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Abstract—Compressive Sensing (CS) reconstruction of images
using the smoothed projected Landweber (SPL) method is known
to achieve excellent performance. However, the complexity of
SPL increases for a non-orthogonal measurement matrix. In this
paper, we propose a variant of SPL for non-orthogonal matrices
without increasing the complexity. In addition, we propose a
uniform quantization method for compression of images so as
to reduce the communication cost. The performance of the
proposed method is comparable to the existing methods for lower
measurement rates. This method works particularly well with
non-orthogonal random matrices composed of only -1s and +1s.

Index Terms—Compressive Sensing, Measurement Matrix,
Projected Landweber, Quantization, Non-orthogonal matrices

I. INTRODUCTION

Compressive Sensing (CS) is an emerging technique and
it has attracted considerable interest in signal processing and
wireless communication networks during the last decade. In
compressive sensing, we recover a signal from far fewer sam-
ples than what is required by the classical Shannon Nyquist
sampling theorem [2]. As a result, the compressive sensing
technique reduces the communication cost and requires less
resources for implementation. Compressive sensing uses a
measurement matrix for compression of data. A random matrix
made up of only +1 and -1 (entries) is preferred for the
measurement matrix in resource constrained devices [3], [4],
[13], [9].

Directly applying compressive sensing to 2D images in-
creases the computational complexity of the reconstruction
process in addition to increasing the memory required to store
the random matrix operator. In [6], [10], the authors addressed
this challenge using the block-based compressive sensing
operation. Additionally in [6], [10], the authors proposed a
smoothing operator along with iterative projected Landweber
method for improving the quality of images by eliminating
blocking artifacts.

In this paper, we adopt the block-based smoothed projected
Landweber (BSC-SPL) method for compressive sensing-based
reconstruction. Our contribution lies in the design of a less
complex BSC-SPL method for non-orthogonal matrices com-
pared to the one reported in [6], [10]. This is achieved by
combining the compressive sensing reconstruction methods in
[6] and [7]. The quality of the output is about the same as
the existing methods [10] with lower measurement rates. It is
worth noting that in real time applications, lower measurement

rates are preferred. In addition, we propose uniform quan-
tization values for the compression stage. This quantization
does not require any additional circuit, because it removes
the selected LSB bits and transmits only the remaining bits.
The quantization is achieved by optimizing the reconstruction,
but it is only applicable to the random measurement matrices
composed of +1 and -1 values. We can further reduce the
communication cost using the quantizations methods in [11],
[8], [14]. We have compared our method with existing methods
in [10] and the quality of our reconstructed images is compa-
rable to [10]. The key advantages of our method are reduction
of communication cost using uniform quantization and less
computational complexity for reconstruction of images with
non-orthogonal matrices.

II. BACKGROUND

A. Compressive Sensing

Compressive sensing is a method of directly acquiring the
signal at sub-Nyquist rate from sensor provided signal a
sparse-signal. Compressive sensing acquires an M -samples
signal Y from an N -samples signal X using the linear
projection or measurement matrix � of size M ⇥N provided
M << N . This process is known as compression or CS-
Encoding. The CS encoding equation is shown in Eq. (1).
where X is a sparse signal.

YM⇥1

= �M⇥NXN⇥1

where M ⌧ N (1)

We can recover the estimation of the original sparse signal
X from Y using the the Basis-Pursuit(BP) or l

1

-optimization
method. l

1

-optimization defined as

X = arg min k X k
1

subjected to Y = �X (2)

In general, signals generated by the sensors are not sparse
signals. We can represent the sensors signals as sparse signals
using a particular basis like Discrete Wavelet, Discrete Cosine
etc. known as  . If signal X is sparse in some basis  , then we
can directly compute Y using the Eq. (1) without transforming
X . The signal recovery method in Eq. (2) is changed to Eq. (3)

X = arg min k X k
1

subjected to Y = � X (3)

where X is the original signal of size N ⇥ 1, � is the CS
matrix or measurement matrix (MM) of size M ⇥ N ,  is
the compression matrix (CM) of size N ⇥ N , and Y is the
compressed signal of size M ⇥ 1 and M << N .
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B. Block-based Compressive Sensing

The CS encoding and reconstruction presented in Eq. (1)
and (3) are used for compressing and recovering 1-D signals.
Therefore we have to convert 2-D signals like images to 1-D
signal before applying CS. Recovering 2-D signals using BP
in Eq. (3) is computationally expensive because of large-size
N . In [6], the authors proposed a method for compressing
images using the CS. Instead of applying CS on the whole
image, splitting the image into several blocks of size B ⇥ B
and applying CS on each block, we can recover each block
using the method in Eq. (3). This method of compressing and
reconstructing signals is called as Block-based Compressive
Sensing (BCS). BCS compression of images is written in
Eq. (4).

yj = �Bxj (4)

where yj is the compressed block of the xth
j block in image

X and �B is a random matrix of size M ⇥ B2. We define
measurement rate as shown in Eq. (5).

Measurment Rate =
M

N
Where N = B2 (5)

C. Measurement Matrices

CS mainly depends on the selection of good measurement
matrix � for exact recovery of X from Y under the condition
M << N . In [2], authors introduced the restricted isometry
property (RIP) as a sufficient condition on � matrices which
can recover the best performance signal. The measurement
matrices which satisfy the RIP are Gaussian random matrices,
Partial Fourier matrices and Bernoulli random matrices [16].
Bernoulli random matrices require very less resources to store
values and we can implement CS encoding in Eq. (4) using
only adders. We can write Bernoulli random matrices as

�B(i, j) =

(
+1 with probability 1/2
�1 with probability 1/2

(6)

D. CS Reconstruction

The CS reconstruction presented in Eq. (3) can be imple-
mented using the BP. Because of high computational complex-
ities involved in BP, other less complex methods are preferred
like orthogonal matching pursuit (OMP), gradient projection
for sparse reconstruction (GPSR) [12] and sparsity adaptive
matching pursuits (SAMP) [5]. Recently, projected Landweber
(PL) based method for CS image reconstruction was presented
in [6], [10]. In [6], [10], the authors incorporated Wiener filter
into PL method at each iteration to remove the blocking arti-
facts. The overall method is known as block based compres-
sive sensing with smoothed projected Landweber (BCS-SPL).
Most reconstruction methods consider measurement matrix
� as orthogonal matrix to reduce the complexity. The non-
orthogonal based BCS-SPL method require additional O(M2

)

multiplications and additions for each block at each iteration.
The BCS-SPL method starts at initial step x0

j = �Byj and
iteratively calculates image Xi until it converges. In this
paper, we are not presenting the convergence details (see

TABLE I: Non-Orthogonal matrix based BSC-SPL Algorithm

x

0
i = �0

Byj (7)

X

i�1 = Wiener(Xi�1) (8)
x̃

i
j = x

i�1
j + �0

B(�B�
0
B)�1(yj � �Bx

i�1
j ) (9)

x̌

i
j =  ˜x

i
j (10)

x̆

i
j = Threshold(x̌i

j ,�) (11)

x̂

i
j =  �1

x̆

i
j (12)

x

i
j = x̂

i
j + �0

B(�B�
0
B)�1(yj � �B x̂

i
j) (13)

[10]). The BCS-SPL method of non-orthogonal matrices at
ith iteration is given in Table-I. Here, Xi and xi

j are the ith

iteration image and jth-block. More details on Wiener( ) and
Threshold( ) operators are presented in [10]. The (�B ⇤�0

B)
�1

becomes identity matrix, if �B is orthogonal matrix otherwise
BCS-SPL algorithm requires additional 2⇤M2 multiplications
and M ⇤ (N � 1) additions for each block. We can pre-
compute the �0

B(�B ⇤ �0
B)

�1 matrix and store in memory
for reduction of additional multiplications but CS method uses
adders and subtractors based �-matrix to reduce resources at
CS compressions stage [3] . In such a case, additions based x̃i

j

and xi
j-terms require multiplications because of (�B ⇤�0

B)
�1

matrix.
In [7], authors proposed a form of PL method for CS

signal reconstruction without Wiener filter. This algorithm
successively iterates and thresholds the signals. This algorithm
is similar to the BCS-SPL, but requires less computations for
non-orthogonal matrices. The CS reconstruction method in [7]
is given as

x̂i
= xi�1

+

1

�
 

�1

�

0
B(y � �B x

i�1

) (14)

xi
= Threshold(x̂i

j ,�) (15)

where � is scaling factor and largest eigen value of �0
B�B .

This method requires constant multiplication (1/� ) for non-
orthogonal matrix based CS reconstruction but it lacks the
smoothing operator Wiener. In the next section, we propose
a new and improved CS reconstruction algorithm for non-
orthogonal matrices by combining the two methods presented
in [10] and [7].

III. BLOCK-BASED CS IMAGE RECONSTRUCTION WITH
MODIFIED PL

CS reconstruction method in Table-I increases complexity
for non-orthogonal matrices by introducing (�

0
B�B)

�1 ma-
trix. We can replace the (�

0
B�B)

�1-matrix in Eq. (9) and (13)

with
1

�
term presented in Eq. (14). The modified equations of

x̃i
j and xi

j terms in Eq. (9) and (13) are written as

x̃i
j = xi�1

j +

1

�
�

0
B(yj � �Bx

i�1

j ) (16)

xi
j = x̂i

j +
1

�
�

0
B(yj � �Bx̂

i
j) (17)



We can use Eqs. (16) and (17) for computing the x̃i
j and xi

j

terms in CS reconstruction presented in Table-I. The proposed
CS reconstruction requires additional 2N constant multipliers
( 1� ) in place of 2 ⇤ M2 multiplications and M ⇤ (N � 1)

additions. We can convert constant multiplications into shifting
operations by replacing � value as closest powers of two and
referred as �0. The calculation of �0 value defining in Eq. (18).

�0
= 2

blog2 �c (18)

We can replace � in Eqs. (16) and (17) with �0. The
computations of proposed x̃i

j and xi
j terms requires only

additions with constant shifts, provided �B-matrix with +1
and -1 values. This proposed method is less complex than the
methods presented in [7],[10].

The CS method was introduced for fast compression and
reduction of communication cost. However, CS compression
in Eq. (1) increases the bit size of Y compared to the input X ,
this increases the communication cost. We are proposing the
uniform quantization method by transferring the part of scaling
factor �0 to the CS compression stage. We are defining the �0

as a product of g and q shown in Eq. (19). We will use q
as uniform quantization factor, the calculation of g and q are
shown in Eq. (20) and (21) respectively.

�0
= g ⇤ q (19)

g = 2

blog2
p
�c (20)

q = 2

dlog2
p
�e (21)

The CS compression equation using uniform quantization
term q and �B shown in Eq. (22). The q in Eq. (22)
does not require any computations, it will remove dlog

2

p
�e

number of LSB bits in each value of �Bxj vector. We have
empirically studied the g and q values for many �B matrices
and surprisingly the g and q values are constant for given block
size. The table-II shows the g and q values for different block
sizes of images. Through empirical studies, we found that 10-
bit long values of yjs are enough for reconstruction of images
with better quality. We can further reduce the transmission bit
sizes by using method (DPCM) in [11].

yj =
1

q
�Bxj (22)

TABLE II: g,q-values and size of yj(k) for different block
sizes of images;where yj(k) represents the kth element of yj

Block-Size g q Minimum size of yj(k)
8⇥8 8 16 10-bits

16⇥16 16 32 10-bits
32⇥32 32 64 10-bits

The x̃i
j term in Eq. (16) is modified as shown in Eq. (23).

The �0
Byj term divides by only g value, because the yj term

is already divided by q value as shown in Eq. (22).

x̃i
j = xi�1

j +

1

g
�

0
B(yj �

1

q
�Bx

i�1

j ) (23)

The proposed CS compression and reconstruction method
is presented in Algorithm-1. The Xi in CS reconstruction
represents the ith iteration image formed by merging the
all xi

j blocks of image. The CS reconstruction process is
iterative and continues until it converges. The detail of the
converges and the Threshold() operator are presented in [10].
The main advantages of our proposed method are reduction
of the communication cost with-out any additional circuit and
the uses of only additions with fixed shifts for computing
x̃i
j and xi

j in Algorithm-1. The proposed method is useful
for resource constrained devices and less complex than the
existing methods in [7], [10].

Algorithm-1: Proposed Block-Based Compressive Sensing method for non-
orthogonal matrices

CS Compression
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1

q
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CS Reconstruction
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1

q

�Bx

i�1
j )

x̌

i
j =  x̃i

j

x̆

i
j = Threshold(x̌i
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j

x

i
j = x̂

i
j +

1

g
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1

q

�B x̂

i
j)

Remark 1. The proposed CS compression method in Eq. (22)
is directly applicable to the CS reconstruction for non-
orthogonal matrices presented in Table-I with little modifica-
tion to yj term. The yj-term has to be multiplied with uniform
quantization value q, i.e yj = q ⇤ yj , before starting the
reconstruction of the image using Eq. (22). This way we can
reduce the communication cost and reconstruct the images
with same quality as in [7] and [10].

IV. EXPERIMENTAL RESULTS

We have implemented our proposed BCS-SPL method by
selecting two different compression matrices  namely DCT
and DWT. We refer to the proposed methods with DCT
and DWT as Prop-BCS-SPL-DCT and Prop-BCS-SPL-DWT
respectively. Fig. 1 shows the reconstructed images with
different measurement rates using 10-bit long yj(k)s and block
size of 32⇥32. The performance of our method is better for
higher block sizes of the image.

Table-III compares the peak signal-to-noise ratio (PSNR)
in dB for different 512⇥512 images at different measurement
rates. We compared our results with existing works presented
in [1], [10], [15]. The quality of reconstruction images varies
with measurement-matrix �B and hence, we have considered
averaged PSNR values over 5 independent trials. The results
indicate that the proposed method performs better when the



Fig. 1: Reconstructed images with M
N = 0.1, 0.2, 0.3, 0.4 and 0.5 from left-to-right using proposed BCS-SPL-DCT

TABLE III: Comparison of PSNR (dB) values of different
images with different measurement rates

Algorithm Measurement Rate (M/N)
0.1 0.2 0.3 0.4 0.5

Lena
Prop-BCS-SPL-DCT 26.50 29.51 31.17 32.50 33.55
Prop-BCS-SPL-DWT 26.81 29.65 31.40 32.80 33.84
BCS-SPL-DCT [10] 27.70 30.45 32.46 34.19 35.77
BCS-SPL-DWT [10] 27.81 30.89 32.94 34.61 36.15
SAMP [10] 25.94 28.54 32.04 33.93 35.37
GPSR [10] 24.69 28.54 31.53 33.69 35.82
LCS [15] — 27.63 30.73 31.78 32.54
BCS [1] 28.21 31.03 33.11 — —

Barbara
Prop-BCS-SPL-DCT 21.67 23.82 24.95 25.90 26.93
Prop-BCS-SPL-DWT 22.19 23.42 24.33 25.23 26.11
BCS-SPL-DCT [10] 22.76 24.38 25.91 27.42 29.05
BCS-SPL-DWT [10] 22.62 23.94 25.20 26.56 28.05
SAMP [10] 20.97 22.83 25.04 27.68 30.08
GPSR [10] 20.23 22.66 24.99 27.42 30.15

Goldhill
Prop-BCS-SPL-DCT 25.83 27.66 28.85 29.83 30.37
Prop-BCS-SPL-DWT 26.15 27.94 29.18 30.11 30.96
BCS-SPL-DCT [10] 26.10 28.32 29.63 30.98 32.57
BCS-SPL-DWT [10] 26.71 28.68 30.13 31.53 32.85
SAMP [10] 24.31 26.30 28.07 29.45 30.86
GPSR [10] 23.63 26.14 28.09 30.02 31.72

measurement rate is less than 0.5. The performance of our
methods is better compared to the SAMP and GPSR methods.
The PSNR values of proposed BCS-SPL-DCT and BCS-SPL-
DWT methods are less than the methods in [10]. Our PSNR
values differ from -0.5 dB to -2 dB compared to the the PSNR
values in [10]. The higher the measurement rate, the larger
is the difference in PSNR values. The performance of our
method is almost the same as the methods in [10]. For better
performance, we suggest to use the measurement rate between
0.2 to 0.4.

V. CONCLUSIONS

In this paper, we have presented a modified projected
Landweber method to reconstruct the images using non-
orthogonal matrices with less complexity. In addition to this,
we have adopted a uniform quantization method for different
block sizes of images. This method works very well with non-
orthogonal random matrices (which are composed of -1s and
+1s). The Prop-BCS-SPL provides almost the same gain as
in [10] for lower measurement rates. Overall, the proposed
algorithm reduces the communication cost by using uniform

quantization after the compression and is less complex to
reconstruct the images.
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