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Abstract
There is an increasing availability of floating car data both historic, in the form of trajectory
datasets and real-time, in the form of continuous data streams. This paves the way for several
advanced traffic management services such as current traffic state estimation, congestion and
incident detection and prediction of the short-term evolution of traffic flow. In this paper, we
present an analysis of using probe vehicles for reconstructing traffic state. We employ detailed
agent-based microscopic simulations of a real world expressway to estimate the state from
floating car data. The probe penetration required for accurate traffic state estimation is also
determined.

Keywords: Traffic state estimation, Simulation and modelling of transportation systems, Agent-based

simulations

1 Introduction

Floating cars refer to moving probe vehicles which act as traffic sensors by providing information
regarding their position α (in terms of coordinates) and speed vα at regular intervals. The
locations provided via GPS receivers can be map-matched to roads on a map. In turn this map-
matched data can be used to reconstruct traffic state constituting the macroscopic quantities
density ρ, flow Q and local speed V̄ . Identifying regions of uniform flow and density will help
determine traffic patterns of interest such as jams, stop-and-go waves and changes in traffic
flow especially in the face of events such as accidents. In this paper we develop a methodology
for aggregating floating car data (FCD) for accurate traffic state reconstruction. The minimum
probe penetration required for determining the traffic state is also determined by simulating
different traffic flow regimes on a real world expressway.

Reconstruction of traffic state in real-time using FCD (in the form of data streams) will also
enable initializing data driven traffic simulations for short term predictions of flow. This can
lead to a symbiotic traffic simulation platform [2] where the simulation system benefits from
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the real time data provided by the physical system (the road network) which in turn benefits
through mechanisms such as dynamic ramp metering and congestion aware routing [15].

Reconstructing traffic state from probe vehicles has been previously discussed in papers such
as [10, 8] and [6]. In this work we attempt to determine traffic density and flow traditionally
computed through stationary devices such as loop detectors [3] and video cameras [4], using
FCD. Towards this end the contributions of this paper are -

1. A methodology for obtaining aggregated macroscopic (speed, density and flow) quantities
from the microscopic FCD consisting of (α, vα).

2. An estimation of the minimum percentage of probe vehicles required for the macroscopic
traffic state reconstruction under different traffic flow regimes.

2 Existing Work

Using FCD as a means for estimating travel times and traffic state has received much attention
over the years. Papers such as [6] and [12] compute the average travel time on roads from the
average speed of the probes on that road. Techniques such as artificial neural networks are used
for short term predictions by using weighted aggregates of the past patterns [6]. While using
the trajectories of probe vehicles to detect events such as congestion and accidents has been
discussed in [1].

The percentage of probe vehicles required for reliable travel-time estimation has been dis-
cussed in papers such as [5] and [8]. The work in [10] is concerned with estimating the
percentage of probe vehicles for accurately determining the travel-time across the road-network
links. Based on numerical simulations (details of the simulation model are not provided), the
authors conclude that 1.5% penetration of probe vehicles are needed for accurate travel time
estimation.

While the authors of [8] estimate the probe penetration (to be around 2%) and the sampling
period to maximize traffic information by determining traffic time and space correlations. Two
spots are correlated in space if the correlation of average speeds in both the spots exceeds
a threshold. Thus, the traffic condition in a spot without measurements can be estimated if
the condition in a correlated spot is known, thus influencing probe penetration. Likewise the
correlation time measures the period over which the traffic conditions remain correlated in a spot
hence influencing the sampling period. The traffic time and space correlations were measured
using microscopic simulations. The details of the simulation parameters are not provided.

Similarly [5] defines confidence intervals for accuracy in terms of average speed and travel
times across the links apart from spatial coverage as a function of probe penetration. The
authors conclude that 3% to 5% probe penetration is sufficient for confidence levels of 90% and
above.

To the best of our knowledge, there have been no attempts made at estimating traffic flow
and density from FCD. This is generally due to the papers focusing mainly upon estimating
travels times from FCD which is in contrast to the requirements of a symbiotic traffic simulation
platform requiring knowledge of the current state in terms of ρ,Q and V̄ . Further, most employ
macroscopic models which do not take into account the heterogeneous driving characteristics
and vehicle lengths and instabilities arising due to lane changes. This results in optimistic
conclusions on the minimum probe penetration required. In this work we show that, provided
sufficient probe penetration, the traffic state constituting average speed and more importantly
density (and flow) can be reliably measured.
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3 Methodology

For determining the methodology for spatial aggregation of FCD and the minimum probe
penetration for accurate traffic state estimation, we employ agent-based microscopic traffic
simulations. Microscopic simulations of real world expressway were employed owing to lack of
real-world floating car data.

Once the (α, vα) pairs for the road stretch simulated is obtained, an algorithm for partition-
ing the FCD is required for determining the aggregated values of traffic density and in turn,
the flow. In order to do this, the partitioned regions must be microscopically large enough
to contain sufficient samples of (α, vα) pairs and be macroscopically small to determine traffic
patterns of interest such as congestion and variations in flow [14].

The first method for spatial aggregation evaluated, naively divides the expressway into
uniform chunks of size 1.0 km each resulting in 13 segments in total. The second method
evaluated makes use of the topology of the expressway and divides it into segments between
on/off ramp pairs. The final approach divides the expressway into M segments such that
the variance of the speeds within all segments are minimized. Formally, the goal is to find

sections S1, ... , SJ that minimize the total variance of the speeds given by
J∑
j=1

∑
i∈Sj

(vi − V̄SJ
).

Where V̄SJ
represents the average speed in section Sj . This computationally hard optimization

problem (due to the infinite number of ways in which the expressway can be divided into J
sections) is solved using a top down greedy approach known as recursive binary splitting [9].
The constructed binary tree is split until a minimum of 10 samples are present in each leaf
node. The tree so grown is pruned (to prevent over-fitting) using cost-complexity pruning [9].

The efficacy for spatial aggregation is determined based on the best model fit that can be
obtained for ρ as a function of V̄ . To quantify the reliability of the model, we make use of the
R2 Statistic. This metric used henceforth in this paper is a measure of model fit in the form of
a proportion of variance explained by the model [9]. It takes a value between 0.0 and 1.0 and a
value close to 1.0 indicates that a large proportion of the variability in the density is explained
by the predictor, which in this case is the speed V̄ .

Once the relationship between ρ and V̄ is established, we look at quantifying the accuracy of
traffic state estimation as a function of probe vehicle penetration for different traffic conditions.
This helps to determine the minimum probe penetration required.

4 Experiments

Microscopic models describe traffic from the perspective of individual driver-vehicle units
(DVUs). These high-fidelity simulations should ideally capture heterogeneities in traffic in
terms of different vehicle classes (e.g. cars, trucks) and driver behaviors (e.g. intelligent, ag-
gressive). Further, the microscopic simulations employed for this study also model stochastic
lane changes thus helping to reconstruct the spatiotemporal state of traffic with far greater
accuracy in comparison to macroscopic models. The movement of driver-vehicle units are char-
acterized by acceleration models for longitudinal motion and lane change models for lateral
movement along the road. In this section, we provide the details of our microscopic simulation
and of the real world expressway in Singapore we simulate.
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4.1 Traffic Simulation

The traffic simulation we have employed, is based on the SEMSim platform [16]. SEMSim is a
high fidelity agent-based microscopic simulation. It uses the Intelligent Driver Model (IDM) [13]
and MOBIL [11] as the acceleration and lane change models respectively.

The IDM is an accident free model which ensures that a vehicle attains the desired velocity
at free flow and maintains the safe bumper to bumper distance to the leading vehicle. It also
ensures that the acceleration is an increasing function of the speed and distance to the leading
vehicle and a decreasing function of its speed. MOBIL, the lane change model ensures that the
resultant accelerations and decelerations for a vehicle and its followers in the old and new lanes
does not exceed a safe threshold. A lane change is done only if a vehicle gains speed without
violating the safety and inconvenience (to the old and new followers) criteria.

The simulation takes as input a road network detailing the lanes constituting the roads to
be simulated. Road segments that don’t have a preceding road segment are considered sources
and those without a subsequent segment are sinks. The traffic thus flows from the sources
to the sinks. Vehicles are created at each source as a Poisson process based on the equation
nextT imes = −lnU

λs
. The parameter nextT imes represents the time of arrival of a vehicle on a

source road s. The mean inter-arrival time for s (in seconds) is given by λs. The parameter U
is a random number between 0 and 1. The mean inter-arrival times λs of vehicles on a source
link s controls the average vehicle density on all roads simulated. It represents the expected
value of the number of agents entering the simulation via a source road. The route taken by
each DVU is determined based on static turn ratios specified at each intersection. Other inputs
to the simulation include time, number of agents and probability distribution of other model
parameters.

4.2 The Simulated Environment

Figure 1: Simulated section of P.I.E (Singapore) and location of all on/off ramps.

For the experiments in this paper, we simulated a 13 km stretch of P.I.E (Pan Island Express-
way) in central Singapore (Figure 1) with all on and off ramps. The on ramps and the first
P.I.E link are sources, while all off ramps and the last link on P.I.E are sinks. Refer to the

4



Traffic State Estimation Using Floating Car Data Sunderrajan, Viswanathan, Cai and Knoll

Table 1 for the location of all on/off ramps (or static bottlenecks) starting from the beginning
of the first road-segment on P.I.E. The average distance between two bottlenecks is around 565
m along this stretch of P.I.E. The turn ratios for all off-ramps is kept constant at 0.25. This
implies that 25% of all vehicles exit at a given off ramp while the remaining 75% of the vehicles
continue to travel on the main expressway. The number of lanes in the simulated stretch of the
expressway varies between 3 and 6.

DISTANCE (m) RAMP TYPE
583.98 On Ramp
1973.35 Off Ramp
2489.87 On Ramp
3261.27 Off Ramp
4071.9 On Ramp
4834.84 Off Ramp
5531.18 On Ramp
5743.11 Off Ramp
5965.29 On Ramp
6207.74 Off Ramp

DISTANCE (m) RAMP TYPE
7025.15 On Ramp
7658.4 On Ramp
8040.83 Off Ramp
8554.28 On Ramp
8807.94 Off Ramp
9591.84 On Ramp
10148.24 Off Ramp
11286.2 On Ramp
11637.04 On Ramp
12438.23 Off Ramp

Table 1: Location of all On/Off ramps along the expressway.

4.3 Simulation Parameters

The microscopic traffic simulation of P.I.E was initialized with the parameters listed in Table 2.
Parameters such as a, b and li are modeled as distributions to take into account heterogeneous
driving behaviors and vehicle classes respectively. In order to obtain a ballpark figure for
congestion in terms of vehicle density, we make use of the simplest of the Lighthill Whitham
Richards (LWR) models using a triangular fundamental diagram [14]. The critical density for
congested traffic ρc, according to the LWR model is given by I

V0×T+leff
. Here leff represents

the minimum distance headway which is the sum of average vehicle length and minimum gap
s0. Vehicle density exceeding ρc generally implies a congested traffic flow regime.

Based on the parameters listed in Table 2, ρc works out to around 31 vehicles/km/lane.
Thus we consider traffic greater than 93 vehicles/km, (assuming the minimum of three lanes)
as congested. In fact, each traffic scenario (discussed later) is also characterized based on the
average vehicle density during the simulation period of 2 hours. It is to be noted that the
LWR based triangular fundamental diagram overestimates the critical density since it ignores
vehicular interactions such as lane changes and assumes homogeneous traffic, but nevertheless
serves as a rough estimate for congestion.

4.4 Simulation Scenarios

The traffic density (ρ) in number of vehicles/km across the expressway is controlled by varying
the average inter-arrival rates at all sources along P.I.E. The density of the entire expressway
is computed at the end of the two hour simulation by counting the number of distinct agents
per kilometer of the road. To simulate heavy congestion along P.I.E the parameter λs for all
on-ramps was set to a uniform random number between 2.0 sec and 2.5 sec (representing a flow
of 1800-1440 vehicles/hour) while λs for the first and only source link of P.I.E was set to 1.0 sec
(3600 vehicles per hour). The sampling period of all probe vehicles unless stated otherwise is
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Simulation
parameter

Description Value

ST Simulation time 7200 sec

s0
Minimum bumper-to-bumper distance

to the front vehicle.
2.0 m

T Time gap to preceding agent 1.4 sec

li Vehicle length
Normal distribution with
µ = 3.0 m and σ = 0.1 m

V0 Desired speed of agent 20 m/s

a Maximum acceleration term for IDM
Uniform distribution between

1.2 and 1.6 m/s2

b Maximum deceleration term for IDM
Uniform distribution between

1.8 and 2.2 m/s2

p0 Politeness factor for MOBIL 0.3
∆ath Lane change threshold for MOBIL 0.3 m/s2

Table 2: The microscopic simulation parameters

1 second, i.e. the probe vehicles provide information regarding their speed and position every
second.
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Figure 2: Microscopic simulation of heavily congested traffic at 110 veh/km, speed in (m/s)

Figure 2 shows the spatiotemporal state of P.I.E in a heavily congested state. The heat
map represents the speed profiles of all the agents averaged over space and time intervals of 50
meters and 1 minute. Traffic build up in the form of blue bands are clearly visible in the regions
where on and off ramps intersect along the main P.I.E expressway. The average traffic density
along the main expressway (ignoring the on/off ramps) during the time period of simulation
was around 110 vehicles/km which is greater than the critical density ρc for P.I.E.

Figures 3a and 3b shows the spatiotemporal state of P.I.E during partial congestion and
non-peak traffic at average densities of 78 and 65 vehicles/km respectively. These scenarios as
discussed in Section 5.2 will be used to determine the minimum probe penetration required for
accurate traffic state estimation using FCD. Note that three scenarios simulated in Figures 2
through 3b assume a 100% probe penetration.
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(a) Average density of 78 vehicles/km
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(b) Average density of 65 vehicles/km

Figure 3: Microscopic simulation of partial and minimal congestion on P.I.E, speed in (m/s)

5 Results

In this section, we reconstruct the macroscopic traffic state of P.I.E by aggregating the speed
profiles of probe vehicles based on the three different spatial aggregation techniques discussed
in Section 3. We also determine the minimum probe penetration required for accurate traffic
state estimation.

5.1 Spatial Aggregation of FCD

Figure 4a shows the plot of ρ(in vehicles/km) as function of V̄ when the P.I.E is divided into
equal sized segments of length 1.0km. The method does not take into account the topography
of P.I.E nor does it try to identify regions with a homogeneous distribution of speeds. While
Figure 4b shows the ρ vs V̄ graph by aggregating FCD based on the 25 road segments comprising
the P.I.E stretch simulated. Both the figures clearly establish an exponential relationship (based
on the linear regression fit) between V̄ and ρ despite significant bias.

The recursive binary partitioning approach (Section 3), divides P.I.E into homogeneous
partitions (numbering 12 in this case) based on the speed profiles of probe vehicles. Figure 4c
further establishes the exponential relationship between ρ and V̄ with much lesser noise in
comparison to splitting using the two aforementioned approaches. The exponential relationship
between ρ and V̄ in agreement with the Underwoods’s exponential model [7]. We thus fit a
linear model as shown in Equation 1 for estimating traffic density from average speed. The
coefficients β0 and β1 are the least squares coefficient estimates for linear regression.

ρ = β0 + β1 × log(V̄ ) (1)

In the next section we show that the recursive binary splitting approach is the better method
for spatial aggregation of the (α, vα) pairs considering lesser levels of probe penetration.

5.2 Probe Penetration for Effective Density Estimation

In this section, we determine the accuracy of the exponential speed density model (Equation 1)
at different levels of probe penetration. This helps determine the minimum probe penetration
required for the three different traffic flow regimes discussed in Section 4.4. We expect the
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(a) 13 uniform partitions of length 1.0 km
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(b) 25 P.I.E road segments used as partitions
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(c) 12 segments using recursive binary splitting

Figure 4: Density vs Speed for different spatial partitioning mechanisms

accuracy of the exponential speed-density model (Equation 1) to decrease as the probe pene-
tration decreases. The dip in accuracy can be attributed to significant variation in the speed
of vehicles in different lanes owing to entry and exit of vehicles at on/off ramps, heterogeneous
driver vehicle characteristics and stochastic lane changes. The aforementioned instabilities in
traffic flow are modeled in the microscopic simulations as explained in Section 4.
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Figure 5: R2 Statistic vs probe penetration for heavily congested traffic

Figure 5 plots the R2 Statistic of the exponential model (Equation 1) as a function of probe
penetration for the three different aggregation methodologies discussed in the previous section.
The results show the averaged R2 Statistic for five different two minute sub intervals of the
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two hour simulation of the heavily congested traffic in Figure 2. The R2 statistic expectedly
shows a downward trend as probe penetration decreases for all three aggregation methodologies.
Figure 5 clearly shows binary splitting to be a superior approach for spatial aggregation enabling
a reasonable estimate of ρ even at a probe penetration as low as 5%.

20 40 60 80 100

0.4

0.6

Probe penetration in % of total traffic.

R
2

S
ta

ti
st

ic

Minimal congestion
Partial Congestion

Figure 6: R2 Statistic vs probe penetration for partial and minimal congestion

Figure 6 plots the R2 Statistic (of the exponential model fit) for recursive binary partitioning
approach as a function of probe penetration for the traffic conditions shown in Figures 3a
and 3b. It is interesting to note that the accuracy of the model (Equation 1) decreases as the
level of congestion decreases. This can be explained by the fact that vehicles generally travel
at uniform speeds during heavy congestion (refer Figure 2) and during free flow resulting in
minimum variance of speeds across lanes. While partially congested traffic regimes in Figures 3a
and 3b generally tend to have a far greater variance in speed due to vehicles traveling at varying
speeds in different lanes.

5.3 Flow estimation and temporal aggregation of FCD
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Figure 7: Traffic flow and temporal resolution estimation for recursive binary splitting

Using the relation Q = ρ× V̄ the flow-density fundamental diagram is obtained as shown in
Figure 7a at probe penetration of 10%. The average speed V̄ and the density ρ were aggregated
using the recursive binary split for a two minute subinterval. The critical density for congestion
(ρc) is around 100 vehicles/km for P.I.E.

Figure 7b provides the average R2 Statistic as a function of probe penetration and temporal
aggregation intervals. Five two minute sub intervals of the scenario shown in Figure 2 were
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used for computing the aggregate R2 Statistic. Clearly the accuracy of the density prediction
decreases as the temporal aggregation interval increases. The graph indicates that acceptable
accuracy of density estimates from FCD (when used in conjunction with binary splitting) is
obtained at resolutions of around 15 to 20 seconds. This result thereby estimates the sampling
period of probe vehicles required for traffic sate estimation. Increase of the probe sampling
period to around 15 seconds significantly reduces the computational resources required for real-
time map matching and traffic state reconstruction.

6 Conclusions and Future Work

In this work we have established that reliably estimating traffic state and more specifically
density (and thereby flow) on an expressway can be achieved with a minimum of 5% to 10%
probe vehicles depending upon the prevailing traffic conditions. Microscopic traffic simulations
reveal that recursive binary partitioning can be used to subdivide a stretch of road to identify
homogeneous regions of Q, ρ and V̄ .

In the future, we would like to investigate if the results obtained on a relatively homogeneous
expressway can be replicated on signalized urban street networks. Future work would also
involve optimizing the minimum variance partitioning of the road network to automatically
detect onset of congestion and anomalous events such as accidents based on statistical learning
methods. Accurate estimation of speed, density and flows along important roads can help
initialize data driven simulations for short term predictions of the evolution of traffic flows.
Predictive simulations will play a major role in enhancing the capabilities of dynamic control
strategies such as ramp metering and routing for traffic flow optimization.
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