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ABSTRACT 

The large number of possible configurations in modern soft-core 

processors make it tedious and time consuming to select the 

optimal configuration for a given application. In this paper, we 

propose a framework for rapid area-efficient customization of 

soft-core processors that exploits the dependencies between the 

various configuration options to prune the design space. 

Additionally, the proposed technique relies on rapid and accurate 

estimation models instead of the time consuming synthesis and 

execution techniques proposed in the existing work. Experimental 

results based on hand-coded applications and applications from 

the popular CHStone benchmark suite show that the proposed 

framework can rapidly and reliably select the best processor 

configuration for a given application and save an average of 

47.58% area over the processor with all the configuration options 

enabled while achieving similar performance. 
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1. INTRODUCTION 
Field Programmable Gate Array (FPGA) based Configurable 

System-on-Chip (CSoC) has been the attractive alternative over 

Application Specific Integrated Circuits (ASICs) for embedded 

system implementation in the recent past due to fast Time-to-

Market (TTM) and low Non-Recurring Engineering (NRE) cost 

[14]. The re-configurability and heterogeneous real estate of 

FPGA provides reusability and shorter development cycles. A 

CSoC, typically consists of a processor, hardware accelerators and 

a memory subsystem.  

In a CSoC, the developer has an option to select either a hard-core 

processor, soft-core processor or both. A soft-core processor, 

unlike a hard-core processor, offers immense flexibility for further 

customization through micro-architectural modifications as well 

as instruction set extension. Soft processors continue to be the 

choice in providing a level of programmability, allowing non-

experts to configure FPGAs [2], [3], [15]. Soft processors are used 

in auxiliary functions of the system, such as managing non-critical 

data movement, providing an interface for configuration, or 

implementing the cognitive functions in an adaptive system [3]. 

The domain of improving processor architectures continue to 

grow with FPGA architecture-tailored soft processor designs 

being proposed [1], [2], [3], [4], [7], [15], [31], [32]. Moreover, 

FPGAs are used to implement full applications rather than merely 

being used as accelerators, hence soft-cores dominate due to their 

ability to be application specific [7]. Cheah et al. [7] further state 

that soft-processors continued to dominate since earlier attempts 

in introducing hard processors in the Virtex II Pro [28] and Virtex 

4 FX [27] were not entirely successful as a particular fixed 

processor may not always suit the wide range of applications 

which can be implemented on FPGA. The increasing popularity of 

partial reconfiguration also makes soft-core processors the 

preferred choice over hard-cores [23]. At the same time, soft 

processors are increasingly being used in FPGAs for reliable 

computing systems [25]. Cheah et al. [3] state that in recent work, 

soft processors have been demonstrated as a viable abstraction of 

hardware resources, allowing multi-processor systems to be built 

and programmed easily. 

However, the process of finding the optimal configuration tailored 

for a particular application is often tedious and time consuming 

due to the large number of configuration options available in 

modern soft-core processors. Hence, a methodology that reduces 

the runtime and effort for application specific customization of a 

soft-core processor is a necessity in the embedded systems 

domain with stringent TTM constraints. Further, tight area 

constraints imposed on embedded devices require the embedded 

designer to create area-efficient designs that achieve high 

performance. Growth of a multitude of soft-processor 

architectures makes it imperative that the customization 

methodology remains adaptable to a given processor architecture.  

In this paper, we propose a methodology for rapid design space 

exploration and pruning for soft-core processors under area 

constraints without performing lengthy synthesis and simulation 

runs. The main contributions of this paper are, 

1. Analysis of the dependencies for a given processor 

architecture 

2. Propose a tree based heuristic to prune the design space 

in a time-efficient manner 

3. A methodology for rapid application specific soft-core 

processor customization under area constraints  

The rest of the paper is organized as follows. Section 2 discusses 

the existing literature. Section 3 describes the proposed 

methodology, the identified bottlenecks and the implementation 

details. Section 4 presents the experimental results and discussion. 

Finally, we conclude in section 5. 
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2. RELATED WORK 
Methods for micro-architectural modification as well as 

instruction set customization have been proposed by researchers 

in view of exploiting the benefits of a soft-core processor. 

Leading FPGA vendors Altera [12] and Xilinx [29] provide 

different versions of their soft-core processors and also support 

instruction set customization and extension. For example, Altera 

provides 2 versions of the Nios II Gen2 processor [12]  with 

different pipeline depths, customization options and custom 

instructions. Instruction subsetting is defined as creating an 

application specific instruction set processor from a more general 

processor, by removing the support for unused instructions [5]. 

The myriad of configuration options in Commercial FPGA-based 

soft-core processors [12], [29] facilitate instruction subsetting. 

Instruction subsetting provides significant improvements in 

performance while reducing area utilization and power 

consumption [14], [21]. 

Application specific customization of processors has been a hot 

research topic in the recent past due to its inherent benefits. [17],   

[20] and [26] propose methodologies for soft-core processor 

customization for specific types of applications. Yiannacouras et 

al. [30] and Padmanabhan et al. [17] perform application specific 

customization on Nios and LEON processors respectively, with 

significant gain in performance and area. However, these 

approaches necessitate synthesis and execution of the code thus, 

incurring exponentially increasing time with increasing number of 

configurable parameters. For example, an exhaustive search for a 

suitable configuration in MicroBlaze could take up to 11 hours 

[19], [21].  Sheldon et al. [21] propose a synthesis-in-the-loop 

approach using impact ordered tree search heuristic. This 

approach reduces the search to a fraction of the solution space but 

requires synthesis and execution of the code. The application- 

specific impact ordered tree based search requires a run time of 

3.33 hours. The fixed ordered tree based approach can run in 1.5-2 

hours but behaves poorly in certain scenarios. Further, this 

approach does not consider dependencies between configurations. 

Sheldon et al. propose improvements on the work in [21] using a 

design of experiments (DoE) approach [22]. However, this 

approach also requires synthesis runs of 2-3 hours and, manual 

analysis and exclusion of infeasible configurations. Since the DoE 

tool does not analyze infeasible combinations, this methodology 

can have scenarios where the considered design space has a 

significant component of infeasible combinations which can have 

a direct negative impact on the results. Further, the DoE approach 

is implemented through manual intervention of the DOE PRO XL 

tool [24]. 

Prakash et al. [19] claim to significantly reduce run time using an 

estimation approach. However, this method uses exhaustive 

estimation for each possible configuration and thus, will require 

significant effort with increasing number of configurations, even 

though only 12 configurations of Nios II is used for analysis 

purposes in this work. The paper mentions that the LEON 

processor has 5*210 configurations. Therefore, such a processor 

would increase the run time claimed in [19] by approximately 29 

times. Moreover, the work does not analyze dependencies 

between configuration options, which can result in the selection of 

configurations which have repetitive functionality or are not 

feasible. For example, the work mentions that dependency 

between the Floating Point unit and Floating Divider unit is not 

considered in the analysis. 

3. METHODOLOGY 
In this section we describe the proposed methodology for rapid 

application specific design space exploration for soft-core 

processors. Soft-core processors offer user configurable functional 

units (FUs) which accelerate the performance by implementing a 

given set of instructions directly on hardware. If the mentioned 

FU is not selected for the processor, the corresponding instruction 

generates an exception which is then served and executed by the 

processor similar to other instructions from its Instruction Set 

Architecture (ISA). Our approach leverages this fact to identify 

the configurable FUs which would benefit the given application 

and as a further step we try to optimize the performance-area 

usage by finding the most suitable FUs in an area-constrained 

design. Our approach can be abstracted into 4 phases namely, 

processor characterization, architecture-aware dependency 

analysis, application profiling & analysis and selection heuristic. 

Even though we use the Nios II soft-core processor for 

verification of the proposed methodology, the proposed approach 

is generic and can be extended to any soft-core processor. The 

framework is shown in Figure 1. 

3.1 Processor Characterization 
Processor characterization is a one-time process for a given 

processor. This phase involves identification of the configurable 

FUs of the target processor, the corresponding instructions and the 

relevant performance-area characteristics for each FU. For 

example, in the Nios II processor, we identified 5 configurable 

FUs, namely 32-bit Integer Multiplier, 64-bit Integer Multiplier, 

Integer Divider, Shifter and the Floating Point unit. It is important 

to mention that the Floating Point unit is provided as a custom 

instruction interface in the Nios II Gen2 processor design but it 

could be analyzed as an additional FU [8].  Certain FUs can be 

implemented with different configurations.  This further increases 

the complexity of the analysis in phase 2 as each configuration 

provides a different performance-area metric. 

We need to analyze the area occupied by each FU in the FPGA 

real estate as our aim is to identify the configuration which 

maximizes the performance, given an area constraint. We initially 

derive the area of each configurable unit in hardware using the 

Altera Quartus [10] tool. It was observed that certain 

configurations utilize the on-chip digital signal processing (DSP) 

blocks. In order to compare the results across all the 

configurations we replace DSP with the equivalent adaptive logic 

modules (ALMs). To derive the equivalent number of ALMs for a 

DSP, we switch off the functionality of DSPs in the Altera 

Quartus tool when generating the processor.  

The next step identifies corresponding instructions which benefit 

from the relevant FUs. This data is extracted from the datasheet or 

obtained through simulations performed under test conditions. 

This process is required as we later map the corresponding LLVM 

[12], [18] instructions to the FUs during application profiling in 

phase 3. Also, it is important to identify the execution times of 

these instructions for both hardware and software based 

implementations. Our approach utilizes the gain of these 

instructions in order to predict the best possible configuration of a 

processor tailored for an application. 



 

Figure 1. Design Space Pruning Framework 

 

3.2 Architecture-aware Dependency Analysis 
This is a one-time phase for a given processor. Initially, we 

analyze performance-area data for all possible configurations for 

each FU and identify the best suited configuration/configurations. 

This step removes repetitive functionality and selects the 

configuration with optimal performance and minimal area in the 

case of configurations with comparable area.  

Then, we analyze the dependencies between configurable FUs to 

eliminate configurations which are either impossible combinations 

or have repetitive functionality. For example, the 64-bit Integer 

Multiplier cannot be configured as a standalone FU. It can be 

configured only in conjunction with the 32-bit Integer Multiplier. 

Also, the functionality of the Shifter FU is automatically included 

when the 64-bit Integer Multiplier is configured. Such 

architecture-specific dependencies are analyzed in this phase of 

the framework. 

Our algorithm analyzes all possible configurations for the 

processor to derive the best configuration. Hence, we need to 

accurately estimate the area utilization of configurations with 

multiple FUs. Based on the results of exhaustive synthesis runs 

for different configurations in phase 1, we postulate that area 

utilization for such configurations has an additive effect. For 

example, area estimation for a configuration with the Base 

Processor, Integer Divider and 32-bit Integer Multiplier should be 

equal to the addition of the individual areas for the Base 

Processor, Integer Divider and 32-bit Integer Multiplier. In section 

4, we verify our approach with the observed results. 

The benefits of the analysis are twofold. It prevents the designer 

from analyzing unnecessary configurations and also identifies the 

most profitable configuration among configurations with 

repetitive functionality.  This step is critical as it provides 

significant gain to the run-time of the application by pruning the 

design space. 

 

3.3 Application Profiling & Analysis 
In this phase, the application is compiled and profiled using the 

LLVM open-source complier. This process is independent of the 

target processor architecture. The application C code is initially 

compiled using LLVM to produce the LLVM Intermediate 

Representation (IR). We use the LLVM IR to extract function 

names, basic blocks, instructions in the basic blocks, the 

arguments and data types. We have written a LLVM pass for this 

purpose. The LLVM-profiler is used to extract execution 

frequencies of basic blocks. The extracted details with the 

information obtained in phase 1 are further processed to derive the 

execution count of each type of instruction which is then 

aggregated to the abstraction level of FUs. 

We utilize the extracted instruction counts as well as the area 

information to compute the gain and impact of each FU for a 

given application using equation (1) and equation (2) respectively. 

𝐺𝐹𝑈 = ∑(𝐶𝐶𝑖𝑆𝑊 − 𝐶𝐶𝑖𝐻𝑊) × 𝑁𝑖

𝑛

𝑖=0

        (1)  

                       𝐼𝐹𝑈 = 𝐺𝐹𝑈 ÷ 𝐴𝐹𝑈                                     (2)  

It is important that we use the derived dependencies among the 

FUs from phase 2 in this phase of the methodology. For example, 

the 64-bit Integer Multiplier when instantiated, performs 32-bit 

integer multiplication and shifting in addition to the 64-bit 

multiplication. Similarly, we have utilized the other dependencies 

Where, 

𝐺𝐹𝑈  : Gain of FU, 

𝐼𝐹𝑈  : Impact of FU, 

𝐴𝐹𝑈  : Area of FU, 

𝑛 : Number of instruction types, 

𝐶𝐶𝑖𝑆𝑊 : Clock cycles in software, 

𝐶𝐶𝑖𝐻𝑊 : Clock cycles in hardware, 

𝑁𝑖 : Instructions/typei 

 

 

 

 



and redundancies for our analysis. Finally, we provide the impact 

and area of each FU to the selection heuristic. 

3.4 Selection Heuristic  
The final phase of the proposed methodology is the area 

constrained selection heuristic. The output of phase 3 and user 

specified area constraint are the inputs to this phase. In this phase, 

our main goal of optimizing performance under area constraints 

for a given application is approached using a greedy search 

heuristic which is based on a sorted tree structure. This 

methodology is simple to implement yet has considerable 

accuracy with minimal time complexity. 

We have experimented with two variants of the greedy search 

heuristic. We call the first approach as the 1-greedy approach 

while the second method is called the 2-greedy approach. In the 1-

greedy approach, a tree sorted by the impact is pruned if the local 

area constraint is not met by a FU. For example, in Figure 2 for 

the ADPCM algorithm, if the area constraint is 1700 ALMs the 

element at the root of the tree IM64, cannot be accommodated. 

The base processor accommodates 1304 ALM and the remaining 

area of 396 ALM is insufficient to incorporate the IM64 FU 

(requires 434 ALM). Thus, we prune the root and move to the 

next node of the tree that has the second highest impact. This 

element, S could be accommodated as the area constraint is met. 

This leaves us with 352 ALMs and the next node of the tree that 

has an area constraint of 324 can be accommodated. Similarly, we 

move to the bottom of the tree until either the area constraint is 

met or the leaf node is reached. Finally, we analyze the chosen 

configurations with the provided data from previous phases to 

eliminate any impossible configurations and derive the final 

output.   

 

Figure 2. Ordered tree for 1-greedy search heuristic 

In the 2-greedy approach we initially combine all possible 

combinations of two FUs. We refer to this as a node in the tree. 

Similar to 1-greedy search heuristic we sort them according to the 

impact and subsequently prune using the area constraint until the 

leaf node is reached. The pseudocode for 1-greedy and 2-greedy 

algorithms are given in Algorithm 1 and 2 respectively.  

4. RESULTS AND DISCUSSION 
This section presents the results of our work. We used the Nios II 

fast soft-core processor from Altera [12] for the experiments. Nios 

II Gen2 processors provide 2 different variations of processor 

cores, i.e. economy (e) and fast (f). The fast core has been selected 

as it provides better performance-area than the economy core [30]. 

In order to verify the results of our algorithm we exhaustively 

synthesized the Nios II processor with various combinations of the 

configuration options using the Altera Quartus development 

environment and Qsys tool [10]. The different benchmark 

applications were then executed on these processors under a 

ModelSim [16] simulation environment. The selected target FPGA 

platform is Altera Cyclone V [9]. However, it should be noted that 

the proposed techniques in this work are independent of the 

platform. We used all the applications from the popular CHStone 

benchmark suite [6] for experimentation. The CHStone 

benchmark suite provides a balanced distribution of workloads 

with a variation in their compute intensity. However, these 

applications do not include single precision floating point 

operations. Hence, we have also used 2 hand-coded applications 

that contain several single precision floating point operations to 

exercise the single precision floating point FU.    

4.1 Area Estimation  
Area estimation is performed in phase 2 of the methodology and 

the estimated area is utilized in calculating the impact of FUs in 

phase 3. Further, the selection heuristic in phase 4 also utilizes the 

area in pruning the ordered tree. The area of the FUs is calculated 

in terms of ALMs and DSPs. In order to use a common metric for 

our calculations we derive the area in equivalent ALMs as 

described next. 

Firstly, we obtained the area utilization of each FU from the 

synthesis results after synthesizing the processor twice for every 

FU, once with DSP and once without DSP support. In the case of 

DSP disabled configuration, the corresponding functionality is 

implemented in the ALMs. The area results are shown in Table 1. 

Next, we deduce the area for each FU, by deducting the area of 

the base processor from the relevant configurations. The results 

for this process are given in Table 2. Comparing the area results 

for the DSP enabled and disabled runs, the equivalent ALMs 

required per DSP for each FU is obtained as shown in Table 2. It 

is interesting to note that the equivalent ALM utilization per DSP 

is dependent on the FU. We attribute this fact to organization of 

the DSP blocks and allocation of resources within the blocks. We 

rely on the numbers in Table 2 to estimate the area utilization of 

configurations with multiple FUs. 

An additive approach is used to estimate the area of 

configurations with multiple FUs. Figure 3 presents the results of 

area estimation for the pruned design space in phase 2 compared 

to the actual values. The maximum error in area estimation is less 

than 1.2% and the average error in estimation is 0.55%. Hence, 

the additive method could be reliably deployed to estimate the 

configurations with multiple FUs. 

Algorithm 1: Pseudocode for 1-greedy Search Heuristic 

begin: 

sort the functional units according to impact; 

eliminate functional units with 0 impact; 

RA = RA – Area BP; 

For each node i : 

{ 

if (Area Ni < RA) : 

{ 

accommodate node i; 

RA = RA – Area Ni; 

} 

else prune node i; 

} 

 end 



 

Where, 

RA: Remaining area,  

Area BP: Area of base processor,  

Area Ni: Area of ith node,  

Area Nj: Area of node for jth combination 

 

Table 1. Area characteristics of configurations 

Configuration 

Area 

DSP 

Enabled 

DSP 

Disabled 

ALM DSP ALM 

Base Processor (BP) 1304 0 1304 

BP + Integer Divider (ID) 1417 0 1417 

BP + 32-bit Integer Multiplier 

(IM321) 

1349 3 1628 

BP + 64-bit Integer Multiplier 

(IM64) 

1330 3 1737 

BP + Shifter(S1) 1348 0 1348 

BP + Floating Point Hardware 2 

(FP2) 

2369 5 2750 

 

Table 2. Equivalent ALMs of FUs 

 

 

FU 

 

Area 

DSP  Enabled 

(Configuration 

– Base) 

 

DSP  Disabled 

ALM DSP ALM 

(Configurat

ion – Base) 

ALM per DSP 

(Configuration – 

Base)/DSP 

ID 113 0 113 0 

IM321 45 3 324 93 

IM64 26 3 433 136 

S1 44 0 44 0 

FP2  1065 5 1446 76 

 

                                                                 

1 The values for the selected method of implementation in Table 3 

is mentioned in this case. Similar analysis has been done for all 

methods of implementation. 

 

Figure 3. Comparison between actual and estimated area 

 

Table 3.  Selected configurations of FUs  

Configurable FU Implementation 

Methods 

Selected Method 

32-bit Integer 

Multiplier 

Logic elements 

3 * 16 Multiplier 

1 * 32 Multiplier 

3 * 16 Multiplier 

Shifter Pipelined 

Non-pipelined 

Pipelined 

 

Table 4. Timing characteristics of configurations 

 

FU 

 

Execution Time 

(Clock cycles ) 

 

Gain 

(SW-HW) Software 

(SW) 

Hardware 

(HW) 

BP N/A N/A N/A 

ID 56 4 - 66 24 

IM32 140 1 139 

IM64 150 1 149 

S 1 - 32 1 15 

 

 

 

 

 

 

FP2 

add 196 5 191 

sub 218 5 213 

div 517 16 501 

mul 774 4 770 

sqrt 494 4 490 

float to int 69 2 67 

int to float 115 4 111 

min 151 1 150 

max 160 1 159 

abs 11 1 10 

compare 91 1 90 

 

4.2 Dependency Analysis 
As mentioned in section 3, some configurable FUs provide several 

methods of implementation, thereby increasing the complexity of 

exploring the design space. In phase 2, we select one/several 

methods for each FU, based on performance optimization under 

area constraints. The respective FUs, implementation methods and 

selected method are presented in Table 3. 

Our observations in phase 2 of the methodology are given below.  
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Algorithm 2: Pseudocode for 2-greedy Search Heuristic 

begin: 

generate all possible combinations of 2 configurations; 

sort the new combined node array according to impact; 

eliminate combinations with 0 impact; 

RA = RA – Area BP; 

For each combined node j : 

{ 

          if (Area Nj < RA) : 

          { 

                      accommodate node j; 

                      RA = RA – Area Nj; 

                      break; 

           } 

           else prune node j; 

} 

Apply 1-greedy for the rest of the individual nodes 

end 



 Nios II provides the 64-bit Integer Multiplier unit as a 

separate configurable FU. The implementation of this 

unit requires the implementation of the 32-bit Integer 

Multiplier as 3 * 16-bit or 1 * 32-bit multipliers 

 The execution time of each FU depends on the method 

used for implementation. For example, the 32-bit 

Integer Multiplier implemented as 3 * 16-bit multipliers, 

1 * 32-bit multipliers or using logic elements will have 

different performance metrics.  

 Area utilization depends on the configuration. 

 Double precision floating point instructions are always 

implemented in software. 

The proposed algorithm is based on the gain achieved by 

implementing instructions on dedicated hardware. Table 4 

presents the execution time in clock cycles and the corresponding 

gain for each configuration, considering the selected method of 

implementation in Table 3. All execution times in software have 

been obtained through experimental results, except for the Shifter 

FU. The execution times in hardware and the software execution 

time for Shifter FU have been obtained from datasheets available 

online for Nios II [8]. The gain is calculated as a difference 

between the software and hardware execution time and is used for 

calculation of impact in phase 3. 

Dependency analysis has the ability to rapidly prune the design 

space.  A total of 8 independent implementation methods are 

considered. Theoretically, there are 256 different configurations. 

The design space is first pruned to 96 configurations by removing 

the infeasible combinations.  For example, multiple instances of 

the same FU using different methods of implementation cannot be 

configured in the same configuration.  Selecting the best 

configuration for the remaining combinations as given in Table 3, 

further prunes the design space to 32 configurations. Dependency 

and redundancy analysis further reduces this to 20 configurations 

in the case of the selected processor. We achieve 79.17% 

reduction in the total number of configurations which require 

analysis.    

4.3 Performance Estimation 
The results of profiling in phase 3, for the benchmarks and the 

hand-coded applications are presented in Table 5. It is observed 

that applications such as ADPCM and JPEG contain all types of 

instructions under consideration except floating point operations. 

Also, it is important to note that the benchmark suite consists of 

applications that use floating point instructions. However, it was 

revealed that all of them are double precision instructions. As 

discussed earlier in section 4.2, the Nios II core processes double 

precision floating point operations in software, thus these 

instructions were not accelerated using the Floating Point 

Hardware 2 FU. Hence, as mentioned in section 4, we use two 

hand-coded algorithms to prove the scalability of our 

methodology for single precision floating point arithmetic.  

Figure 4 presents the impact of each FU for the test applications, 

computed in phase 3.  The graph indicates that the impact of each 

FU varies with the application and as a designer, the complexity 

of manually choosing the best possible configuration is tedious. 

Further, an area constrained design space increases the complexity 

as the optimization goal is based on a performance-area trade-off. 

Figure 5 presents the results obtained for the pruned design space 

in the exhaustive technique for SHA, MOTION, AES, JPEG, 

FLOAT_HW1 and FLOAT_HW2. A similar process has been 

carried out for the other applications. These results indicate that  

Table 5. Instruction counts for test applications 

Applicati

on 

 

Instruction Count 

ID IM32 IM64 S FP 

ADPCM 3776 3306 56229 36590 0 

MIPS 0 0 0 2926 0 

GSM 0 0 1868 1955 0 

BLOWFI

SH 

0 0 0 70302 0 

SHA 1044 0 0 96349 0 

MOTION 0 0 0 141 0 

AES 259 7023 0 5892 0 

JPEG 86884 812018 1232352 1902149 0 

DFADD 0 0 0 6325 0 

DFDIV 27 0 1104 3471 0 

DFMUL 0 0 836 2552 0 

DFSIN 802 804 50184 225435 0 

FLOAT_

HW1 

0 0 0 0 105 

FLOAT_

HW2 

3776 3306 56229 36590 46725 

 

 

 

Figure 4. Distribution of FU Impact 
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the configuration which gives the best performance depends on 

the application. Exhaustive runs will be time consuming and the 

results have to be further analyzed to find the optimal 

configuration meeting specified area constraints. 

  

  

  
The dots respresent the design space while the triangles represent the pareto points. 

Figure 5. Results of exhaustive technique   

 

Table 6. Comparison of results 

 

Application 

Selected FUs 

ALM Constraint < 1700 ALM Constraint < 1800 ALM Constraint < 3400 

E* 1-G* 2-G* E* 1-G* 2-G* E* 1-G* 2-G* 

ADPCM S+IM3

2 

S+IM3

2 

S+IM3

2 

S+IM32 IM64 IM64 IM32+S IM64 +ID IM64 +ID 

MIPS S S S+ID S S S+ID S S  S+ID 

GSM S+IM3

2 

S S+ID IM32+S IM64 IM64 IM32+S IM64 IM64 
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Figure 6.  Comparison of accuracy of estimated performance 

The final goal of the proposed approach is to find the optimal 

processor configuration under given area constraints. We have 

used exhaustive implementation to obtain the performance and 

area values for verification of the proposed methodology. Results 

of the proposed methodology and those of exhaustive technique, 

given area constraints of 1700, 1800 and 3400 ALMs are 

presented in Table 6. The area constraints have been selected such 

that 1700, 1800 and 3400 ALM could accommodate 1 FU, 2-3 

FUs and all FUs respectively. This represents a balanced 

distribution of the design space.   

Table 7. Percentage reduction in area compared to enabling 

all configurations 

Application % Area 

Reduction 

Application % Area 

Reduction 

ADPCM 49.516 JPEG 49.516 

MIPS 59.25 DFADD 59.25 

GSM 49.516 DFDIV 49.516 

BLOWFISH 59.25 DFMUL 49.516 

SHA 59.25 DFSIN 49.516 

MOTION 59.25 FLOAT_HW1 16.868 

AES 49.516 FLOAT_HW2 6.469 

 

The results in phase 4 prove that the 1-greedy search heuristic 

produces accurate results in most scenarios. The results are 

accurate for MIPS, BLOWFISH, DFADD, MOTION and AES. 

The datasheets indicate that the 32-bit Integer Multiplier does not 

support 64-bit multiplication instructions. However, the 

experimental results do not confirm this fact. The exhaustive 

approach indicates that the impact of the Integer Divider is 

negligible in most cases. However, the datasheet indicates a 

significant gain. Further investigation revealed that the gain is 

dependent on the bit width of the operands. We attribute the 

deviation of results in Table 6 to this unexpected behavior of the 

32-bit Integer Multiplier and Integer Divider FUs. Changing the 

methodology to consider these two facts yields nearly 100% 

optimal results as shown in Figure 6. The instruction profile of 

FLOAT_HW1 does not map to any of the integer instructions 

indicated in the datasheets. However, exhaustive results reveal 

that performance improves for some integer configurations. 

Further exploration with different handwritten codes provided 

similar results. Even though it is not mentioned in the datasheets 

this indicates that Floating Point Hardware 2 unit utilizes some 

functionality of the integer units if these FUs are configured. 

Thus, the presence of these FUs inevitably improves performance 

for most applications but this will be at the cost of area. 

2-greedy heuristic produces sub optimal results in most scenarios 

for the test applications. This is due to the fact that the algorithm 

initially checks for combinations of two configurations in 

selecting the best configuration. Several applications do not utilize 

all FUs. Thus, 2-greedy approach produces poor results. However, 

when multiple FUs are utilized by the algorithm the 2-greedy 

method also produces accurate results. Thus, we expect the 

accuracy of the 2-greedy approach to increase with the complexity 

of the algorithm. FLOAT_HW2 justifies our understanding.  

The ALM constraint of 3400 could accommodate a processor with 

all configurations enabled. The proposed methodology provides 

maximum, median and average area reductions of 59.25%, 

49.52% and 47.58% respectively, compared to a design where all 

configurable options are enabled. Table 7 depicts the reduction in 

area for each application compared to the configuration that has 

all configurable options enabled. 

Another factor we need to consider with the exhaustive estimation 

approach in [19] is the time complexity of the algorithm. 

Considering a scenario with n possible configurable methods, 

using dependency analysis we eliminate several configurations 

which effectively yields m configurations (m << n). Our approach 

has a time complexity of O (m) while exhaustive estimation 

approach claims O (2n).  

The 1-greedy and 2-greedy approaches have computation times of 

204 µs and 224 µs respectively for the Nios II processor under 
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consideration. This is a significant improvement compared to the 

computation time of 512 s for the exhaustive estimation approach 

discussed in [19]. Further, when the number of configurable units 

increase the runtime of exhaustive estimation increases 

considerably as each addition of a configurable unit doubles the 

runtime. For the proposed algorithm runtime analysis reveals that 

the overhead is less than 20% for the Nios II fast processor. For 

example, a processor like LEON which has 5*210 configurations, 

will require a run time of almost 3 hours in the exhaustive 

approach whereas the proposed method would take less than a 

second. Thus, considering the significant gain in runtime and time 

complexity the proposed approach is superior to the exhaustive 

estimation approach.  

5. CONCLUSION 
In this paper, we proposed a rapid design space pruning technique 

for soft-core processor customization under user specified area 

constraint by exploiting dependencies between the various 

configuration options. The proposed methodology provides 

maximum, median and average area reductions of 59.25%, 

49.52% and 47.58% respectively compared to a processor core 

with all configuration options enabled. The runtime complexity of 

our approach is linear, which yields better results when the design 

space becomes prohibitively large. The 1-greedy and 2-greedy 

heuristics used in the proposed methodology have computation 

times of 204 µs and 224 µs compared to 512 s in an existing 

exhaustive estimation approach. Lastly, the proposed 

methodology is generic and therefore, could be applied to any 

soft-core processor with similar configurable functional units on 

an FPGA. 
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