
Floating Point Multiplication Mapping on ReRAM
based In-Memory Computing Architecture

Tarun Vatwani, Arko Dutt, Debjyoti Bhattacharjee‡ and Anupam Chattopadhyay
School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798

Corresponding Email: ‡debjyoti001@e.ntu.edu.sg

Abstract—Low leakage power, high endurance and non-volatile
storage capabilities have made memristive devices, such as
Resistive RAM (ReRAM) popular. ReRAMs also offer in-memory
computing capabilities by means of stateful logic operations.
However, there are no standard libraries for floating point
operations on ReRAM-based in-memory computing platforms.
In this paper, we propose a mapping for one such mathematical
function, namely multiplication for floating point numbers. We
undertook a detailed study to derive a mapping with low
memory footprint on ReVAMP architecture, which is an in-
memory computing platform based on ReRAM crossbar arrays.
For multiplication of two IEEE-754 compliant single (or double)
precision numbers, the proposed mapping requires 1.944 Kb (or
8.904 Kb) of computation memory, 374.4 Kb (or 3457 Kb) of
instruction memory while consuming an energy equivalent to
5.6 pJ (or 471 pJ).

I. INTRODUCTION

Resistive Random Access Memories (ReRAMs) are one of

the most promising emerging technologies for logic and stor-

age applications. ReRAMs offer non-volatile, high endurance,

high density and multi-state storage capabilities with fast

access times, while at the same time allowing stateful logic

operations [1]. ReRAMs have also been used for designing

neuromorphic circuits [2], content addressable memories and

in-memory computing platforms [3], [4]. Realization of large

passive crossbar arrays can be achieved by means of a select

device in series to a switch (1S1R) or a Complementary

Resistive Switch (CRS) that prevents parasitic currents [5].

The adoption of a computation platform depends on the

available tools and libraries for the platform. For example,

BLAS libraries are available for scientific computing on GPG-

PUs and CPUs [6]. Floating-point multiplication operation

finds usage in multiple applications such as digital signal

processing, data mining, etc. There has been existing works to

map adder [7], integer multiplier [8] and binary matrix vector

operations on ReRAMs [9]. In this work, we extend further in

this direction to map floating point multiplication on ReVAMP,

a ReRAM based in-memory computing platform [4]. ReVAMP

harnesses bit-level parallelism inherent to ReRAM crossbar

arrays. The key contributions of the current paper are :-

• We report the first in-memory implementation of IEEE-

754 floating point multiplier on ReVAMP.

• A novel multiplier mapping for computing product of two

binary numbers has been proposed.

• We studied the performance of the proposed implemen-

tation in terms of throughput and memory overhead.

The rest of the paper is organized as follows. In section II, a

brief introduction to IEEE-754 floating point number represen-

tation is presented. In addition, the ReVAMP architecture is

introduced. Section III presents the mapping for floating point

multiplication on the ReVAMP architecture. In section IV,

we present detailed experimental results and a summary of

existing works. Section V presents a conclusion to the paper.

II. PRELIMINARIES

In this section, we present the IEEE-754 floating point repre-

sentation of any real number. In addition, we also introduce the

basics of ReVAMP – a ReRAM based in-memory computing

architecture.

A. IEEE-754 Floating point representation
The IEEE format for a single precision (32-bit) number is

depicted in Fig. 1. Any real number X is expressed as:

X = (−1)Sign × (1.F raction)2 × 2(Exponent−127)

1-bit 8-bit 23-bit

Sign Exponent Fraction

Fig. 1: IEEE 754 format for 32-bit floating point number.

A leading sign bit is used in the format with value ‘0’

indicating the number is positive else it is negative. The

fraction stores the values after decimal places of the number.

It is to be noted that a 1 is always implied in the decimal

place and is not directly used in the representation. The

mantissa represents the implied 1 with it - (1.F raction)2. The

Exponent is expressed in an excess−B representation such

that the exponent is always a positive number. If the Exponent

consists of e−bits, then the bias B is 2e−1 − 1.

B. ReVAMP Architecture

One of the recently proposed ReRAM based in-memory

architecture is ReVAMP [4]. It supports word-serial execution

of instructions by exhibiting bit-level parallelism. It uses two

separate memories — data and computation memory (DCM)

and instruction memory (IM). In-memory computation takes

place in the DCM. The DCM is a ReRAM crossbar array

which constitutes of multiple 1S1R ReRAM devices [10]. The

DCM is accessed as wD-bit wide words. Each 1S1R device

has two-terminals, namely a wordline wl and bitline bl and an

internal resistive state Z. A ReRAM device has an intrinsic

property of implementing its next state as a Boolean Majority-

three function M3 with bitline input bl inverted i.e., the next

state Zn = M3(Z,wl, bl
′) = Z.wl + wl.bl′ + bl′.Z.

2018 31th International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems

2380-6923/17 $31.00 © 2017 IEEE

DOI 10.1109/VLSID.2018.104

439

Fig. 2: ReVAMP Architecture [4].

 FLOATING POINT MULTIPLICATION

Sign Mantissa Exponent

Compute Partial
Products Compute Sum of

Partial Products

Mantissa
Adjustment

Exclusive-OR
operation

Exponent
Addition

Exponent
Update

Fig. 3: Components of Floating point mul-

tiplication.

The instruction set has two instructions, namely, ‘Read’ and

‘Apply’ whose format, as shown below.

A word wl is read out from DCM and stored in Data

Memory Register (DMR) using the ‘Read’ instruction. This

word available in the DMR can act as input for the following

instructions. For computation, ‘Apply’ instruction is used. In

‘Apply’ instruction, wl specifies the word on which computa-

tion occurs, 1-bit flag s selects the input data source (either

primary input register PIR or DMR), 2-bit flag ws selects the

wordline input - 00 selects logic zero ‘0’, 01 selects logic

one ‘1’, 10 is forbidden and 11 selects the bit specified by

wb-address within the chosen data source for use as wordline

input. Pairs (v, val) specify individual bitline inputs where

v=1 indicates the input is valid else it is not used, and val
specifies the address within the chosen data source from which

the intended bit is used as bitline input.

III. IEEE-754 MULTIPLICATION ON REVAMP

In this section, we present the mapping for multiplication of

IEEE-754 floating-point numbers on ReVAMP, with major

focus on low memory rather than highly-parallelized floating

point operations. For generalization, let us consider that the

n-bit floating point number in IEEE format is represented by

e-bit exponent, (k − 1)-bit fraction with 1-bit leading sign-

bit, such that n = e + k. The operations required to perform

floating point multiplication is shown in Fig. 3. The individual

operations are described below.

A. Computing Sign

For computing the sign bit of the result, we require to XOR the

sign bits of the two inputs. The XOR of two one-bit operands

a and b can be expressed as:

a⊕ b = a.b′ + a′.b = a.b′ + (a+ b′)′

The steps to realize XOR of 2-inputs (of 1-bit each) using

ReRAM crossbar array is depicted in Fig. 4. It is implemented

using a 3 × 1 ReRAM crossbar array, i.e., a crossbar with

3 wordlines and one bitline. We refer to the top wordline

as wordline 1 and thereafter the next wordline as 2 and so

one. Similarly, for referring to the bitline, we refer to the

left-most bitline as 1, the next bitline on the right as 2 and

so on. In addition, we provide two basic formations using

Apply instruction which will be used in the rest of the paper

– applying a ‘1’ as wordline input to a crossbar device will

perform a Boolean OR operation of the inverted bitline input

and crossbar state, while applying a ‘0’ as wordline input to the

device will perform a Boolean AND operation of the inverted

bitline with crossbar state.
Step S1 Step S2 Step S3 Step S4 Step S5

0 0 ‘1’ 0 a ‘0’ a
0 0 0 ‘1’ 0 a

‘1’ 0 ‘1’ a′ a′ a′ a′

a 0 a′ a′ b
Step S6 Step S7 Step S8 Result = a ⊕ b

a.b′ a.b′ ‘1’ a.b′ a.b′ + (a +b′)′

‘1’ a ‘1’ a + b′ a + b′ a + b′

a′ a′ a′ a′

b 0 a + b′

Fig. 4: 2-input (1-bit each) XOR Implementation Steps

Now, we present the steps to realize two input XOR.

Step S1: Input a is loaded into memory in inverted form using

Apply instruction, by applying ‘1’ to third wordline and input

a to bitline. This is because M3(1, 0, a
′) = a′.

Step S2: a′ is read out using a Read instruction and is now

available in the DMR.

Step S3-S4: a is computed and stored in memory locations

corresponding to wordlines 1 and 2, by applying ‘1’ to the

wordlines respectively and a′ to the bitline in subsequent steps,

since M3(1, 0, a
′′) = a.

Step ReVAMP instruction
S1 Apply 3 0 01 0 1 1
S2 Read 3
S3 Apply 1 1 01 0 1 1

We formally introduce how these steps can be represented

as ReVAMP instructions. In step S1, ‘1’ is applied as wordline

3 input. So the opcode is Apply for this instruction, wl = 3,

ws = 01 and the fifth bit after Apply is wb = 0 may be

neglected. Since bitline 1 input is from primary input a, the

second bit after Apply is s = 0. Only one (v,val) pair exists for

this mapping since one bitline is used. The last two bits specify

v = 1 and val = 1 respectively. In step S2, a Read instruction

is used to read from memory corresponding to wordline 3. So

for second instruction, opcode is Read and wl = 3. The read

out data is stored in DMR, available for use in next cycles.

Step S3 uses an Apply instruction with ‘1’ as wordline 1 input

and DMR data a′ as bitline 1 input. So wl = 1, and s = 1
denoting DMR input; ws,wb and pairs (v,val) remain same as

440

the instruction for step 1. Similarly, the rest of the steps can

be represented in terms of ReVAMP instructions.

Step S5-S6: a.b′ and a + b′ are computed and stored in

memory, by applying ‘0’ and ‘1’ to wordlines 1 and 2

respectively in subsequent steps and input b to bitline input,

since M3(a, 0, b
′) = a.b′ and M3(a, 1, b

′) = a+ b′.
Step S7-S8: a + b′ is read out from memory in step S7 and

applied as bitline input along with ‘1’ applied as wordline 1

input in step S8 to compute Result = a⊕ b.
The result of XOR is available in first wordline position

of the DCM. Each Read or Apply instruction is effectively

executed in a single cycle. Therefore, the computation of Sign

bit requires 8 cycles in total.

B. Computing Exponent

It is evident that the exponents add up when the two numbers

are multiplied. The exponent in the IEEE-754 format are

biased, therefore the resultant exponent ER = E1−B +E2,

where B = 2e−1 − 1 is the bias for a given precision.

The computation of ER can be treated as two subsequent

addition operations. The exponent might have to be updated

based on Mantissa MSB Carry or MMSBC. We will discuss

about MMSBC later in mantissa adjustment phase of mantissa

multiplication.

Fig. 5: 4-bit Adder Schematic used to compute exponent. HA

- Half Adder, Result of Addition R = (R4R3R2R1R0)2.

We use a 3×(e+1) ReRAM crossbar to implement addition

of two e-bit exponents. For demonstration, we consider adding

4-bit exponents E1 and E2 using the schematic shown in Fig.

5, which is mapped to a 3×5 ReRAM crossbar. The mapping

steps are depicted in Fig. 6 and explained below.

Steps S1-S2: 4−bit primary input a is loaded into memory in

inverted form to wordlines 1, 2 as shown in Fig. 6.

Step S3: a′.b′ is computed by applying ‘0’ to wordline input

and 4−bit primary input b via the bitlines.

Step S4: a′+b′ is computed by applying ‘1’ to wordline input

and 4−bit primary input b to the bitlines.

Steps S5-S6: a′ + b′ is read out and ORed with the first

wordline to compute XNOR of a and b.
Steps S7-S9: XNOR of a and b is read out, all bits of first

wordline are reset to ‘0’ and XOR of a and b is computed

Fig. 6: 4-bit Adder Implementation Steps - Computation of

X1,i and C2,j .

and stored in first wordline of memory leaving the first bitline

position. The output from step S9 represents X1.

Steps S10-S11: a′ + b′ are read out from memory locations

corresponding to second wordline in step S10; the correspond-

ing memory devices are then reset in step S11.

Step S12: a.b is computed by applying ‘1’ to second wordline

input and the read-out data to bitline inputs. The output from

this step represent C1.

As of now, 4 half-adder circuits have been implemented in

parallel to generate sum X1, i and carry-in C1, i, represented

by a set of two equations:
X1, i = ai ⊕ bi i ∈ {0, 1, 2, 3}
C1, i = ai · bi

The carry generated from each bit addition of two inputs

needs to be propagated in a sequence of steps from the least

significant bit position to the most significant bit position

allowing addition of immediate left-adjacent input bits. The

carry input for addition of immediate left-adjacent bits C2,j

can be computed from
C2,j = C1, j +X1,j · C1, j−1 j ∈ {1, 2, 3}

Since addition of least significant bits of two inputs has no

carry, we can say C2,0 = C1,0. In steps S13-S19, it is shown

how C2,1 can be computed.

Steps S13: C2,0 is read out using a Read instruction.

Steps S14: Using Apply instruction, C2,0
′ is computed by

applying ‘1’ as third wordline input and C2,0 as third bitline

input.

Steps S15: X1,1 is read out from memory.

Steps S16-S17: (X1,1
′ + C2,0

′) is computed by applying ‘1’

as third wordline input and X1,1 as third bitline input in step

S16. (X1,1
′ + C2,0

′) is read-out in step S17.

Steps S18-S19: C1, 1 + (X1,1
′ + C2,0

′)′ is computed by

applying ‘1’ as second wordline input and (X1,1
′ + C2,0

′)
as third bitline input in step S18. This output is equivalent to

C2,1. ReRAM devices corresponding to third wordline input

are then reset in step S19 for next carry generation steps.

Consequently, these 7 steps (S13-S19) are repeated to

generate remaining C2,j (C2,2, C2,3 in this case) for adjacent

left-bit sum computation and resetting devices. From Fig. 5,

441

we can compute the final sum result R = (R4R3R2R1R0)2
as follows:

R0 = X1,0

Rj = X1,j ⊕ C2,j−1 j ∈ {1, 2, 3}
R4 = 0⊕ C2,3 = C2,3

Three more instructions are required to read X1,i and C2,i

(C2,i instead of C2,j since it includes C2,0) from memory and

reset devices corresponding to wordline 1 (except X1,0). In

total, 12 + (3 × 7) + 3 + 9 = 45 instructions are required

in this case. The result will be available as five bits stored

in DCM corresponding to first wordline. In general, an e-

bit adder computation will require 24 + 7(e− 1) instructions.

Between subsequent addition operations, 4 more instructions

are required to read out the sum result and reset all de-

vices corresponding to the three wordlines. So a total of

2[24 + 7(e− 1)] + 4 instructions are required to compute the

exponent (disregarding MMSBC update).

C. Computing Mantissa

The fractional number is (k−1)-bits long, which is normalized

with a leading implied 1 to represent k-bits long mantissa.

For demonstration of the computation, we consider a 4-bit

mantissa (k = 4). Let the two operand mantissas be Ma =
a0 • a1a2a3 and Mb = b0 • b1b2b3, where a0 = a1 = 1
and • represents decimal point. In Fig. 7, we show regular

binary multiplication. In case of floating point representation,

mantissa multiplication can take place similarly. However the

resultant mantissa might need to be normalized depending on

the value of s0. If s0 is 0, Mantissa will be (1 • s2s3s4)2 else

it will be (1 • s1s2s3)2.

a0 . a1 a2 a3

x b0 . b1 b2 b3
Level 1 - a0.b3 a1.b3 a2.b3 a3.b3
Level 2 - a0.b2 a1.b2 a2.b2 a3.b2
Level 3 - a0.b1 a1.b1 a2.b1 a3.b1
Level 4 - a0.b0 a1.b0 a2.b0 a3.b0

s0 s1 . s2 s3 s4 s5 s6 s7 Sum of PP

Partial
Products (PP)

Fig. 7: 4-bit multiplication.

As evident from Fig. 7, three operations are needed to

compute mantissa, namely, partial product calculation, sum of

partial products and mantissa adjustment. All these operations

are realized using 3(k + 1) × k ReRAM crossbar array. We

demonstrate a 4-bit mantissa multiplication implemented with

a (15 × 4) crossbar array (with 15 wordlines and 4 bitlines)

as follows.

1) Computing Partial Products: In the context of multi-

plication of two input mantissa Ma = a0 • a1a2a3 and

Mb = b0 • b1b2b3, a partial product can be represented as:

pi,j = ai · bj i, j ∈ {0, 1, 2, 3}
From Fig. 7, we can see that 16 partial products have to be

computed for 4-bit multiplication. As evident from Fig. 7 with

4-bit multiplication, we will have 16 partial dot products (each

level contains 4 partial dot products and there are 4 levels in

total, shown in Fig. 7). We have shown the computation of

partial dot products for level 1 (with only wordline 1 from the

set of 15 wordlines) in Fig. 8 and discuss the steps as follows.

Fig. 8: Steps for 4-bit Partial Product Computation.

Step S1: Using Apply instruction, primary input bits from a
are loaded in inverted form.

Step S2: Using Apply instruction, ‘1’ is applied to the first

wordline input and LSB (i.e b3) from primary input b is

applied to all bitline inputs to compute first level partial

products in inverted form, e.g. (a0.b3)′ = a0′ + b3′.
Step S3: Using Read instruction, data from devices corre-

sponding to first wordline are read out and stored into DMR.

Step S4: Using Apply instruction, all bits of the first wordline

are reset to zero.

Step S5: As shown in Fig 8, already read out first level partial

products in inverted form are applied to the bitline inputs in

reverse order and ‘1’ is applied to the first wordline input

to compute the required partial products and store them in

memory locations corresponding to the first wordline.

The set of five steps are repeated in similar fashion with

next set of bits (b2, b1, b0) from input b – three more times

to compute and store all the remaining 12 partial dot products

in memory locations corresponding to wordlines 2-4. This

requires a total of 5 × 4 = 20 instruction cycles. In general

with k-bit mantissa multiplication, it will require 5k cycles to

compute all the partial products and store them in the devices

corresponding to the first k-wordlines.

2) Computing Sum of Partial Products: The method to

add the partial products of k-bit mantissa is explained here.

Summation of multiple partial products can be performed by

serial addition but that would lead to higher delay. Therefore,

we use a fast adder construction that requires the carry to

be propagated within same level only once in the final level.

This adder construction can be mapped to the ReVAMP

architecture using the steps illustrated as a flowchart in Fig.

10. We suppose Pi,j = p3−i,3−j and Rm = s7−m. With this

supposition, we can clearly relate how partial products shown

in Fig. 7 are utilized in the adder implementation depicted

in Fig. 9. For shifted partial product addition, there will be

an additional carry generation level after the initial XOR and

Carry generation steps and before final XOR operation. This

will result in a (k+1)-bit XOR output and the MSB of 2-input

sum result can be found in MSB of Carry generated from last

second carry implementation step.

In Fig. 10, XOR − 2 and CARRY − 2 represents a 2-

input k-bit XOR operation and 2-input k-bit carry generation

respectively, together acts as a half adder. So, we have

XOR− 2(a, b) = a⊕ b

CARRY − 2(a, b) = a.b

442

Fig. 9: 4-bit adder schematic to compute sum of par-

tial products. FA represents a Full Adder and {S1, C1} is

{Sum,Carry} generated by each FA. Pi,j = p3−i,3−j

for i, j ∈ {0, 1, 2, 3} and Rm = s7−m for m ∈
{0, 1, 2, 3, 4, 5, 6, 7}. Result = (R7R6R5R4R3R2R1R0)2.

Similarly, computing XOR−3 and CARRY −3 components

yield a 3-input k-bit XOR output and 3-input k-bit Carry

generation, acts as a full adder. Thus,

XOR− 3(a, b, c) = a⊕ b⊕ c

CARRY − 3(a, b, c) = a.b+ b.c+ c.a

Boolean AND, OR and XOR can be implemented by using

a set of instructions similar to approach shown in Fig. 6.

Since k-bit multiplication generates 2k-bit output, the sum

of products needs to be copied to two k-bit words. With

Manipulate Crossbar operation, the resultant sum of products

is copied to DCM devices corresponding to wordline position

3(k + 1) − 3 and 3(k + 1) − 2 with its significant k-bits in

devices corresponding to wordline position 3(k + 1)− 3.

The number of instructions required to compute all these op-

erations can be determined as follows. Computation of XOR-

2 and CARRY-2 operations together require 19 cycles. From

Fig. 10, it is evident that two sets of XOR− 2, CARRY − 2
will be required irrespective of the value of k. Therefore,

38 instructions will be executed. Depending on the value of

k, there will be iterations of XOR − 3 and CARRY − 3
operations. If k > 2 (signifying that fractional part is more

than one bit), XOR − 3 and CARRY − 3 cycles will be

executed. The XOR−3 and CARRY −3 operations together

need 41 cycles for complete computation. From Fig. 10, it can

be interpreted that two rounds of (k−2) iterations of XOR−3,

CARRY − 3 need to be implemented. So 2(k − 2) ∗ 41
instruction cycles will be required for this purpose. The

‘Manipulate Crossbar’ operation requires 5(k+1) instruction

cycles in total. Therefore, the number of instructions add up

to 87k − 121 for k-bit mantissa computation.

3) Mantissa Adjustment: The sum of the partial product

will have 2k resultant bits available in the 3(k + 1) − 3 and

Partial Products

k<3

Compute XOR-3

Yes

Compute CARRY-2

Compute XOR-2

Compute CARRY-3

Compute CARRY-2

i > (k-2)

Set i=1

Set i=i+1

No

No

Compute CARRY-2

Compute XOR-2

Compute CARRY-3

Compute XOR-3

i > (k-2)

Set i=1

Set i=i+1No

Compute XOR-2

Manipulate
Crossbar

Manipulate
Crossbar

YesYes

Fig. 10: Flowchart to compute sum of partial products on

ReVAMP.

3(k + 1)− 2 wordline memory. Now, there needs to be a set

of instructions which can decide whether mantissa should be

considered right from MSB (or MSB-1) bit-position of the

result depending on the value of MSB being 1 (or 0). We

call this as Mantissa MSB Carry or MMSBC since it is the

carry output of last sum (from sum of products computation)

operation and the MSB of the result of this sum. MMSBC

may be referred as s0, depicted in Fig. 7. In regard to Fig. 7,

if MMSBC = 1, Mantissa is selected as (1 • s1s2s3)2 , and

if MMSBC = 0, Mantissa is selected as (1 • s2s3s4)2. In this

case, 15 instructions are required to adjust mantissa of the

resultant product. This instruction count remains same even if

the bit-length of the input is different.

D. Exponent Update

We need to incorporate addition of MMSBC value to sum

of the exponents ER computed in subsection III-B. After

MMSBC is available, a sum operation similar to the method

explained in subsection III-B is adopted to compute the new

resultant exponent ER = ER + MMSBC. Therefore, an

additional 24+7(e-1)+4 cycles will be required to completely

compute the Exponent. Moreover, an extra read instruction is

needed to read MMSBC, totaling the number of instructions

to 3[24 + 7(e− 1)] + 9.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The instruction sequence for multiplication of IEEE-754

compliant numbers has been developed using Matlab�. The

correctness was verified by means of behavioural simulator

for ReVAMP and also via device accurate simulations using

Cadence Spectre� [10].

In order to compute latency of the proposed mapping, we

assume a n-bit floating point number in IEEE-754 format that

has a leading sign bit, e-bit exponent and (k− 1)-bit fraction

443

and calculate the total number of instructions. The resultant

sign computation needs 8 instructions, mantissa computation

needs 92k − 106 instructions and exponent computation re-

quires 60 + 21e instructions. Each instruction requires one

cycle effectively, except the first instruction which requires

three cycles due to the 3-stage pipeline architecture. The

number of instructions for 32-bit and 64-bit IEEE-754 floating

point multiplication is reported in TABLE I.

TABLE I: Number of instructions for 32-bit and 64-bit IEEE

FP multiplication on ReVAMP.

Operation Number of Instructions
32-bit 64-bit

Sign 8 8

Mantissa
Partial Products 120 265
Sum of Partial Products 1967 8306
Adjustment 15 15

Exponent
Addition 150 192
Update 78 99

Total 2338 8885

The DCM crossbar dimensions are (81×24) and (168×53)

for 32-bit and 64-bit precision floating point multiplication,

hence the corresponding crossbar size are 1.944 Kb and

8.904 Kb for respective precisions. The instruction size for the

32-bit and 64-bit are 160 bits and 389 bits respectively The

overall instruction memory size is approximately 374.4 Kb
with 32-bit aligned access and 3457 Kb with 64-bit aligned

access.

As per ITRS report on emerging devices [11], the read/write

cycle for ReRAM devices is projected to have a duration

time of 1 ns and a write cycle energy of 0.1 fJ/bit. The

proposed mapping is estimated to achieve roughly 10 × 106

and 6× 106 floating point operations per second (FLOPS) at

the cost of 5.6 pJ and 471 pJ of energy consumption for

32-bit and 64-bit IEEE-754 multiplication. We should note

that the current implementation is aimed at minimizing the

number of devices used for multiplication and does not aim

at parallelizing multiple floating point operations. In TABLE

II, we report the throughput of the proposed floating point

multiplication mapping with ReVAMP architecture.

TABLE II: Implementation Summary.

Implementation
Frequency
(in GHz)

Throughput
(in GFLOPS)

32-bit 64-bit 32-bit 64-bit
FPGA [12] (40nm Virtex-6) 0.25 0.25 0.010 0.005

GPU [12] (55nm) 1.3 1.3 0.002 0.001
CMOS ASIC [13] (250nm) 1.05 1.12 1.05 0.56
CMOS ASIC [13] (65nm) 1.05 1.12 1.05 0.56
CMOS ASIC [13] (90nm) 1.05 1.12 1.05 1.12

Using ReVAMP 1 1 0.010 0.006

It is to be noted that the throughput of one floating-point

unit is considered for GPGPU and FPGA implementation and

reported in TABLE II. A dual mode double precision floating

point multiplier architecture based on ASIC implementation

is proposed that can be configured to compute two single

precision multiplications in parallel [13]. This concept was

implemented to achieve an efficient resource sharing. A com-

parative analysis between GPU and FPGA implementations

of matrix multiplications based on IEEE 754 floating point

formulation is presented in [12]. The results showed that

GPUs were suitable for larger matrix multiplications, whereas

FPGAs ensured higher throughput for multiplication of smaller

matrices.

V. CONCLUSION

In this work, an efficient mapping of IEEE-754 floating point

number multiplication on ReVAMP architecture has been

proposed. The implementation uses a novel multiplication

scheme for computing the resultant mantissa. The mapping is

estimated to achieve 6 × 10−3GFLOPs throughput, which

is comparable to the performance of FPGA based floating

point multiplication unit. The implementation has an overall

memory footprint(≈ 3831 Kb) with a low energy footprint

(≈ 471 pJ). We plan to extend the work in the direction

of realizing floating point BLAS operations on the ReVAMP

architecture using the proposed mapping.

REFERENCES

[1] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive
switching memories–nanoionic mechanisms, prospects, and challenges,”
Advanced Materials, vol. 21, no. 25-26, pp. 2632–2663, 2009.

[2] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.

[3] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chat-
topadhyay, and G. De Micheli, “The Programmable Logic-in-Memory (
PLiM) Computer,” DATE, 2016.

[4] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “ReVAMP:
ReRAM based VLIW architecture for in-memory computing,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, Mar.
2017, pp. 782–787.

[5] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary
resistive switches for passive nanocrossbar memories,” Nature materials,
vol. 9, no. 5, pp. 403–406, 2010.

[6] “BLAS (Basic Linear Algebra Subprograms),” http://www.netlib.org/
blas/, accessed: 2017-07-31.

[7] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary
resistive switch-based crossbar array adder,” IEEE journal on emerging
and selected topics in circuits and systems, vol. 5, no. 1, pp. 64–74,
2015.

[8] D. Bhattacharjee, A. Siemon, E. Linn, and A. Chattopadhyay, “Efficient
complementary resistive switch-based crossbar array booth multiplier,”
Microelectronics Journal, vol. 64, pp. 78–85, 2017.

[9] D. Bhattacharjee, F. Merchant, and A. Chattopadhyay, “Enabling in-
memory computation of binary blas using reram crossbar arrays,” in
Very Large Scale Integration (VLSI-SoC), 2016 IFIP/IEEE International
Conference on. IEEE, 2016, pp. 1–6.

[10] A. Siemon, S. Menzel, A. Marchewka, Y. Nishi, R. Waser, and E. Linn,
“Simulation of TaOx-based complementary resistive switches by a
physics-based memristive model,” in 2014 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), Jun. 2014, pp. 1420–1423.

[11] “Emerging Reseach Devices report, International Tech-
nology Roadmap for Semiconductors, 2013.” [Online].
Available: https://www.semiconductors.org/clientuploads/Research
Technology/ITRS/2013/2013ERD.pdf

[12] U. I. Minhas, S. Bayliss, and G. A. Constantinides, “GPU vs FPGA:
A Comparative Analysis for Non-standard Precision,” in Reconfigurable
Computing: Architectures, Tools, and Applications, ser. Lecture Notes
in Computer Science. Springer, Cham, Apr. 2014, pp. 298–305.

[13] M. K. Jaiswal and H. K. H. So, “Dual-mode double precision / two-
parallel single precision floating point multiplier architecture,” in 2015
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), Oct. 2015, pp. 213–218.

444

