
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Rapid Memory-Aware Selection of Hardware
Accelerators in Programmable SoC Design

Alok Prakash, Member, IEEE, Christopher T Clarke, Member, IEEE, Siew-Kei Lam, Member, IEEE,
and Thambipillai Srikanthan, Senior Member, IEEE

Abstract—Programmable Systems-on-Chips (SoCs) are ex-
pected to incorporate a larger number of application-specific
hardware accelerators with tightly integrated memories in order
to meet stringent performance-power requirements of embedded
systems. As data sharing between the accelerator memories and
the processor is inevitable, it is of paramount importance that the
selection of application segments for hardware acceleration must
be undertaken such that the communication overhead of data
transfers do not impede the advantages of the accelerators. In
this paper, we propose a novel memory-aware selection algorithm
that is based on an iterative approach to rapidly recommend a
set of hardware accelerators that will provide high performance
gain under varying area constraint. In order to significantly
reduce the algorithm runtime while still guaranteeing near-
optimal solutions, we propose a heuristic to estimate the penalties
incurred when the processor accesses the accelerator memories.
In each iteration of the proposed algorithm, a two-pass method is
employed where a set of good hardware accelerator candidates is
selected using a greedy approach in the first pass, and a ’sliding
window’ approach is used in the second pass to refine the solution.
The two-pass method is iteratively performed on a bounded set
of candidate hardware accelerators to limit the search space and
to avoid local maxima. In order to validate the benefits of the
proposed selection algorithm, an exhaustive search algorithm is
also developed. Experimental results using the popular CHStone
benchmark suite show that the performance achieved by the
accelerators recommended by the proposed algorithm closely
matches the performance of the exhaustive algorithm, with close
to 99% accuracy, while being orders of magnitude faster.

I. INTRODUCTION

Embedded systems have undergone significant changes in
recent years. In last five years alone, the performance demand
from such systems has risen exponentially. At the same time,
the area and power constraints have become more rigorous
than ever. Such stringent and conflicting requirements have led
to the adoption of application specific customization by adding
suitable hardware accelerators to realize high performance
systems with strict power and area budgets. For example
the last three generations of AppleTM system-on-chip (SoC)
dedicated more than half of its die area to application-specific
hardware accelerators [1]. However, these SoCs typically face
prohibitively high non-recurring engineering (NRE) and time-
to market (TTM) pressures which make them unsuitable for
low-to-mid volume products. Programmable SoCs, such as
Xilinx Zynq platform [2] and Altera SoC field programmable
gata array (FPGA) [3] address the NRE and TTM challenges
while also providing the flexibility for future upgrades through
the use of reconfigurable logic. However, they suffer from

A. Prakash, S.K. Lam and T. Srikanthan are with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore e-
mail: (alok, assklam, astsrikan@ntu.edu.sg).

C.T. Clarke is with the Department of Electronic and Electrical Engineering,
University of Bath, United Kingdom. e-mail: (eesctc@bath.ac.uk).

lower power-performance efficiency as opposed to ASIC de-
signs and therefore require extensive customization to meet
the design constraints. The complex design processes required
for these SoCs and the lack of tools, however, have proven
to be a significant hindrance in their wider adoption. This
challenge is further exacerbated by the data sharing between
the processor and the application-specific accelerators, which
if ignored, can significantly impede the advantage of the
accelerators. Hence, rapid tools and design methodologies are
essential to generate application-specific custom designs based
on such Programmable SoCs in order to meet the various
design constraints.

Hameed et al. [4] highlighted the importance of incorpo-
rating custom storage elements that are tightly fused with
the hardware accelerators in order to offset the performance
overheads incurred by data fetches. As such, state-of-the-art
accelerators often include tightly coupled on-chip memories
with dedicated address space e.g. scratchpad memory to store
the accelerator’s local data. Unlike caches, the use of dedicated
memories like scratchpads leads to benefits such as lower
performance overheads (as it does not require tag comparison
and address translation) and deterministic memory access
latencies. While these accelerator memories should primarily
serve specific hardware accelerators, data sharing between the
accelerator memories and processor is inevitable. Existing ap-
proaches for data sharing between processor and accelerators
requires cumbersome software invocations of direct memory
access (DMA) engines, which imposes additional burdens on
programmers [1].

In our earlier work [5] [6], we demonstrated a technique
on Altera FPGA platform to addresses the challenge of using
hardware accelerators that do not require DMA invocations
or cache-coherence systems for data sharing between the
accelerator memories and the processor. In order to achieve
maximal performance gains in this architecture model, there
is a need for careful analysis of the application in order to
identify the best segments of application code for hardware
acceleration. Specifically, the implications of data sharing
between the accelerator memories and processor must be
accounted for during hardware-software partitioning process.
The significance of a memory-aware approach for selecting
hardware accelerators is shown in Table I, which reports
the normalized execution time of the SHA application from
MiBench [7] benchmark suite with different combinations of
basic blocks (BBs) implemented as hardware accelerators. A
basic block is defined as a straight-line of application code
segment with no branches in except to enter and no branches
out except to exit the code segment [8]. The reason behind
accelerating at the basic block level is discussed in Section II.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

TABLE I: Normalized execution time of the SHA application
from MiBench [7] with various combinations of basic blocks
implemented as hardware accelerators

Basic Blocks Implemented
as Hardware Accelerators

Normalized Runtime
(against software only implementation)

BB3 0.84
BB3+BB6 0.95

BB3+BB6+BB10 0.81
BB3+BB6+BB10+BB13 0.67

BB3+BB6+BB10+BB13+BB16 0.53

These basic block level hardware accelerators are implemented
on the Altera FPGA fabric while the remaining application
was executed on the soft-core NIOS II processor. It can be
observed that the normalized runtime increases from the case
of BB3 to BB3+BB6 due to the memory access penalties
(caused by data dependencies between BB6 and BB10) that
are incurred when BB6 is introduced as a hardware accelerator.
The penalties are eliminated when BB10 is also included as
hardware accelerator. Therefore, given a tight area constraint
for hardware accelerators, a better solution can be achieved
by porting only BB3 to hardware instead of BB3+BB6.

Hence, a more complex selection criteria must be employed
in order to consider the complex data dependencies between
the various hardware and software sections of the application
code. The problem of memory aware selection of hardware
accelerators is non-trivial especially with the growing com-
plexity of embedded applications, which leads to a large
design space (2N different hardware/software partitions with
N non-overlapping and unique candidate blocks) [9]. This
prohibits the use of exhaustive methods for selecting hardware
accelerators with high performance gains.

In this paper, an automated selection algorithm is presented
that uses a mathematical model to account for the memory
dependencies of different hardware accelerators. Combined
with the traditional selection metrics such as performance gain,
required hardware area etc., the proposed algorithm rapidly
recommends the most profitable basic blocks for acceleration
with varying area constraint. While the runtime and complex-
ity of an exhaustive search increases exponentially, our method
scales almost linearly with increasing number of hardware
accelerator candidates. Moreover, the performance achieved
by the candidates recommended by the proposed framework
is shown to be close to 99% of the exhaustive search results.

The rest of the paper is organized as follows. In the
next section, we review the related work in this area. This
is followed by a discussion on the selection of hardware
accelerator candidates in Section III. Section IV describes in
detail the mathematical model to estimate the overhead of
accessing local memory blocks in hardware accelerators. The
proposed greedy selection algorithm that relies on a selection
heuristic is discussed in the next section. We then extend the
proposed algorithm in Sections VI and VII to improve the
accuracy of the selection results. Section IX concludes this
paper with discussions on future work.

II. RELATED WORK

Hardware accelerators at various levels of granularity are
widely used to improve application performance and power
consumption. Sun et al. in [10] showed the benefits of using

Sy
st
em

 In
te
rc
on

ne
ct
 F
ab

ricProcessor
Core

Main
Memory

(Un‐cached Memory‐Mapped
Local Memory)

I/D
Cache
Mem.

BUS
Inter
‐face

BUS
Inter
‐face

Custom
H/W

Custom
H/W

Local
Memory

Fig. 1: Architecture model[5]

hardware accelerators of varying granularity including “tra-
ditional custom instructions” on Xtensa processors [11], a
commercial configurable processor from Tensilica.

A. Custom Instructions with Memory Operations
The inclusion of memory operations into hardware ac-

celerators necessitates a proper channel for these hardware
accelerators to access the memory. The authors in [12], [13]
proposed transferring data from the main memory to the local
memory of the FPGA by a DMA transfer in a basic block
before the hardware accelerator executes. After the hardware
accelerator executes on the data in its local memory, the
data is transferred back to main memory using another DMA
transfer cycle. A significant portion of time savings achieved
by executing the code segment in hardware, is eventually
lost due to the DMA transfers. Another approach taken to
facilitate data sharing between accelerators and the processor
is to use caches for accelerator memories. Additional protocols
are required to maintain cache coherence. Kluter et al. in [14]
and [13] suggested modification to the cache controller to
avoid using a rather costly hardware coherence protocol for
solving the cache incoherence problem. In [15] the authors
allow the accelerators to have direct access to the level one
data-cache in the system and therefore able to initiate a
memory transfer from the entire processor address space. All
the write processes back to the memory only happens after
the execution of the accelerator in order to ensure the validity
of the data. In case of a Translation Lookaside Buffer (TLB)
fault, the compiler introduces additional instructions to ensure
the validity of the data. The authors have provided limited
information of their work for proper evaluation.

Ensuring cache-coherence is becoming increasingly im-
portant, especially due to the growing popularity of multi-
core systems. Therefore, companies such as ARM [16] and
Synopsys [17] provide hardware IPs [18] [19] for easy integra-
tion while providing better performance and power efficiency.
While opportunities exist to exploit the benefits of hardware-
managed caches in accelerator designs, designing cache inter-
faces for accelerators is a very challenging problem [1].

In order to avoid DMA invocations or cache-coherence
systems for data sharing between the accelerator memories
and the processor, in our earlier work [5] we proposed an
architecture model, shown in Figure 1 that uses hardware

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

accelerators with tightly coupled local memory blocks. Fine-
grained hardware accelerators at the basic block level were
used as custom instructions to show the efficiency of this
architecture model. Hardware accelerators based on resource
intensive functions in an application invariably waste precious
hardware area, since they also accelerate code segments inside
the function that do not execute as frequently as other segments
and hence are not profitable. On the other hand, by definition,
every instruction inside a basic block is executed with the
same frequency. Hence, accelerators based on basic blocks,
as presented in our earlier work [5] [6] allow designers to
make the most efficient usage of the available hardware area by
providing much finer control on the accelerated code segments.
However, the usage of such fine grained accelerators results in
a large design space for selecting the appropriate accelerators.

In [6], we used the architecture model from [5] to derive
an equation to estimate the penalty of accessing data by the
processor from the FPGA local memory blocks used to store
data for hardware accelerators. It should also be noted that as
presented in our earlier work, we propose to use hardware
accelerators as custom instructions to the processor. This,
unlike a co-processor based accelerator, ensures that the data
is always synchronized between the local memory blocks
associated with the hardware accelerators and the processor.
In addition, the local memory blocks were initialized in the
un-cached memory address space to the obviate the need
for expensive cache-coherence protocols. However, a rapid
technique for automatic memory-aware selection of these fine-
grained accelerators for hardware-software (HW-SW) parti-
tioning was not presented in [5] or [6].

B. Selection of Hardware Accelerators
The authors in [9], [20] and [21] have proposed automatic

partitioning strategies using hardware accelerators at varying
levels of granularity. They used multi-grained accelerators,
where the granularity of the accelerators ranged from basic
blocks to a function or process level in their design, and
the data communication between the hardware and software
sections was done through the usage of shared memory space.
In [9], they proposed the copying of relevant data in the shared
memory space each time, prior to executing the software or
hardware components of the application. In [20] the authors
proposed an architecture, termed as KAHRISMA, where hard-
ware accelerators of varying granularity could be added to the
processor at runtime in order to leverage dynamic reconfigu-
ration of modern high-end FPGAs and realize different pro-
cessors. They proposed the addition of accelerators in the base
processor ISA at runtime using dynamic reconfiguration to suit
different applications. Similarly in [21], the authors proposed a
run time system to incorporate different fine or coarse grained
accelerators into the extensible processor according to appli-
cation requirements. Based on their works discussed in [9],
the data communication between the hardware and software
components of the application requires data movement during
application execution which incurs additional cost in terms
of performance and power. Also, the selection of hardware
accelerators was mainly based upon software and hardware
performance of the code sections.

LegUp is a high level synthesis tool [22] that compiles a
“C” program onto a hybrid architecture consisting of a MIPS
based soft processor and custom hardware accelerators. The
code sections implemented in hardware are selected manually
and fed into the tool as one of the inputs for design space
exploration. While the tool itself is extremely useful because
of its end-to-end design flow, memory implications have not
been considered during the hardware selection.

Yousuf et al. presented the design automation for partial
reconfiguration (DAPR) design flow, for hardware-software
co-designed systems. DAPRs design flow isolated low-level
PR design complexities involved in analyzing PR designs
with different performance parameters to make PR more
amenable to designers [23]. Zhang et al. proposed a new
MILP (Mixed Integer Linear Programming) formulation for
hardware-software partitioning targeting MPSoC (Multi-core
Processor System on Chip) with a DPR fabric [24].

Tang et al. formulated the optimization of HW-SW partition-
ing aimed at maximizing streaming throughput with predefined
area constraint, targeted for multi-processor system with hard-
ware accelerator sharing capability [25]. Greedy heuristic tech-
niques were proposed to rapidly select appropriate hardware
accelerators while achieving close to 94% of the performance
obtained by accelerators recommended using an exact brute
force approach. They also claim that the communication
latencies between hardware and software is insignificant when
compared to the computation time and hence can be safely
ignored. As shown in our earlier works [5] [6] and also in this
paper, ignoring the communication between the hardware and
software components can even lead to worse performance as
compared to the software only design. However the approaches
in [23][24][25] fail to take this overhead into consideration.

In this paper, we build upon our previous work in [5] &
[6] and propose a novel memory-aware HW-SW partitioning
algorithm to rapidly recommend a set of hardware accelera-
tors that provides high performance gain under varying area
constraint. The proposed heuristic-based techniques mitigate
the high design space complexity in the hardware software
partitioning step and achieve rapid design space exploration
and identification of profitable set of basic blocks for hardware
acceleration. It is noteworthy that the algorithms proposed in
this paper can be integrated into existing high level synthesis
tools e.g. LegUp to provide for automated hardware-software
co-design and design space exploration.

III. SELECTING HARDWARE ACCELERATOR CANDIDATES

In order to facilitate the selection of suitable basic blocks for
hardware acceleration, we use the LLVM compiler infrastruc-
ture [26] for front end compilation of the application code to
obtain a target-independent Intermediate Representation (IR).
The IR is profiled to obtain the execution frequency of all the
basic blocks in the application. The most frequently executed
code sections or the “hot blocks” are usually the most preferred
candidates for hardware acceleration. The basic blocks are
arranged in decreasing order of execution frequency and the
top most frequently executed basic blocks are chosen for
further analysis. The number of blocks selected at this stage
can be varied according to the user input. However, typically

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

only the top 20 - 30 basic blocks in an application have
significant impact on the performance. This observation is in
line with the Pareto principle or 90/10 rule [27], which states
that 90% of the execution time is spent in 10% of the code.

Once the candidate basic blocks are shortlisted, we perform
memory analysis to determine which of these basic blocks can
be potentially executed in hardware. In our architecture model,
we do not consider basic blocks with dynamically allocated
memory for hardware acceleration. The shortlisted candidate
basic blocks are therefore divided into two categories: Imple-
mentable and Un-implementable basic blocks.

Apart from their execution frequency, the Implementable
blocks are also annotated with other metrics such as their
estimated execution time in software and hardware as well as
the estimated hardware area. These metrics are necessary for
selecting the most profitable blocks given an area constraint.
In this work, we estimate the hardware area and execution
time using the concepts proposed in [28] and the popular
LegUp toolchain [22]. The software time can be estimated
as the number of primitive operations in the basic block.
Each of the primitive operation such as arithmetic, logical
etc. typically take a single clock cycle for execution whereas
memory operations generally need longer time to execute if
the relevant data is not found in the cache.

We also develop a tool to extract the names, type and size
of each variable manipulated in the candidate basic blocks.
Since the total hardware area to accelerate a code segment
in hardware also includes the memory space required to
store the relevant variables, the memory size must also be
estimated. We parse the LLVM IR to estimate the size of these
memory blocks. Finally, the accesses frequency of all arrays
and variables used in the candidate blocks is also identified.

IV. ESTIMATING PENALTY FOR USING ACCELERATOR
MEMORY

Figure 1 shows the architecture model proposed in our
earlier publication [5] that utilizes hardware accelerators with
tightly coupled local memories that do not require expensive
DMA invocations or cache coherent systems to enable data
sharing with the processor.

Consider a block of code Y being executed in the processor
that needs to process an array A. In a traditional memory
hierarchy, A is stored in the main memory and will be brought
into the processor’s registers through the cache hierarchy. In
an ideal situation, A is in the cache and therefore the access
latency of this array is minimal. In the proposed model, A
needs to be processed by the hardware accelerator X, and hence
A is stored in the local memories that are tightly coupled to
X. Now, if code block Y also needs to access A, the processor
must access it from the local memory via the system bus
instead of its data cache. This inevitably requires a longer
access time for the processor compared to accessing from its
cache. The difference in latency required by the processor to
access the local memory instead of the data cache is referred
to as the “access penalty”. In order to quantify this penalty, the
time taken for the processor to access the data from both the
local memory and the data cache is modeled. The following
terms are defined prior to formalizing this penalty model.

1) Access Time from Processor to Local Memory (TPM):
In the proposed model, the processor accesses the local mem-
ories that are tightly coupled with the accelerators through the
system bus. The time taken for the processor to access these
accelerator memories via the system bus is called TPM .
2) Access Time from Processor to Cache (TPC): The time
taken for the processor to access the data from the cache
memory is termed as TPC . TPC can vary from the best case
scenario of 1 clock cycle to multiple clock cycles in the
worst case (due to the need of cache flushing etc.). In our
experiments, we assume the best case scenario of 1 clock cycle
for the software implementation.
3) Access time from Hardware accelerator to the Local
Memory (THM): The time taken by the accelerator to access
a data stored in the local memories is deterministic. One can
safely assume that the data can be accessed in a clock cycle
and this time is denoted by THM . In addition, multi-ported
local memories can be used to minimize the overall access
latencies by hardware accelerators through parallel data access.

A. Penalty Model

Equation 1 models the number of clock cycles saved through
implementing a code section X in hardware. The first term
(block advantage of X) denotes the number of cycles saved by
accelerating a code segment X in hardware. The second term
is the latency difference between accessing a variable from
the cache in case of software implementation, and accessing
the same variable in the local memory by the accelerator
during hardware implementation. In a typical case, when the
processor accesses the data directly from cache, Tpc is 1 clock
cycle. Similarly, time required for the hardware accelerator to
access the data stored in the block RAMs based local memory,
is also typically 1 cycle. Hence, in this paper we ignore the
second term during the penalty evaluation. In future, we will
explore cache modeling techniques to estimate this term more
accurately in order to further refine our selection algorithm.

Cycles saved = (SWTime −HWTime) ∗ FreqX︸ ︷︷ ︸
1st term

+

(TPC − THM) ∗ FreqX︸ ︷︷ ︸
2nd term

−
(i=|U |)∑
(i=1)

(α ∗mi ∗ Freqi)︸ ︷︷ ︸
3rd term

(1)

The third term is the maximum access penalty (Pmax) as-
sociated with the processor accessing an accelerator memory.
This penalty is analogous to the situation where the processor
needs to access the data from the main memory instead of its
cache hierarchy. Let us denote U as the set of basic blocks
in software that need to access the local memories in the
hardware implementation of X, and X/∈U. mi denotes the
number of memory operations in basic block i∈U that is used
to access the local memories in the hardware implementation
of X, while Freqi is the execution frequency of basic block i.
This penalty can be different across SoCs. α is (TPM - TPC),
which is fixed for a given SoC. For example, we have used the
Altera SoC model with NIOS II processor in our experiments,
where α = 5 (TPM = 6, TPC = 1). The summation in this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Memory Analysis

Hot Basic Blocks

Application
Profiling

Implementable
blocks

Un‐implementable
blocks

Estimation of
HWTime and SWTime

U = all implementable blocks,
Calculate for each implementable basic block XϵU

Pmin, Block_Adv, Mem_Access_Adv

Calculate for each basic block XϵU, calculate
Pmax, Guaranteed_Adv, Potential_Adv and

remaining area

Any block XϵU with +ve
Guaranteed_Adv?

Select block XϵU with highest
Guaranteed_Adv and all

potential blocks, if any, for
hardware acceleration,

U = U ‐ X

Yes

Is U empty?
No

Select block XϵU with
highest Potential_Adv

No

END
Yes

Have all
Implementable blocks

been evaluated?

NoYes

Fig. 2: Greedy selection algorithm

term denotes that we need to factor in the penalty incurred by
accessing the data stored in the accelerator memories from all
basic blocks currently being executed in software.

V. GREEDY HEURISTIC (GH) SELECTION ALGORITHM

The main objective of our Greedy Heuristic (GH) selection
algorithm is to select the best set of hardware accelerators
that will minimize the overall memory access penalty, i.e. the
third term in equation 1. Ideally, all the basic blocks having
common data-dependencies should be accelerated in hardware
simultaneously, which then incurs zero penalty. This, however,
may not be possible if there are Un-Implementable blocks or
if there is a lack of available area to implement all the blocks
in hardware simultaneously. Hence, in order to rapidly select
a set of accelerators to minimize the overall memory access
penalty, we propose our GH algorithm that aims to identify
and select a set of basic blocks for hardware acceleration such
that the selected accelerators have high intra-data dependency
and low data-dependency with the rest of the application code.

A. Definition of Important Terms

Before describing the proposed GH selection algorithm, we
define the important terms used in the heuristic as follows:
1) Max Penalty (Pmax(X))
The maximum access penalty (Pmax(X)) has to be calcu-
lated for each implementable block X that is considered for
hardware acceleration (taking into account the Implementable

blocks that have been selected for hardware porting previ-
ously) using the third term in Equation 1.
2) Min Penalty (Pmin(X))
The minimum access penalty (Pmin(X)) signifies the min-
imum overhead incurred from the un-implementable blocks
when all the implementable blocks have been ported to hard-
ware. Hence, Pmin(X) needs to be calculated for each of
the implementable block X only once (assuming all the other
implementable blocks have been ported to hardware) using the
third term in Equation 1.
3) Block Advantage (Block Adv(X))
This is the general advantage for implementing a section of
code X in hardware and is calculated as the difference of its
software and hardware runtimes multiplied by its execution
frequency using the first term in Equation 1.
4) Memory Access Advantage (Mem Access Adv(X))
This quantifies the penalty reduction of moving a basic block
X to hardware, as X can now access existing accelerator
memories from previously selected hardware blocks. This is
calculated using Equation 2 for each block X that is selected
for hardware execution. We denote S as the set of previously
selected hardware blocks that has local memories which can
be accessed by X.

Mem Access Adv(X) =

(i=|S|)∑
(i=1)

(α ∗mX∩i ∗ FreqX) (2)

,where mX∩i & FreqX denote the number of memory op-
erations shared between basic blocks X and i, i∈S and the
frequency of basic block X, respectively.
5) Guaranteed Advantage (Guaranteed Adv(X))
This is the net advantage of accelerating a basic block X in
hardware while considering all the penalties and advantages:

Guaranteed Adv(X) = Block Adv(X)+

Mem Access Adv(X)− Pmax(X)
(3)

6) Potential Advantage (Potential Adv(X))
This is the maximum advantage that can be obtained by
implementing a basic block X in hardware. It assumes that
all the Implementable blocks have been selected for hardware
implementation and is calculated as follows:

Potential Adv(X) = Block Adv(X)− Pmin(X) (4)

B. Greedy Heuristic (GH) Algorithm

In this subsection, we discuss the proposed greedy heuristic
algorithm for selecting hardware accelerators. The proposed
algorithm is described with the help of the Secure Hash
Algorithm (SHA) from the MiBench benchmark suite [7].
Figure 2 shows the flowchart for the proposed algorithm.

TABLE II: Most frequently executed basic blocks in SHA

Basic Block Name Dynamic Frequency
sha tranform bb3 311872
sha tranform bb6 97460

sha tranform bb10 97460
sha tranform bb13 97460
sha tranform bb16 97460
sha tranform bb5 4873

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE III: Hot blocks in SHA application and their metrics

Information about the Hardware Block: Name, Frequency, SW/HW
time, HW Size etc

Memories Accessed with their size

Basic block Name Short Name Frequency HW
Time

SW
Time

HW Size
(Logic
Blocks)

W A B C D E

sha tranform bb3 Block 3 311872 12 21 10 5 0 0 0 0 0
sha tranform bb6 Block 6 97460 6 25 6 1 1 1 1 1 1

sha tranform bb10 Block 10 97460 6 25 6 1 1 1 1 1 1
sha tranform bb13 Block 13 97460 6 25 6 1 1 1 1 1 1
sha tranform bb16 Block 16 97460 6 25 6 1 1 1 1 1 1

sha tranform bb5 Block 5 4873 0 0 0 0 1 1 1 1 1
Mem Size 0 0 0 0 320 32 32 32 32 32

The SHA application is first profiled to identify the most
frequently executed basic blocks. Table II lists the 6 most
frequently executed basic blocks in the SHA application,
which constitute 87.85% of the total runtime.

Next, memory analysis is performed to identify the Im-
plementable and Un-Implementable basic blocks. The first 5
hot basic blocks only contain statically allocated arrays and
therefore are identified as Implementable blocks. The last
basic block, sha transform bb5, needs data to be loaded from
dynamically resolved locations, and hence is considered an
Un-Implementable basic block in the proposed technique.

Various metrics for the Implementable basic blocks such
as their hardware and software execution time and size of
various arrays/variables are obtained using existing approaches
described in [22] and [28]. Table III shows the SHA applica-
tion with its most frequently executed basic blocks, estimated
metrics, various arrays/variables, their size and the static
access frequencies.

The proposed GH algorithm aims to select an Imple-
mentable basic block in every iteration with the high-
est Guaranteed Adv for hardware implementation. If
there are no basic blocks with positive Guaranteed Adv,
then the basic block with the highest potential advantage
(Potential Adv) is temporarily selected as a potential block.
In the subsequent iterations, the potential basic blocks are
assumed to have been ported to hardware and the algo-
rithm attempts to find other suitable basic blocks for hard-
ware implementation. Once a new basic block with positive
Guaranteed Adv is selected, the potential basic blocks are
also selected along for hardware acceleration. At the end of
each iteration the overall performance and area utilization of
the selected hardware accelerators are calculated. The process
continues till all the Implementable basic blocks have been
evaluated for positive Guaranteed Adv with or without the
help of potential basic blocks in the previous iterations. It
should be noted that it is indeed possible to evaluate all Im-
plementable basic blocks and still find that some blocks do not
have any positive Guaranteed Adv even after considering all
the potential basic blocks in the previous iterations. In such
cases, these basic blocks will not be selected for hardware
acceleration. This is the main strength of our work since the
proposed algorithm evaluates these scenarios and avoids se-
lecting blocks that can eventually result in worse performance.
At the end of the selection algorithm, a performance-area
curve is obtained to aid the designer in making an informed

hardware-software partitioning decision.
The selection outcomes for the SHA application in every

iteration is shown in Table IV. Based on the memory depen-
dency across basic blocks as shown in Table III, it is evident
that Block 3 is selected in the first step since it has the
least memory dependency. In the second iteration, no basic
block is selected, since there is an overwhelming memory
access penalty and Block 16 is selected as a potential block.
In the subsequent iterations, Block 16 is assumed to be a
selected basic block and hence no memory access penalty
is incurred for this block. In the third iteration, even after
selecting two potential basic blocks, i.e. Block 13 and 16, the
penalty is still more than the overall advantage and therefore
no additional blocks are selected for implementation. In the
fourth iteration, Blocks 16, 13 and 10 can be selected together
since their combined advantage exceeds the penalty from the
other blocks. The last remaining basic block, Block 6, is
selected in the last (fifth) iteration.
TABLE IV: Selected basic blocks in each iteration for SHA

Iteration Guaranteed Blocks Potential Blocks Selected blocks
1 Block 3 NILL Block 3
2 NILL Blocks 16 Block 3
3 NILL Blocks 13 & 16 Block 3
4 Blocks 13, 16 &

10
NILL Blocks 3, 16,

13 & 10
5 Block 6 NILL Blocks 3, 16,

13, 10 & 6

Exhaustive Search Algorithm: In order to evaluate the
benefits of the proposed GH algorithm, we implemented an
exhaustive search algorithm that obtains the exact results while
considering the data dependencies as proposed in our work.
In the exhaustive algorithm, combination of upto n blocks
are evaluated in the n-th iteration. For example in the first
iteration, one block with the best positive performance is
selected. This selection is based on the assumption that the rest
of the blocks are in software, which may incur some memory
access penalty. Only when the advantage of implementing this
combination of blocks in hardware is greater than the penalties
from all the other blocks, we select the block for hardware
implementation. The exhaustive search proceeds by evaluating
all combinations of upto n basic blocks in the n-th iteration
in the same manner, and choosing the best combination in
each iteration. It should be noted that if no combination of n
blocks provides better performance than the combination of
blocks selected in the (n-1)-th iteration, then no new block
is selected in the n-th iteration.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE V: Hot blocks in a sample application and their metrics

Information regarding the Hardware Block: Name, Frequency,
SW/HW time, HW Size etc

Name of memory blocks accessed with their
size

Name Frequency HW
Time

SW
Time

HW Size
(Logic
Blocks)

A B C D E F

Block 0 311872 12 21 320 5 0 0 0 0 0
Block 1 207460 6 25 192 1 1 0 0 1 0
Block 2 157460 6 25 192 0 1 1 0 0 0
Block 3 97460 6 25 192 0 0 1 1 0 0
Block 4 97460 6 25 192 2 2 0 0 1 1
Block 5 37460 6 25 192 10 0 0 0 0 5

Block 6 4873 0 0 0 0 1 1 1 1 1
Mem Size 320 32 32 32 32 32

Figure 3 shows the performance comparison for the SHA
application from the MiBench [7] benchmark suite using the
proposed GH and the exhaustive algorithms. These results are
obtained by using equation 1 to estimate the number of clock
cycles saved after using the accelerators recommended by the
proposed GH and the exhaustive algorithms. In iterations 2
and 3, no new blocks are selected due to the huge penalties
incurred. Overall the GH algorithm accurately tracks the
exhaustive results, while being significantly faster.

0.0E+00
2.0E+06
4.0E+06
6.0E+06
8.0E+06
1.0E+07
1.2E+07

1 2 3 4 5Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
 S
av
in
gs
)

Iteration Number

SHA Application

Exhaustive Algorithm Greedy Heuristic (GH) Algorithm

Fig. 3: Performance of Exhaustive and GH algorithms

VI. TWO-PASS GREEDY HEURISTIC (TP-GH) SELECTION
ALGORITHM

While the proposed GH algorithm in the previous section
can identify suitable accelerators orders of magnitude faster
than the exhaustive approach, it fails to provide accurate
results in certain scenarios. In this section, we use a sample
application to first demonstrate this problem and highlight
the cause of this inaccuracy in the GH algorithm. Finally,
we propose an extension, Two-Pass Greedy Heuristic (TP-
GH) algorithm, to the original GH algorithm in an effort to
overcome this limitation.

Table V shows the hot blocks of a sample application, with
6 Implementable blocks and 1 Un-implementable block. There
are a total of 6 memory variables (A, B, C, D, E and F) that
these blocks can access. The corresponding memory access
frequencies are also shown in the table. Table VI compares
the performance (clock cycle savings) of the proposed GH and
exhaustive algorithms for the sample application. It can be ob-
served that after the second iteration, the performance between
the two methods begin to deviate, i.e. the GH algorithm fails
to recommend the best set of hardware accelerators. In order
to explain this behavior let us consider the blocks selected by

TABLE VI: Performance comparison of exhaustive and greedy
algorithm

Exhaustive 1.02E+6 2.76E+6 4.93E+6 8.45E+6 1.17E+7 1.40E+7
Greedy 1.02E+6 2.76E+6 2.76E+6 7.19E+6 1.05E+7 1.40E+7

TABLE VII: Selected basic blocks in each iteration

Iteration Two-Pass Exhaustive
Guaranteed Ba-
sic Blocks

Potential
Blocks

Selected
Blocks

Selected
Blocks

1 Blk 3 NILL Blk 3 Blk 3
2 Blk 2 NILL Blks 3,2 Blks 3,2
3 Blk 0 NILL Blks 3,2,0 Blks 0,1,4
4 Blk 1 NILL Blks 3, 2, 0

& 1
Blks 0, 1, 4
& 5

5 Blk 4 NILL Blks 3, 2, 0,
1 & 4

Blks 0, 1, 2,
4 & 5

6 Blk 5 NILL Blks 3, 2, 0,
1, 4 & 5

Blks 3, 2, 0,
1, 4 & 5

the GH and exhaustive search algorithms in each iteration as
shown in Table VII.

The GH algorithm selects Block 3, Block 2 and Block 0 in
the first three iterations. Based on Table VII, we can see that
in the third iteration, the GH algorithm selects Blocks 0, 2 and
3, while the exhaustive method selects Blocks 0, 1 and 4. This
means that the exhaustive search is able to select a set with
different blocks leading to better performance as compared to
the GH algorithm. The GH algorithm fails to select the best
set as it has committed to the selection of Block 3 in the
first iteration, thereby leading to a local maxima. In order to
avoid getting stuck in such local maximas, we propose to use a
second pass that refines the results from the greedy algorithm.
The next subsection discusses this two-pass method that leads
to better selection results.

A. Two-pass Greedy Heuristic (TP-GH) Algorithm

This section presents our two-pass greedy heuristic (TP-
GH) search algorithm to overcome the limitation of the GH
algorithm proposed in Section V-B.

Blk 3⇒ Blk 2⇒ Blk 0⇒ Blk 1⇒ Blk 4⇒ Blk 5

Fig. 4: Thread of sample application from greedy algorithm

In each iteration, the original GH algorithm selects a new
guaranteed and/or potential block that reduces the overall
memory penalties taking into account the selected blocks in the
previous iterations. Let us denote a “thread” as the sequence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE VIII: Guaranteed advantage of all blocks in the sample application

Name Freq. HW
Time

SW
Time

HW
Size
(Logic
Blocks)

Block
Adv.

Max. Penalty Guaranteed
Advantage

Min.
Penalty

Potential
Advantage

Block 0 311872 12 21 320 2806848 3884900 -1078052 0 2806848
Block 1 207460 6 25 192 3941740 12942330 -9000590 48730 3893010
Block 2 157460 6 25 192 2991740 2547930 443810 48730 2943010
Block 3 97460 6 25 192 1851740 836030 1015710 48730 1803010
Block 4 97460 6 25 192 1851740 14578595 -12726855 73095 1778645
Block 5 37460 6 25 192 711740 10320365 -9608625 24365 687375

Block 6 4873 0 0 0 0 1 1 1 1
Mem Size 320 32 32 32 32

TABLE IX: Combinations of blocks evaluated in each iteration
using Two-Pass and exhaustive algorithms

Iteration Two-Pass Exhaustive
Combinations of
Nodes Evaluated

Selected Nodes Selected Nodes

1 (3); (2); (0); (1);
(4); (5)

Block 3 Block 3

2 (3,2); (2,0); (0,1);
(1,4); (4,5)

Blocks 3,2 Blocks 3,2

3 (3,2,0); (2,0,1);
(0,1,4); (1,4,5)

Blocks 0,1,4 Blocks 0,1,4

4 (3,2,0,1); (2,0,1,4);
(0,1,4,5)

Blocks 0, 1, 4 &
5

Blocks 0, 1, 4 & 5

5 (3,2,0,1,4);
(2,0,1,4,5)

Blocks 0, 1, 2, 4
& 5

Blocks 0, 1, 2, 4
& 5

6 (3,2,0,1,4,5) Blocks 3, 2, 0, 1,
4 & 5

Blocks 3, 2, 0, 1,
4 & 5

of guaranteed and potential basic blocks that are selected by
the GH algorithm. We also denote each basic block in the
thread as a “node”. It is evident that generally, the consecutive
nodes in the thread have larger memory dependencies than the
nodes which are further apart. Based on Table VII, the thread
for the sample application is shown in Figure 4.

In the two-pass greedy heuristic approach, a thread is
first created using the GH algorithm described earlier in
section V-B. In the second pass, a “sliding window” is moved
along this thread to identify the best combination of blocks
in an iterative manner. The size of the window is kept equal
to corresponding iteration. For example, in the third iteration,
the length of the sliding window is three in order to identify
all combinations of three nodes. It is noteworthy that since the
first pass aligns the blocks based on their memory dependency,
the second pass has a much greater probability of selecting
the best set of candidates for any combination.

Table IX shows the combinations of nodes obtained in each
iteration. The combination are selected from nodes that lie
adjacent along the thread in Figure 4 generated from the first
pass. In each iteration, the combination that leads to the best
performance is selected. It can be observed from Table IX, that
the blocks selected using the two-pass approach matches the
results of the exhaustive algorithm for the sample application.

VII. MULTI-THREAD TWO-PASS GREEDY HEURISTIC
(MT-TP-GH) SELECTION ALGORITHM

The two-pass TP-GH approach discussed in the previous
section overcomes the problem of local maxima in the GH

algorithm to some extent. However, it is still dependent on
a single thread created by the GH algorithm. Hence, if the
thread created using the GH algorithm in the first pass is
grossly erroneous, then the second pass may not be able to
find the best solutions. In order to overcome this limitation,
we propose a Multi-thread Two-Pass Greedy Heuristic (MT-
TP-GH) selection algorithm in this section that applies the
second pass on multiple threads to identify the best candidates
for acceleration.

We will describe the multi-thread approach based on the
sample application discussed in Section VI. This approach
works in three steps. In the first step, all the implementable
basic blocks are arranged in decreasing order of their guar-
anteed advantage. Table VIII shows the guaranteed advantage
of the various blocks for the sample application. Hence, from
Table VIII, the sequence of sorted basic blocks is 3, 2, 0, 1,
4, 5. This sequence, S, of nodes will form the starting node
of new threads in the second step.

The second step of the proposed MT-TP-GH algorithm
works iteratively. In each iteration, the GH algorithm is used
to create a new thread by using one node from sequence S ,
obtained from the first step, as the first node in the new thread.
For the sample application, the various threads generated in
the six iterations are shown in Figure 5. It should be noted
that the maximum number of threads is equal to the number
of Implementable blocks in the application.

Thread 1 Blk 3 ⇒ Blk 2 ⇒ Blk 0 ⇒ Blk 1 ⇒ Blk 4 ⇒ Blk 5

Thread 2 Blk 2 ⇒ Blk 3 ⇒ Blk 0 ⇒ Blk 1 ⇒ Blk 4 ⇒ Blk 5

Thread 3 Blk 0 ⇒ Blk 1 ⇒ Blk 4 ⇒ Blk 5 ⇒ Blk 2 ⇒ Blk 3

Thread 4 Blk 1 ⇒ Blk 4 ⇒ Blk 0 ⇒ Blk 5 ⇒ Blk 2 ⇒ Blk 3

Thread 5 Blk 5 ⇒ Blk 0 ⇒ Blk 1 ⇒ Blk 4 ⇒ Blk 2 ⇒ Blk 3

Thread 6 Blk 4 ⇒ Blk 1 ⇒ Blk 0 ⇒ Blk 5 ⇒ Blk 2 ⇒ Blk 3

Fig. 5: Multiple threads of the sample application

After generating all the threads, the third step of the MT-TP-
GH algorithm applies the ‘sliding window’ concept proposed
in the TP-GH algorithm (Section VI) on each of the threads
to obtain the best combination of hardware accelerators of
different size, for example, best combination of two blocks,
three blocks, etc. Lastly, the best combination of each size
amongst all the threads is identified as the combination with
the best performance of a given size and is taken as the final
solution for that size.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

VIII. RESULTS

We used applications from the popular CHStone [29] bench-
mark suite to evaluate the proposed heuristic-based selection
algorithms. All experiments were executed on a virtual ma-
chine running Ubuntu 12.04, 32bit OS on a single core of
Intel Xeon CPU Es-1650 V2 at 3.5GHz with 2GB RAM.

In order to compare the accuracy of the proposed method,
we also implemented two other selection algorithms namely,
Exhaustive and Knapsack. Figure 6 plots the performance,
estimated using equation 1, in terms of clock cycles saved after
accelerating a set of blocks in hardware, as recommended by
the three selection methods:

1) Exhaustive Algorithm (Blue line): As explained in Sec-
tion V), the Exhaustive algorithm evaluates combinations
of upto n blocks in the n-th iteration to identify the best
set of blocks with highest performance while considering
the data dependencies. Since, the exhaustive algorithm
provides exact results, the outcome from this algorithm
serves as the baseline to compare the accuracy of the
results obtained from the other heuristic-based methods.

2) Knapsack Algorithm (Grey line): Knapsack is a well
known heuristic-based selection algorithm that uses the
available area to select the best set of candidates for
hardware acceleration [30] [31]. In this work, we used
the area constraint for every iteration equal to the area
required by the blocks recommended by the Exhaustive
algorithm for the corresponding iteration. For example,
during iteration 4, where a maximum of 4 blocks can
be selected for acceleration in the Exhaustive method,
we obtained the area required to implement the blocks
recommended by the Exhaustive method. This area value
was used in the Knapsack to identify a set of blocks
for acceleration while considering the Block Advantage
term from equation 1. Hence, the Knapsack algorithm is
oblivious to data dependencies across candidate blocks.

3) Proposed Multi-thread Two-Pass Greedy Heuristic Algo-
rithm (Orange line): This is the MT-TP-GH algorithm
proposed method after using the Multi-Pass technique
proposed in Section VII.

The X-axis shows the maximum number of hardware blocks
selected in every iteration, as explained in Section V. The grey
curve in the plots depicts the results obtained from the Knap-
sack algorithm. As can be observed from Figure 6, the blocks
recommended by the Knapsack algorithm do not achieve
similar performance as the ones selected by the Exhaustive or
the Proposed methods. In this heuristic, the data dependencies
between the candidate accelerator blocks is not considered
during selection. Hence, the chosen set of accelerators fre-
quently encounter more penalties than the advantage gained
by hardware acceleration. As seen in Figure 6, the Knapsack
results often show negative cycles saved, implying that the
penalties from the blocks executing in software outweigh any
advantage gained through hardware acceleration. This in turn
implies that the overall execution time of the application can
be even slower than that of a pure software-only solution.

The orange curve shows the results obtained by the proposed
MT-TP-GH algorithm explained in Section VII. It can be

TABLE X: Relative Performance (%) of Knapsack and Pro-
posed Algorithms & Execution Time (in seconds) of Exhaus-
tive, Knapsack and Proposed Algorithms.

Relative Performance (%) Execution Time (s)
Application Knapsack Proposed Exhaustive Knapsack Proposed
ADPCM -2 98 5901.488 0.035 2.491
AES -208 100 2467.06 0.023 1.035
BLOWFISH 66 93 2348.731 0.038 0.985
DFADD 34 99 3825.721 0.014 1.592
DFDIV -39 99 3465.581 0.006 1.456
DFMUL -62 100 2598.657 0.005 1.087
DFSIN 36 99 11594.4 0.005 4.899
GSM 19 100 7729.674 0.008 3.262
MOTION -107 100 966.964 0.062 0.723
SHA -53 100 2837.592 0.023 1.182
Average -32 99 4373.586 0.0219 1.8712

observed that in all the applications and for every iteration,
the blocks recommended by the proposed method closely
match the performance obtained by the blocks recommended
by the time-consuming Exhaustive method. Columns 2 and 3
of Table X list the average relative performance (with respect
to the Exhaustive algorithm), for each application, as achieved
by the accelerators from Knapsack and Proposed algorithms,
respectively. The performance achieved by the accelerators
recommended by Knapsack algorithm varies widely as con-
firmed by this table as well as the grey curves in Figure 6.
As discussed earlier, a negative relative performance implies
that the overall execution time after using the accelerators is
worse than even a software-only solution. On the other hand,
the results in Column 3 of Table X confirm that on average
for all applications, the MT-TP-GH algorithm achieves close to
99% of the performance achieved by the Exhaustive algorithm.

To compare the runtime of these selection algorithms, we
measured their execution time on our experimental platform
for all the iterations shown in Figure 6. Columns 4 through 6
in Table X show this execution time comparison. As expected,
the Knapsack and Proposed algorithms run significantly faster
than the Exhaustive algorithm. However, while the Knapsack
algorithm runs faster than even the Proposed algorithm, it can
be observed from Columns 2 and 3 of Table X as well as
Figure 6, that the blocks selected by the Knapsack algorithm
achieve significantly worse performance than the Proposed
method. On the other hand, the Proposed algorithm achieves
similar performance as the Exhaustive algorithm but at a
significantly faster rate. This proves the effectiveness of our
Multi-thread Two-Pass Greedy Heuristic algorithm.

IX. CONCLUSION

We proposed a novel algorithm to automatically and rapidly
select suitable application segments for hardware acceleration
while taking into consideration their data dependencies. The
architecture model adopted in this paper enables the imple-
mentation of accelerator memories that do not require DMA
invocations and cache coherency systems, hence reducing the
complexity of data sharing between the processor and acceler-
ator memories. To rapidly select profitable hardware accelera-
tors, we proposed a heuristic-based greedy selection algorithm
and further refinements to closely match the accuracy of an
Exhaustive algorithm. Experimental results using applications
from the CHStone benchmark suite show that the proposed
MT-TP-GH approach recommends hardware accelerators that
achieve comparable results to an Exhaustive search method

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

‐20000

‐10000

0
10000

20000

30000

40000
50000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(a) ADPCM

‐20000

‐15000

‐10000
‐5000

0

5000

10000
15000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(b) AES

‐200000

‐100000

0
100000

200000

300000

400000
500000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(c) BLOWFISH

‐500

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(d) DFADD

‐1000

‐500

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(e) DFDIV

‐1000

‐500

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(f) DFMUL

0

10000

20000
30000

40000

50000

60000
70000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(g) DFSIN

‐2000
0

2000
4000
6000
8000

10000
12000
14000
16000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(h) GSM

‐15000

‐10000

‐5000

0

5000

10000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(i) MOTION

‐600000

‐400000

‐200000
0

200000

400000

600000
800000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pe
rf
or
m
an

ce
 (C

lo
ck
 C
yc
le
s S

av
ed

)

Number of Hardware Blocks

Exhaustive Knapsack Proposed

(j) SHA
Fig. 6: Performance comparison between various methods

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

with close to 99% accuracy while being orders of magnitude
faster, hence lending itself well to rapid design space explo-
ration at an early stage. In future, we plan to incorporate cache
models to further refine our penalty estimation model.

REFERENCES

[1] Y. S. Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Toward
Cache-Friendly Hardware Accelerators,” in Proceedings of the Sensors
to Cloud Architectures Workshop (SCAW), with HPCA, 2015.

[2] “Zynq-7000 All Programmable SoC, [Online]. Available:
(http://www.xilinx.com/products/silicon-devices/soc/zynq-
7000/index.htm).”

[3] “Altera SoC FPGAs, [Online]. Available:
(http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-
fpga.html).”

[4] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
Sources of Inefficiency in General-purpose Chips,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture,
ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp. 37–47.

[5] A. Prakash, C. Clarke, and T. Srikanthan, “Custom instructions with
local memory elements without expensive dma transfers,” in Field
Programmable Logic and Applications (FPL), 2012 22nd.

[6] A. Prakash, C. Clarke, S. Lam, and T. Srikanthan, “Modelling communi-
cation overhead for accessing local memories in hardware accelerators,”
in Application-Specific Systems, Architectures and Processors (ASAP),
2013 IEEE 24th International Conference on, 2013, pp. 31–34.

[7] “Mibench 1.0, [Online]. Available:http://www.eecs.umich.edu/mibench/.”
[8] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative

Approach, ser. The Morgan Kaufmann Series in Computer Architecture
and Design. Elsevier Science, 2011.

[9] J. Henkel and R. Ernst, “An approach to automated hardware/software
partitioning using a flexible granularity that is driven by high-level
estimation techniques,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 9, no. 2, pp. 273–289, 2001.

[10] F. Sun, S. Ravi, A. Raghunathan, and N. Jha, “A synthesis methodology
for hybrid custom instruction and coprocessor generation for extensible
processors,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 26, no. 11, pp. 2035–2045, 2007.

[11] R. Gonzalez, “Xtensa: a configurable and extensible processor,” Micro,
IEEE, vol. 20, no. 2, pp. 60–70, Mar/Apr 2000.

[12] P. Biswas, N. Dutt, P. Ienne, and L. Pozzi, “Automatic identification of
application-specific functional units with architecturally visible storage,”
in Design, Automation and Test in Europe, 2006. DATE ’06., 2006.

[13] T. Kluter, S. Burri, P. Brisk, E. Charbon, and P. Ienne, “Virtual
ways: efficient coherence for architecturally visible storage in automatic
instruction set extensions,” in Proceedings of the 5th international con-
ference on High Performance Embedded Architectures and Compilers,
ser. HiPEAC. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 126–140.

[14] T. Kluter, P. Brisk, P. Ienne, and E. Charbon, “Speculative dma for archi-
tecturally visible storage in instruction set extensions,” in Proceedings of
the 6th IEEE/ACM/IFIP international conference on Hardware/Software
codesign and system synthesis, ser. CODES+ISSS, 2008, pp. 243–248.

[15] J. Cong and K. Gururaj, “Architecture support for custom instructions
with memory operations,” in ACM/SIGDA international symposium on
Field programmable gate arrays, ser. FPGA ’13, 2013, pp. 231–234.

[16] “ARM Ltd. [Online]. Available:(http://www.arm.com).”
[17] “Synopsys. [Online]. Available:(http://www.synopsys.com/home.aspx).”
[18] “Introduction to AMBA 4 ACE. - Whitepaper, [Online]. Available:

(http://www.arm.com/files/pdf/cachecoherencywhitepaper 6june2011.pdf).”
[19] “AMBA 4 ACE (AXI Coherency Extensions) Verification IP. [Online].

Available:(http://www.techdesignforums.com/practice/technique/amba4-
ace-cache-coherency-vip/).”

[20] R. Koenig, L. Bauer, T. Stripf, M. Shafique, W. Ahmed, J. Becker, and
J. Henkel, “Kahrisma: A novel hypermorphic reconfigurable-instruction-
set multi-grained-array architecture,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, 2010, pp. 819–824.

[21] W. Ahmed, M. Shafique, L. Bauer, and J. Henkel, “mRTS: Run-time
system for reconfigurable processors with multi-grained instruction-set
extensions,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2011.

[22] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “Legup: high-level synthesis
for fpga-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 33–36.

[23] S. Yousuf and A. Gordon-Ross, “An automated hardware/software co-
design flow for partially reconfigurable fpgas,” in 2016 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), July 2016, pp. 30–35.

[24] C. Zhang, Y. Ma, and W. Luk, “Hw/sw partitioning algorithm targeting
mpsoc with dynamic partial reconfigurable fabric,” in 2015 14th Interna-
tional Conference on Computer-Aided Design and Computer Graphics
(CAD/Graphics), Aug 2015, pp. 240–241.

[25] J. W. Tang, Y. W. Hau, and M. Marsono, “Hardware/software parti-
tioning of embedded system-on-chip applications,” in 2015 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC),
Oct 2015, pp. 331–336.

[26] “LLVM, Compiler Infrastructure, [Online]. Available:(http://llvm.org/).”
[27] T. M. Chilimbi, “Efficient representations and abstractions for quan-

tifying and exploiting data reference locality,” in Proceedings of the
ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation, ser. PLDI ’01, 2001, pp. 191–202.

[28] S.-K. Lam and T. Srikanthan, “Rapid design of area-efficient custom
instructions for reconfigurable embedded processing,” J. Syst. Archit.,09.

[29] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quan-
titative analysis of the chstone benchmark program suite for practical c-
based high-level synthesis,” Journal of Information Processing, vol. 17,
pp. 242–254, 2009.

[30] A. Ray, W. Jigang, and S. Thambipillai, Knapsack Model and Algorithm
for HW/SW Partitioning Problem. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 200–205.

[31] J. Wu, T. Srikanthan, and G. Chen, “Algorithmic aspects of hard-
ware/software partitioning: 1d search algorithms,” IEEE Transactions
on Computers, vol. 59, no. 4, pp. 532–544, April 2010.

Alok Prakash is currently a Research Fellow at
the School of Computer Science and Engineering,
Nanyang Technological University, Singapore, from
where he also received his PhD degree in 2014. Prior
to this, he was a Research Fellow at the School of
Computing, National University of Singapore. His
research interests include developing Customized
Application Specific Platforms, Custom Instructions
and Processor Selection & Customization.
Christopher T Clarke received a BEng degree
in Engineering Electronics and a PhD degree in
Computer Science from the University of Warwick
in 1989 and 1994 respectively. From 1994 to 1997
he lectured at Nanyang Technological University
in Singapore where he was a cofounder of the
Centre for High Performance Embedded Systems
(CHiPES). Since then he has spent time in industry,
both as an in-house engineering manager and in-
dependent consultant for UK silicon design houses,
system integrators and multinationals such as Philips

Semiconductors. He later joined the Microelectronics and Optoelectronics
research group in the Department of Electronic and Electrical Engineering
at the University of Bath in March 2003 where he has been involved with
many bio-medical and bio-mimetic European Union-funded research projects.
He is a member of the Centre for Advanced Sensor Technologies (CAST).

Siew-Kei Lam is an Assistant Professor at the
School of Computer Science and Engineering,
Nanyang Technological University (NTU), Singa-
pore. He received the B.A.Sc. (Hons.) degree and the
M.Eng. degree in Computer Engineering from NTU,
Singapore. His research interests include embed-
ded system design algorithms and methodologies,
algorithms-to-architectural translations, and high-
speed arithmetic units.

Thambipillai Srikanthan joined Nanyang Techno-
logical University (NTU), Singapore in 1991. At
present, he is a Professor and the Executive Di-
rector of the Cyber Security Research Centre @
NTU (CYSREN). Prior to this, he was the Chair
of the School of Computer Engineering at NTU.
He founded CHiPES in 1998 and elevated it to a
university level research centre in February 2000.
He has published more than 250 technical papers.
His research interests include design methodologies
for complex embedded systems, architectural trans-

lations of compute intensive algorithms, computer arithmetic, and high-speed
techniques for image processing and dynamic routing.

	Introduction
	Related Work
	Custom Instructions with Memory Operations
	Selection of Hardware Accelerators

	Selecting Hardware Accelerator Candidates
	Estimating Penalty For Using Accelerator Memory
	Penalty Model

	Greedy Heuristic (GH) Selection Algorithm
	Definition of Important Terms
	Greedy Heuristic (GH) Algorithm

	Two-Pass Greedy Heuristic (TP-GH) Selection Algorithm
	Two-pass Greedy Heuristic (TP-GH) Algorithm

	Multi-thread Two-Pass Greedy Heuristic (MT-TP-GH) Selection Algorithm
	Results
	Conclusion
	References
	Biographies
	Alok Prakash
	Christopher T Clarke
	Siew-Kei Lam
	Thambipillai Srikanthan

