardware and the software execution

time for Shifter FU have been obtained from datasheets available

online for Nios II [8]. The gain is calculated as a difference

between the software and hardware execution time and is used for

calculation of impact in phase 3.

Dependency analysis has the ability to rapidly prune the design

space. A total of 8 independent implementation methods are

considered. Theoretically, there are 256 different configurations.

The design space is first pruned to 96 configurations by removing

the infeasible combinations. For example, multiple instances of

the same FU using different methods of implementation cannot be

configured in the same configuration. Selecting the best

configuration for the remaining combinations as given in Table 3,

further prunes the design space to 32 configurations. Dependency

and redundancy analysis further reduces this to 20 configurations

in the case of the selected processor. We achieve 79.17%

reduction in the total number of configurations which require

analysis.

4.3 Performance Estimation
The results of profiling in phase 3, for the benchmarks and the

hand-coded applications are presented in Table 5. It is observed

that applications such as ADPCM and JPEG contain all types of

instructions under consideration except floating point operations.

Also, it is important to note that the benchmark suite consists of

applications that use floating point instructions. However, it was

revealed that all of them are double precision instructions. As

discussed earlier in section 4.2, the Nios II core processes double

precision floating point operations in software, thus these

instructions were not accelerated using the Floating Point

Hardware 2 FU. Hence, as mentioned in section 4, we use two

hand-coded algorithms to prove the scalability of our

methodology for single precision floating point arithmetic.

Figure 4 presents the impact of each FU for the test applications,

computed in phase 3. The graph indicates that the impact of each

FU varies with the application and as a designer, the complexity

of manually choosing the best possible configuration is tedious.

Further, an area constrained design space increases the complexity

as the optimization goal is based on a performance-area trade-off.

Figure 5 presents the results obtained for the pruned design space

in the exhaustive technique for SHA, MOTION, AES, JPEG,

FLOAT_HW1 and FLOAT_HW2. A similar process has been

carried out for the other applications. These results indicate that

Table 5. Instruction counts for test applications

Applicati

on

Instruction Count

ID IM32 IM64 S FP

ADPCM 3776 3306 56229 36590 0

MIPS 0 0 0 2926 0

GSM 0 0 1868 1955 0

BLOWFI

SH

0 0 0 70302 0

SHA 1044 0 0 96349 0

MOTION 0 0 0 141 0

AES 259 7023 0 5892 0

JPEG 86884 812018 1232352 1902149 0

DFADD 0 0 0 6325 0

DFDIV 27 0 1104 3471 0

DFMUL 0 0 836 2552 0

DFSIN 802 804 50184 225435 0

FLOAT_

HW1

0 0 0 0 105

FLOAT_

HW2

3776 3306 56229 36590 46725

Figure 4. Distribution of FU Impact

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

A
D

P
C

M

M
IP

S

G
S

M

B
L

O
W

F
IS

H

S
H

A

M
O

T
IO

N

A
E

S

JP
E

G

D
F

A
D

D

D
F

D
IV

D
F

M
U

L

D
F

S
IN

F
L

O
A

T
_
H

W
1

F
L

O
A

T
_
H

W
2

%
 I

m
p

a
ct

 o
f

F
U

s

Application

ID IM32 IM64 S FP

the configuration which gives the best performance depends on

the application. Exhaustive runs will be time consuming and the

results have to be further analyzed to find the optimal

configuration meeting specified area constraints.

The dots respresent the design space while the triangles represent the pareto points.

Figure 5. Results of exhaustive technique

Table 6. Comparison of results

Application

Selected FUs

ALM Constraint < 1700 ALM Constraint < 1800 ALM Constraint < 3400

E* 1-G* 2-G* E* 1-G* 2-G* E* 1-G* 2-G*

ADPCM S+IM3

2

S+IM3

2

S+IM3

2

S+IM32 IM64 IM64 IM32+S IM64 +ID IM64 +ID

MIPS S S S+ID S S S+ID S S S+ID

GSM S+IM3

2

S S+ID IM32+S IM64 IM64 IM32+S IM64 IM64

BLOWFISH S S S+ID S S S+ID S S S+ID

SHA S S+ID S+ID S S + ID S+ID S S+ID S+ID

MOTION S S S+ID S S S+ID S S S+ID

AES IM32+

S

IM32+

S

IM32+

S

IM32+S+I

D

IM32+S+I

D

IM32+S+I

D

IM32+S+ID IM32+S+ID IM32+S+ID

JPEG IM32+

S

IM32+

S

IM32+

S

IM64 IM64 IM64 IM64 IM64 +ID IM64 +ID

DFADD S S S+ID S S S+ID S S S+ID

DFDIV S+IM3

2

S+ID S+ID S+IM32 IM64 IM64 S+IM32 IM64+ID IM64+ID

DFMUL S+IM3

2

S S+ID IM64 IM64 IM64 IM64 IM64 IM64

DFSIN S+IM3

2

S+IM3

2

S+IM3

2

S+IM32 IM64 IM64 S+IM32 IM64+ID IM64+ID

FLOAT_HW

1

S+IM3

2

BP BP S+IM32 BP BP FP2+S FP2 FP2+S

FLOAT_HW

2

S+IM3

2

S+IM3

2

S+IM3

2

S+IM32 IM64 IM64 FP2+IM32+

S

IM64+FP+I

D

IM64+FP+I

D

E* = Exhaustive, 1-G* = 1-Greedy, 2-G* = 2-Greedy

335

340

345

350

12 17 22 27 32 37

P
er

fo
rm

a
n
ce

 (
C

lo
ck

C
y
cl

es
)

x
 1

0
0
0
0

Area (ALM) Hundreds

SHA

5.76

5.77

5.78

5.79

5.8

12 17 22 27 32 37

P
er

fo
rm

a
n
ce

 (
C

lo
ck

C
y
cl

es
)

x
 1

0
0
0
0

Area (ALM) Hundreds

MOTION

0

10

20

30

12 17 22 27 32 37

P
er

fo
rm

a
n
ce

 (
C

lo
ck

C
y
cl

es
)

x
 1

0
0
0
0

Area (ALM) Hundreds

AES

0

1000

2000

3000

12 17 22 27 32 37

P
er

fo
rm

a
n
ce

 (
C

lo
ck

C
y
cl

es
)

x
 1

0
0
0
0

Area (ALM) Hundreds

JPEG

0

2

4

12 17 22 27 32 37

P
er

fo
rm

a
n
ce

 (
C

lo
ck

C
y
cl

es
)

x
 1

0
0
0
0

Area (ALM) Hundreds

FLOAT_HW1

0

50

100

150

12 17 22 27 32 37

P
er

fo
rm

a
n
ce

 (
C

lo
ck

C
y
cl

es
)

x
 1

0
0
0
0

Area (ALM) Hundreds

FLOAT_HW2

Figure 6. Comparison of accuracy of estimated performance

The final goal of the proposed approach is to find the optimal

processor configuration under given area constraints. We have

used exhaustive implementation to obtain the performance and

area values for verification of the proposed methodology. Results

of the proposed methodology and those of exhaustive technique,

given area constraints of 1700, 1800 and 3400 ALMs are

presented in Table 6. The area constraints have been selected such

that 1700, 1800 and 3400 ALM could accommodate 1 FU, 2-3

FUs and all FUs respectively. This represents a balanced

distribution of the design space.

Table 7. Percentage reduction in area compared to enabling

all configurations

Application % Area

Reduction

Application % Area

Reduction

ADPCM 49.516 JPEG 49.516

MIPS 59.25 DFADD 59.25

GSM 49.516 DFDIV 49.516

BLOWFISH 59.25 DFMUL 49.516

SHA 59.25 DFSIN 49.516

MOTION 59.25 FLOAT_HW1 16.868

AES 49.516 FLOAT_HW2 6.469

The results in phase 4 prove that the 1-greedy search heuristic

produces accurate results in most scenarios. The results are

accurate for MIPS, BLOWFISH, DFADD, MOTION and AES.

The datasheets indicate that the 32-bit Integer Multiplier does not

support 64-bit multiplication instructions. However, the

experimental results do not confirm this fact. The exhaustive

approach indicates that the impact of the Integer Divider is

negligible in most cases. However, the datasheet indicates a

significant gain. Further investigation revealed that the gain is

dependent on the bit width of the operands. We attribute the

deviation of results in Table 6 to this unexpected behavior of the

32-bit Integer Multiplier and Integer Divider FUs. Changing the

methodology to consider these two facts yields nearly 100%

optimal results as shown in Figure 6. The instruction profile of

FLOAT_HW1 does not map to any of the integer instructions

indicated in the datasheets. However, exhaustive results reveal

that performance improves for some integer configurations.

Further exploration with different handwritten codes provided

similar results. Even though it is not mentioned in the datasheets

this indicates that Floating Point Hardware 2 unit utilizes some

functionality of the integer units if these FUs are configured.

Thus, the presence of these FUs inevitably improves performance

for most applications but this will be at the cost of area.

2-greedy heuristic produces sub optimal results in most scenarios

for the test applications. This is due to the fact that the algorithm

initially checks for combinations of two configurations in

selecting the best configuration. Several applications do not utilize

all FUs. Thus, 2-greedy approach produces poor results. However,

when multiple FUs are utilized by the algorithm the 2-greedy

method also produces accurate results. Thus, we expect the

accuracy of the 2-greedy approach to increase with the complexity

of the algorithm. FLOAT_HW2 justifies our understanding.

The ALM constraint of 3400 could accommodate a processor with

all configurations enabled. The proposed methodology provides

maximum, median and average area reductions of 59.25%,

49.52% and 47.58% respectively, compared to a design where all

configurable options are enabled. Table 7 depicts the reduction in

area for each application compared to the configuration that has

all configurable options enabled.

Another factor we need to consider with the exhaustive estimation

approach in [19] is the time complexity of the algorithm.

Considering a scenario with n possible configurable methods,

using dependency analysis we eliminate several configurations

which effectively yields m configurations (m << n). Our approach

has a time complexity of O (m) while exhaustive estimation

approach claims O (2n).

The 1-greedy and 2-greedy approaches have computation times of

204 µs and 224 µs respectively for the Nios II processor under

0

20

40

60

80

100

P
er

fo
rm

a
n

ce

Application

AREA < 1700 ALMs

Actual 1-greedy 2-greedy

0

20

40

60

80

100

P
er

fo
rm

a
n

ce

Application

AREA < 1800 ALMs

Actual 1-greedy 2-greedy

96.5

97

97.5

98

98.5

99

99.5

100

P
er

fo
rm

a
n

ce

Application

AREA < 3400 ALMs

Actual 1-greedy 2-greedy

consideration. This is a significant improvement compared to the

computation time of 512 s for the exhaustive estimation approach

discussed in [19]. Further, when the number of configurable units

increase the runtime of exhaustive estimation increases

considerably as each addition of a configurable unit doubles the

runtime. For the proposed algorithm runtime analysis reveals that

the overhead is less than 20% for the Nios II fast processor. For

example, a processor like LEON which has 5*210 configurations,

will require a run time of almost 3 hours in the exhaustive

approach whereas the proposed method would take less than a

second. Thus, considering the significant gain in runtime and time

complexity the proposed approach is superior to the exhaustive

estimation approach.

5. CONCLUSION
In this paper, we proposed a rapid design space pruning technique

for soft-core processor customization under user specified area

constraint by exploiting dependencies between the various

configuration options. The proposed methodology provides

maximum, median and average area reductions of 59.25%,

49.52% and 47.58% respectively compared to a processor core

with all configuration options enabled. The runtime complexity of

our approach is linear, which yields better results when the design

space becomes prohibitively large. The 1-greedy and 2-greedy

heuristics used in the proposed methodology have computation

times of 204 µs and 224 µs compared to 512 s in an existing

exhaustive estimation approach. Lastly, the proposed

methodology is generic and therefore, could be applied to any

soft-core processor with similar configurable functional units on

an FPGA.

6. REFERENCES
[1] Aaron Severance, Joe Edwards, Hossein Omidian, and Guy

Lemieux. 2014. Soft vector processors with streaming

pipelines. In Proceedings of the 2014 ACM/SIGDA

international symposium on Field-programmable gate arrays

(FPGA '14). ACM, New York, NY, USA, 117-126.

[2] Charles Eric LaForest and John Gregory Steffan. 2012.

OCTAVO: an FPGA-centric processor family. In

Proceedings of the ACM/SIGDA international symposium

on Field Programmable Gate Arrays (FPGA '12). ACM, New

York, NY, USA, 219-228.

[3] Cheah Hui Yan, Suhaib Fahmy, and Nachiket Kapre. 2015.

On Data Forwarding in Deeply Pipelined Soft Processors. In

Proceedings of the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays (FPGA

'15). ACM, New York, NY, USA, 181-189.

[4] Christopher H. Chou, Aaron Severance, Alex D. Brant,

Zhiduo Liu, Saurabh Sant, and Guy G.F. Lemieux. 2011.

VEGAS: soft vector processor with scratchpad memory. In

Proceedings of the 19th ACM/SIGDA international

symposium on Field programmable gate arrays (FPGA '11)

[5] Dougherty, W.E., Pursley, D.J., and Thomas. D.E., 1998.

Instruction subsetting: Trading power for programmability.

In Proceedings of the International Conference on VLSI

Technology and Circuits (VLSI ‘98), pages 42-47, 1998. 

[6] Hara, Y., Tomiyama, H., Honda, S.; Takada, H., and Ishii,

K., 2008. CHStone: A benchmark program suite for practical

C-based high-level synthesis. In Proceedings of the

International Symposium on Circuits and Systems (ISCAS

‘08), pages 1192-1195, May 2008.

[7] Hui Yan Cheah, Fredrik Brosser, Suhaib A. Fahmy, and

Douglas L. Maskell. 2014. The iDEA DSP Block-Based Soft

Processor for FPGAs. ACM Trans. Reconfigurable Technol.

Syst. 7, 3, Article 19 (September 2014), 23 pages.

[8] INTEL CORPORATION. 2015. Nios II Floating Point

Hardware 2 Component User Guide.

https://www.altera.com/content/dam/altera-

www/global/en_US/others/literature/ug/ug_fph2.pdf

[9] INTEL CORPORATION. 2015. Nios II Gen2 Processor

Reference Guide.

https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cp

u-nii5v1gen2.pdf

[10] INTEL CORPORATION. 2016. Altera Design Software.

https://www.altera.com/products/design-

software/overview.html

[11] INTEL CORPORATION. 2016. CYCLONE V FPGAS &

SOCS.

https://www.altera.com/products/fpga/cyclone-

series/cyclone-v/overview.html

[12] INTEL CORPORATION. 2016. Nios II Processor: The

World's Most Versatile Embedded Processor.

https://www.altera.com/products/processors/overview.html

[13] Lattner, C. and Adve, V. 2004. The LLVM Compiler

Framework and Infrastructure.

http://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.pdf

[14] Lewis, B. and Ramamoorthy, G. 2009. Market Trends:

ASIC Design Starts.

http://www.gartner.com/DisplayDocument?id=919712

[15] Madhura Purnaprajna and Paolo Ienne. 2012. Making wide-

issue VLIW processors viable on FPGAs. ACM Trans.

Archit. Code Optim. 8, 4, Article 33 (January 2012), 16

pages.

[16] MENTOR GRAPHICS CORPORATION. 2016. ModelSim

ASIC and FPGA Design.

https://www.mentor.com/products/fv/modelsim/

[17] Padmanabhan, S., Cytron, R.K., Chamberlain, R.D. and

Lockwood, J.W., 2006. Automatic application-specific

microarchitecture reconfiguration. In Proceedings of the

International Symposium on Parallel and Distributed

Processing (IPDPS ‘06), pages 25-29, Apr. 2006.

[18] Plessl, C. 2014. Static LLVM Compilation Tool flow.

http://homepages.uni-paderborn.de/plessl/teaching/2014-

Codesign/slides/02-Compiler-LLVM.pdf

[19] Prakash, A., Siew-Kei Lam, Singh, A.K., and Srikanthan, T.,

2009. Rapid design exploration framework for application-

aware customization of soft core processors. In Proceedings

of the International Conference on Field Programmable

Logic and Applications (FPL ‘09), pages 539-542, Dec.

2009.

[20] Rajotte, S., Gil, D.C., and Langlois, J.M.P., 2011. Combining

ISA extensions and subsetting for improved ASIP

performance and cost. In Proceedings of the International

Symposium on Circuits and Systems (ISCAS ‘11), pages

653-656, May 2011.

[21] Sheldon, D., Kumar, R., Lysecky, R., Vahid, F., and Tullsen,

D., 2006. Application-Specific Customization of

Parameterized FPGA Soft-Core Processors. . In Proceedings

https://www.altera.com/content/dam/altera-www/global/en_US/others/literature/ug/ug_fph2.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/others/literature/ug/ug_fph2.pdf
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.altera.com/products/design-software/overview.html
https://www.altera.com/products/design-software/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/processors/overview.html
http://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.pdf
http://www.gartner.com/DisplayDocument?id=919712
https://www.mentor.com/products/fv/modelsim/
http://homepages.uni-paderborn.de/plessl/teaching/2014-Codesign/slides/02-Compiler-LLVM.pdf
http://homepages.uni-paderborn.de/plessl/teaching/2014-Codesign/slides/02-Compiler-LLVM.pdf

of the International Conference on Computer-Aided Design

(ICCAD ‘06), pages 261-268, Nov. 2006.

[22] Sheldon, D., Vahid, F., and Lonardi. S., 2007. Soft-core

Processor Customization using the Design of Experiments

Paradigm. In Proceedings of the International Conference on

Design, Automation & Test in Europe (DATE ‘07), pages 1-

6, 2007.

[23] Shendi, R. (2015). CUSTOMIZATION OF A SOFT-CORE

CPU ON AN FPGA. Master’s Thesis. University of

Manchester.

[24] SIGMAZONE CORPORATION. 2016. DOE PRO.

http://www.sigmazone.com/doepro.htm

[25] Vakili, S., Langlois, J. and Bois, G. 2013. Customised soft

processor design: a compromise between architecture

description languages and parameterisable processors. IET

Computers & Digital Techniques 7, pages 122-131, 2013.

[26] Vakili, S., Langlois, J. and Bois, G. 2016. Accuracy-aware

processor customisation for fixed-point arithmetic. IET

Computers & Digital Techniques 10, pages 1-11, Jan. 2016.

[27] XILINX CORPORATION. 2010. Virtex-4 family overview.

http://www.xilinx.com/support/documentation/data

sheets/ds112.pdf

[28] XILINX CORPORATION. 2011. Virtex-II pro and Virtex-II

Pro X platform FPGAs data sheet.

http://www.xilinx.com/support/documentation/data

sheets/ds083.pdf

[29] XILINX CORPORATION. 2016. MicroBlaze Soft Processor

Core.

http://www.xilinx.com/products/design-

tools/microblaze.html

[30] Yiannacouras, P., Steffan, J. and Rose, J. 2007. Exploration

and Customization of FPGA-Based Soft Processors. In

Transactions on Computer-Aided Design of Integrated

Circuits and Systems (ICCAS ‘06), pages 266-277, Feb.

2007

[31] Yuichiroh Tanaka, Shimpei Sato, and Kenji Kise. 2014. The

Ultrasmall soft processor. SIGARCH Comput. Archit. News

41, 5 (June 2014), 95-100.

[32] Zhiduo Liu, Aaron Severance, Satnam Singh, and Guy G.F.

Lemieux. 2012. Accelerator compiler for the VENICE vector

processor. In Proceedings of the ACM/SIGDA international

symposium on Field Programmable Gate Arrays (FPGA '12)

http://www.sigmazone.com/doepro.htm
http://www.xilinx.com/support/documentation/data%20sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data%20sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data%20sheets/ds083.pdf
http://www.xilinx.com/support/documentation/data%20sheets/ds083.pdf
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.xilinx.com/products/design-tools/microblaze.html

