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Abstract. A key metric in the design of interior layouts of public trans-
port vehicles is the dwell time required to allow passengers to board and
alight. Real-world experimentation using physical vehicle mock-ups and
involving human participants can be performed to compare dwell times
among vehicle designs. However, the associated costs limit such exper-
iments to small numbers of trials. In this paper, we propose an agent-
based simulation model of the behavior of passengers during boarding
and alighting. High-level strategical behavior is modeled according to
the Recognition-Primed Decision paradigm, while the low-level collision-
avoidance behavior relies on an extended Social Force Model tailored to
our scenario. To enable successful navigation within the confined space
of the vehicle, we propose a mechanism to emulate passenger turning
while avoiding complex geometric computations. We validate our model
against real-world experiments from the literature, demonstrating devi-
ations of less than 11%. In a case study, we evaluate the boarding and
alighting times required by three autonomous vehicle interior layouts
proposed by industrial designers.

1 Introduction

Public transport systems based on autonomous mobility are currently in the
focus of research groups around the world. Alongside components such as the
powertrain and the facilities for reacting to the current driving situation, the
interior layout of an autonomous vehicle (AV) has important implications on
the efficiency of the overall transport system. The time required for passengers
to board and alight determines the minimum dwell time required at each stop.
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Thus, the boarding and alighting time is a key metric when defining static or
dynamic AV schedules.

In practice, once industrial designers have defined a set of possible AV interior
layouts comprised of aspects such as the overall geometry and spacing as well as
the size, number, placement, and orientation of seats, a quantitative comparison
with respect to the required dwell time should be carried out. While real-world
experimentation would provide accurate results, the costs for the creation of
mock-ups and the acquisition of sufficient numbers of participants limits such
experiments to small numbers of trials for the most promising AV designs.

We thus propose a simulation model of AV boarding and alighting processes,
permitting large numbers of trials under various scenario conditions. We present
an agent-based model of the passenger behavior. A number of challenges emerge
due to the confined space for movement in the considered scenario that are not
present in many common agent-based simulation scenarios (e.g., [6, 9]).

To address these challenges, we adapt the collision avoidance behavior pro-
vided by the well-known Social Force Model (SFM) [18] with right-of-way exten-
sions [10]. A novel size adaption method is proposed to allow agent to navigate
through narrow corridors successfully without the need for complex geometric
computations. The passenger behavior on the strategical level is carefully mod-
eled according to the Recognition-Primed Decision [15] framework as a set of
so-called experiences [17]. We validate our model in comparison to results from
the literature based on experiments relying on human participants.

Our prototypical simulation tool accepts color-coded 2D representations of
AV layouts from which executable scenarios are generated. Thus, industrial de-
signers without experience in the simulation domain can rely on the simulation to
evaluate vehicle designs. Our main contributions can be summarized as follows:

– We propose an agent-based model to evaluate the boarding and alighting
times with respect to given vehicle interior layouts. We propose adaptations
of well-known pedestrian simulation models to support the navigation in
spatially confined scenarios.

– We present validation results showing less than 11% deviation compared to
real-world experiments from the literature.

– The practical use of the model is demonstrated by evaluating the dwell times
of three AV layouts defined by industrial designers.

The remainder of this paper is organized as follows: Section 2 introduces ex-
isting works fundamental to our model and related work in passenger simulation
for public transport scenarios. Section 3 describes our basic simulation scenario.
Section 4 describes our proposed passenger model. Section 5 provides validation
and performance evaluation results. Section 6 provides a summary of our results.

2 Background and Related Work

In this section, we outline the models used to represent the high-level decision
making and the low-level collision-avoidance behavior of agents. Further, we
discuss related work on agent-based simulation of public transport scenarios.
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2.1 Recognition-Primed Decision

Recognition-Primed Decision (RPD) is a conceptual framework that arose from
the naturalistic decision-making movement, which seeks to understand human
decision making. RPD is motivated by the insight that people frequently make
decisions based on estimation and guesswork rather than purely rational pro-
cesses. Each agent maintains a repertoire of patterns representing its previous
experiences. When encountering a problem, the agent selects a matching situa-
tion from its repertoire and predicts the expected outcome based on the previous
experience. A comprehensive description of RPD is given in [15]. In Section 4, we
describe how the concepts of RPD are applied to our specific modeling problem.

Our agent-based model relies on the implementation of RPD in the Crowd-
Tools simulation framework, which encapsulates the decision-making logic into
experiences composed of one or more stages [17]. The decision-making process
consists of three iterative steps: During situation assessment, the agent perceives
situational cues, which are used to update its emotional state. During experi-
ence matching, the agent selects from its repertoire the experience that is the
most similar to the current situation. During experience execution, the actions
associated with the selected experience are carried out.

Four cognitive components implement the following tasks involved in the
above process: The perception system detects the constraints imposed by the
virtual environment and filters the relevant information for the decision making.
The working memory stores predefined information and situational states. The
decision system carries out the decision making based on the information from
the perception system and the working memory. Finally, the action system ex-
ecutes the actions determined by the decision system. In Section 4, we present
our mapping of the passenger behavior to the RPD concepts.

2.2 Collision Avoidance

Microscopic crowd simulations represent humans as autonomous agents that
sense their surroundings, make decisions and carry out corresponding actions.
The Social Force Model (SFM) [18] is a popular and well-studied model of the
distance-keeping behavior of pedestrians. The SFM models the intention of a
pedestrian as a driving force and the resistance between a pedestrian and its
surrounding objects, i.e., neighboring pedestrians and stationary obstacles, as
repulsive forces. The force acting on an agent i at time t is defined as follows:

mi
dvi
dt

= mi
v0
i (t) − vi(t)

τi
+ Fnb + Fobs

The first summand represents the driving force, where mi is the mass of the
agent, v0

i (t) is the preferred velocity and vi(t) is the actual velocity; Fnb is the
net force from neighboring agents, and Fobs is the force from the surrounding
obstacles. The force received from neighbor j is defined as fij = A exp(−Dij

B )nij .
The time step size is denoted by τi. The parameters A, B determine the strength
and range of the force. D is the distance between two agents. nij is the direction
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vector pointing from ri to rj . The force from an obstacle line l is determined in
the same fashion based on the distance of agent i to the closest point on l

Following the above definitions, for a pair of agents, the SFM defines a pair
of opposite forces, which can lead to undesirable symmetric interactions [13].
As an example, suppose two agents are heading exactly towards each other
in an open space. The agents experience forces opposite to their velocity, and
decelerate without changing direction, leading to a standstill or collision. To solve
this issue, a variant of the SFM introduces a right-of-way mechanism based
on agent priorities [10]. The parameter B in the original SFM is replaced by
Bij = B +Rjiri, with the right-of-way of agent i over agent j defined as Rij =
max(1, pi − pj), if pi ≥ pj , and 0 otherwise; pi and pj are the agents’ priorities.
The direction of the repulsive force is adapted according to Rij . If agent i has
higher priority than j, the repulsive force on j is assigned an angle between 0◦

and 90◦ to the preferred velocity of i.

2.3 Simulation of Passengers in Public Transport Scenarios

Several existing works have used agent-based simulations to determine the re-
quired dwell time of public transport vehicles. Perkins et al. [19] employ SFM
to assess the dwell time of a train under various parameter combinations for
the door width and placement as well as the crowd mix. Their focus is on the
train-platform interface. Thus, in contrast to our work, the geometry and seat
placement inside the vehicle as well as the passenger behavior after boarding are
not considered.

Fletcher et al. [12] propose an automated procedure to optimize the geometry
of a train’s interior layout based on evolutionary algorithms and evaluation using
agent-based simulation. While their approach provides interesting avenues for
future research, the considered parameters of aisle width, seat width, and door
width limit the range of possible layouts. The aim of our work is to support
industrial designers when evaluating different layouts. Thus, we rely on color-
coded floor plans as input so that designers are free in their decisions on aspects
such as the seat placement and orientation and the placement of walls.

For parameterization and validation of passenger models, the existing works
in the literature have relied on video footage [5, 22, 19, 12], smart-card payment
records [21], and experiments using mock-ups [14, 20]. In our work, we validate
against real-world experiments based on mock-ups from the literature. We are
investigating data collection from virtual reality experiments [3] and real-world
observations to achieve an accurate parameterization with respect to aspects
such as the passengers’ seat selection preferences.

3 Scenario

In the following, we describe the scenario considered in our simulations. The AV
layout is provided as a color-coded 2D floor plan. As shown in Figure 1, each
layout represents a 6m×6m station comprised of the vehicle of size 6m×2.7m,
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Fig. 1. Color-coded autonomous vehicle layout used as input to the simulation.

and the platform (6m×3.3m). The interior region includes regular seats and
leaning seats (where passengers can lean on the wall), seat areas, standing areas,
and a door. Outside the vehicle, queue areas and an alighting area are specified.
Alighting passengers are assumed to exit the scenario through the alighting area.
To simplify the boarding process, a vehicle entrance is defined as the position at
which boarding agents choose their preferred destination.

We assume that when the simulation starts, the AV has stopped at the station
and passengers are queuing at the platform. A configurable number of passengers
then exits the vehicle, while some are assumed to stay inside to continue their
trip. Once all alighting passengers have exited, the queuing passengers board the
vehicle and move to their preferred seats or a location in the standing area. We
are interested in the times taken for all alighting passengers to exit the vehicle, for
the boarding passengers to enter the vehicle and to reach their desired locations.

4 Passenger Model

In this section, we describe the high-level decision-making and low-level distance-
keeping behavior of our agent-based passenger model. Due to the highly confined
environment within the vehicle, our model must address two main challenges:
firstly, passengers must be able to pass through corridors narrower than their
shoulder width. Secondly, the model must be able to cope with passenger pass-
ing each other in confined areas. We developed the model in the CrowdTools [7]
simulation framework, which is an implementation of the RPD paradigm (cf. Sec-
tion 2).

4.1 High-Level Decision Making

There are three types of agents in our model:

– Alighting Passengers (AP): APs are created in a seat or in the standing
area and cross the vehicle center to reach the door. After exiting the vehicle,
APs enter the alighting area to disappear from the scene.
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– Boarding Passengers (BP): BPs are generated within the queue areas
and remain idle until all APs have alighted. After subsequently entering the
vehicle, each BP chooses a standing point or a seat. Once the desired location
has been reached, the BPs become passive.

– Passive Passengers (PP): PPs are generated uniformly at random inside
the vehicle, occupying a seat or space for standing. Larger numbers of PPs
increase the interior density and prolong the boarding and alighting process.

Since the behavior of APs and PPs is relatively simple, our description focuses
on the BP behavior. Table 1 lists the action to be executed in each stage in the
experience set of BPs: Navigate represents long-distance navigation based on the
approximated best-first search A∗ algorithm [7]; StraightWalk represents direct
translation only used on unobstructed paths; WaitAtPoint represents idling at
the waiting point and returning to the position when being pushed away by
neighbors; Still represents standing at the current position.

Figure 2 shows an excerpt of the decision-making when a BP arrives at
the vehicle center, restricted to one stage for each experience. The BP first
determines the experience that best matches the cue “Priority to Seats”, which
is “Go to seat”. While the agent carries out the associated action of navigating
to the seat, its perception system continuously evaluates the remaining distance
and the occupation to the target seat. A violation of the agent’s expectations is
detected if the target is no longer available. The agent’s current goal is considered
to be achieved once the agent enters the seat. When an agent exits the current
stage after having achieved the associated goal, it enters the subsequent stage
of the current experience. In contrast, when the agent exits the stage through a
violation of its expectations, a new round of experience matching is triggered.

4.2 Low-Level Collision Avoidance

We rely on the Social Force Model (SFM) with right-of-way extensions (cf. Sec-
tion 2) for the fundamental collision-avoidance behavior among agents. To achieve
plausible agent behavior in the confined environment of our boarding and alight-
ing scenario, we propose three modifications to the model.

Size Adaption: The original SFM relies on a circular representation of agents,
which overestimates the actual space occupied by a human. As a consequence,

Table 1. The experience set of a boarding passenger.

Experience Stage Action

QueueExp Queue WaitAtPoint

GetOnVehicleExp
GoToDoor Navigate
GoToVehicleCenter StraightWalk

GoToSeatExp
GoToSeatFront Navigate
ArrivedSeat Still

GoToStandingAreaExp
GoToStandingPoint Navigate
IdleInStandingPoint WaitAtPoint
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Fig. 2. An excerpt of the decision making of a boarding passenger when determining
the next action after entering the vehicle.

the model fails to support scenarios in which pedestrians travel through corridors
narrower than their shoulder width. Some existing works propose elliptical [4] or
even irregular polygonal representations [16, 2] to solve this issue by introducing
lateral motion. However, these approaches substantially increase the complexity
of the collision avoidance, both computationally and in terms of the need to
address special cases, e.g., when there is insufficient space for an agent to rotate.

We propose a simple solution for the navigation through narrow corridors
based on adapting the size of the circles representing agents. Our rationale is
that 1. in real-world situations, the rotation performed by passengers to travel
through corridors reduces their effective size in perpendicular direction to their
target, and 2. if the agent is not directly facing an obstacle, its size in walking
direction has only a minor effect on other agents. Thus, temporarily reducing the
size of circular agents achieves a similar effect as a rotation of agents represented
by more complex shapes, while avoiding the associated complexity.

As shown in Figure 3a, the agent first perceives the surroundings to determine
the closest object (obstacle line or agent). A side sensor Sside is generated by
mirroring the vector vcol from the agent to the closest object across the front
sensor Sfront. A potential corridor is detected if Sside is obstructed, whereas
Sfront is unobstructed. When a corridor is detected, the agent reduces its radius
for a configurable amount of time, after which the corridor detection is repeated.
If no corridor is detected, Sside is rotated by 45◦ over the course of the next few
time steps to achieve a sufficient coverage of the area ahead (cf. Figure 3b).

Force Reduction. The magnitudes of the forces generated by the original SFM
are excessively large when considering confined scenarios, where passengers may
stand nearby each other or pass other passengers at close distances, while still
aiming to avoid potential collision. This is contrary to the common use cases
of SFM in large-scale scenarios with open spaces, where pedestrians tend to
maintain relatively large distances from each other. Further, in our scenario,
strong repulsive forces from stationary obstacles make it impossible for agents
to traverse the seat edge areas and to enter seats.
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Fig. 3. Size adaption when traversing a narrow corridor.

We assume that passengers tend to maintain smaller distances to objects
nearby within the vehicle than in an open space, and that they keep larger
distance from neighboring passengers than from stationary obstacles. Although
reducing the agent size makes it possible for agents to traverse paths that are
narrower than their shoulder width, they may still fail to enter a corridor because
of the strong repulsive force from the corridor walls. We address this issue by
reducing the forces using two new scaling factors λagent and λobs:

mi
dvi
dt

= mi
v0
i (t) − vi(t)

τi
+ λagentFnb + λobsFobs

We assign λagent and λobs values between 0 and 1. Reducing these forces
also enables agents to stand both closer to each other and closer to walls, which
is necessary to achieve high passenger densities commonly observed in public
transport situations. In our simulation experiments, the specific values for the
scaling factors were hand-tuned based on visual inspection of trial simulations,
with values adapted according to the area in which each agent currently resides.
The specific values are given in Section 5.

Modification of Right-of-Way Behavior: We employ an existing extension
to the SFM that relies on agent priorities to model right-of-way behavior. Three
levels of the agent priority p are defined in our model. All types of agents start
with an initial p value of 0. During the simulation, APs and BPs increase their
priority to 1 when they are navigating inside the vehicle, and reset the value
when they exit the vehicle or reach their destination inside the vehicle. An agent
i with priority equal to 0 yields to another agent j with higher priority by moving
in the direction perpendicular to the walking direction of j. For all agent types,
p is set to -1 when the agent is seated. An agent with negative priority does not
receive any social force, ensuring that the agent retains its position.

In certain situations, the above behavior fails to allow agents to pass each
other successfully. When the repulsive force on an agent from a higher-priority
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neighbor is pointing to an obstacle, there is no space to step backward, as shown
in Figure 4a. Simply reversing the repulsive force does not solve this issue in
our confined scenario, since both the back and front of an agent may be blocked
by obstacles. To detect this situation, an extra step is added during the agent
force computation: The agent first perceives the distance to the closest obstacle
line col. If the distance only exceeds the agent’s radius by a small positive ε, we
assume that the agent cannot give way to its neighbor. In this case, the repulsive
force is reoriented to be parallel to col, so that it is possible for the agent to avoid
the approaching neighbor. The direction f̂ij of the force from the higher-priority
agent j on agent i is adjusted depending on the external distance Dij as follows:

f̂ij =

{
g(davoid,−v0

j (t)), Dij > 2Dmin

g(davoid, v
0
j (t)), otherwise

where davoid is the direction from agent i to the closest obstacle line and Dmin

is a small positive value. The function g(v1, v2) determines a unit vector that
is perpendicular to v1, with an orientation difference of less than 90◦ from v2.
In the more common cases of Dij > 2Dmin as shown in Figure 4b, where two
agents are still positioned far from the point of a projected collision, agent i is
driven by the adjusted force f̂ ′ij and walks towards agent j. Agent j triggers the
size adaption of both agents, freeing up sufficient space for navigation. When two
agents are close enough to each other so that both of their front sensors Sfront

are obstructed (cf. Figure 4c), the size adaption algorithm is not activated. In
this case, the agent i moves in the direction of the preferred velocity of agent j.

5 Evaluation

In this section, we present the validation of our model against results from real-
world experiments from the literature. Further, we demonstrate the practical
use of the model by comparing the boarding and alighting times required by
different layouts of an autonomous vehicle created by industrial designers.
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Fig. 4. Illustration of a situation that cannot be resolved by the original right-of-way
SFM (a), and two solutions (b) and (c) depending on the distance between agents.
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5.1 Parameter Setup

In Section 4, we described our adaptations of the Social Force Model to allow
passengers to navigate the confined space inside the vehicle. To reduce the inten-
sity of the forces from other agents and obstacles inside the vehicle, the scaling
parameters are configured as follows for agents outside the vehicle, inside the
vehicle, and on the seat edge: λagent = 0.8, 0.6, 0.2; λobs = 0.2, 0.1, 0.01.

To retain the distance kept by passengers even in confined spaces, the force
generated by obstacles is reduced more sharply than that of agents. While our
model allows modelers to specify passenger personas defined by preferred walk-
ing speeds and seat selection preferences, here we assume all passengers to be
working adults, with a preferred speed of 1.4 m/s outside the vehicle, which is
reduced to 0.56 m/s inside the vehicle, and to 0.28 m/s in the seat edge area. Seat
selection is assumed to be uniformly at random. We are currently investigating
approaches for data collection from virtual reality experiments [3] and real-world
experiments to support the representation of different passenger types.

5.2 Validation Experiment

In 2010, Fernández et al. carried out experiments on the influence of the plat-
form and vehicle design on boarding and alighting times as well as passenger
saturation flows of a public transport vehicle [14, 11]. The participants of the
experiment repeatedly boarded or alighted a full-scale mock-up. We recreated
the vehicle layouts used in the real-world experiments in our simulation and val-
idate our agent-based models by comparing the results from these experiments
to our simulation results. In the experiments, 50 and 25 passengers took part in
the alighting and boarding process, respectively.

Table 2 compares our simulation results with the measurements from the real-
world experiments. The simulation results are averages of 100 iterations for each
scenario. We can observe that the boarding and alighting times in our simulation
are slightly longer than in the real-world experiments. Overall, given the observed
deviations between 0.8% and 11%, we consider the model sufficiently accurate
to provide estimates of real-world boarding and alighting times.

Table 2. Validation results.

Scenario and Metric Experiment Simulation Deviation SD
Narrow door,
Average alighting time

1.22 s/pass 1.23 s/pass 0.01 (0.82%) 0.080

Narrow door,
Alighting saturation flow

0.85 pass/s 0.83 pass/s 0.02 (2.35%) -

Wide door,
Average alighting time

0.73 s/pass 0.81 s/pass 0.08 (10.96%) 0.050

Narrow door,
Average boarding time

1.54 s/pass 1.56 s/pass 0.02 (1.30%) 0.169

Wide door,
Average boarding time

1.18 s/pass 1.22 s/pass 0.04 (3.39%) 0.097
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5.3 Case Study

We demonstrate the practical use of our model by evaluating the times taken for
the boarding and alighting process when considering three different autonomous
vehicle layouts. The following metrics are considered:

– Alighting time: The time until alighting passengers have exited the vehicle.
– Boarding time: The time until all alighting passengers have exited and all

boarding passengers have entered the vehicle.
– Settling time: The time at until all boarding passengers have settled on a

seat or in the standing area.

Figure 5 shows the interior layouts to be evaluated. Two of the layouts repre-
sent extreme cases with respect to the seat numbers and thus passenger comfort:
“standing only” does not provide any regular seats, leaving a large amount of
space for navigation inside the vehicle, whereas “maximum seating” provides
16 seats in total. The layout “balanced” aims to provide a sufficient number of
seats, while still allowing passengers to navigate comfortably. Further, the layout
leaves space near the door to place a wheelchair.

We populated each layout with 6 passive passengers, varying both the number
of boarding and alighting passengers between 1 and 6. Given the 100 iterations
for each parameter combination, 3600 iterations were executed for each layout.

The results shown in Figure 6 indicate that, as expected, the spacious area
for navigation in the layout “standing only” allowed for the shortest times for
the alighting, boarding and settling processes, with averages of 6.0, 12.0, and
16.8 seconds. The layout “maximum seating” generated the largest values for all
three metrics, with averages of 8.1, 13.6, and 20.8 seconds. The boarding and
alighting times achieved with the layout “balanced” are only slightly longer than
those for the “standing only” layout. Due to the time taken for passengers to
enter their seats, the settling time is significantly larger than with the “standing
only” layout. The effect of the settling time on the required dwell time depends
on the point in time when the vehicle starts its trip. While the vehicle may
start its trip as soon as all passengers have entered the vehicle, considerations of
passenger comfort may suggest a delay to allow passengers to take their seats.

In the layout “maximum seating”, passengers that have already taken their
seats may make it cumbersome for others to get seated. Thus, the variability in
settling times is particularly large with this layout.

(a) Standing only: no regu-
lar seats, maximizes space
for movement.

(b) Maximum seating:
maximizes the number of
regular seats.

(c) Balanced: provides reg-
ular seats while preserving
space for movement.

Fig. 5. The autonomous vehicle interior layouts evaluated in the case study.
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Fig. 6. Simulation results for the three layouts in the case study.

According to our simulation-based evaluation, the lowest boarding, alighting,
and settling times are achieved with the layout “standing only”. While the purely
quantitative evaluation permits comparisons in terms of efficiency, it must also
be ensured that the selected layouts satisfy other requirements such as those
given by Universal Design principles [8], as well as service quality indicators for
public transportation as defined by standards such as EN 13186 [1].

6 Conclusion and Future Work

We presented a novel passenger model for evaluating public transport vehicle
layouts in terms of the required dwell time. The low-level model is based on the
traditional Social Force Model with additional right-of-way features. A dynamic
adaption of the agent size emulates turning behavior. The RPD framework is
used to define the passenger behavior, allowing for an adaptive decision-making
based on the current situation faced by agents. We validated our model by repli-
cating an existing mock-up experiment in our simulation. The observed devia-
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tions in boarding and alighting times were below 11%. We applied our simulation
to autonomous vehicle layouts created by industrial designers, demonstrating
substantial differences in the dwell times depending on the seat number and po-
sitioning. By relying on color-coded floor plans as the input to the simulation,
different vehicle layouts can be evaluated easily. Of course, apart from efficiency
metrics such as the dwell time, viable vehicle designs must also be evaluated in
terms of the provided service quality through features such as step-free access,
space for wheelchair users, and the presence of handrails.

In future work, we aim to extend our experiments to passengers with different
characteristics. To this end, we are exploring data collection from virtual reality
experiments [3] and real world observations. Potential future refinements include
more complex passenger interactions in confined environments (e.g., exiting the
vehicle to allow passengers to alight), joint decision-making (e.g., assisting elderly
people), and crowd mixes at specific times of day (e.g., during peak hours).
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