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Abstract

This paper studies the disruption management of a Mass Rapid Transit (MRT) network
with data obtained from transportation smart cards. We introduce an optimization model
for the development of efficient bus bridging services to minimize the negative effects of
MRT disruption. Compared with existing approaches, our model considers the available
capacity of existing buses when designing the routes and headways/frequencies of bus
bridging services. The proposed model is demonstrated through one case study that
assumes MRT disruption in the central business district area of Singapore. The case
study shows that our approach can effectively reduce the travel delay of commuters and
increase the number of commuters that can be served.

1. Introduction

For many of its early years, the Singapore Mass Rapid Transit (MRT) network system
experienced disruptions only rarely, leading to it being recognized internationally for its
efficiency and efficacy. According to a rail service reliability performance report from
2017, the number of these MRT disruptions, which resulted in service delays of more
than 30 minutes, has increased from 9 in 2011 to 16 in 2016 [8]. As the Singapore MRT
network continues to be expanded with new trains and rails and the ridership continues to
increase, the need for resilience improvement strategies becomes even more important.



Namely, the average daily ridership has grown from 2.3 in 2011 to almost 3 million
passenger-trips in 2016. Making the MRT network resilient to these disruptions is a
challenging task that presents a vast array of research opportunities. By resilience we
mean the capacity of a system to absorb disturbance and to reorganize so as to retain
essentially its structures, functions and feedback loops [10]. Improving the resilience of
the Singapore MRT network requires thus both proactive and reactive planning. Proac-
tive planning concerns the addition of robustness, or the ability to absorb and mitigate
shocks to the network. Reactive planning is themed around emergency response and
is concerned with how the network responds to disruptions. Until now, resilience in the
MRT has been studied at a more granular operational level, but recently it has been
recommended that a more holistic perspective on system resilience should be taken [8].

A series of studies on network disruption management, including proactive and reactive
planning, have been proposed in the literature to improve network resilience. For exam-
ple, the disruption management process and the roles of different actors were discussed
in [3]. This paper described three main challenges in disruption management: timetable
adjustment, rolling stock and crew rescheduling. A summary of the algorithms developed
for these three challenges for the Netherlands Railway company was provided by [7]. An
integrated model for timetable and rolling stock rescheduling was developed by [1, 2],
which minimizes the recovery time, the commuters inconvenience and system costs.
Besides these studies on reactive planning, studies on proactive planning are also seen
in the literature, such as an approach to enhance the resilience for MRT networks with
localized integration with public bus services proposed in [4].

One of the most critical areas in network disruption management is the design of bridging
services that can provide temporary transportation services in the disrupted parts to re-
duce the negative effects of disruption. Different bridging approaches have been adopted
in practice, such as diverting disrupted commuters to other operating lines or other paral-
lel public transport services, hiring taxi or bus bridging. A survey of disruption response
management practices can be found in [9]. Among these response strategies, bus bridg-
ing services, which provide temporary bus transportation services to commuters, is the
most common practice undertaken by transport operators in case of MRT disruption.
Several approaches have been proposed specifically for bridging services in case of dis-
ruption. For example, an approach proposed in [11] suggests to examine whether and
how to hire taxis to provide bridging services for short-term disruptions in public tram
systems. Another paper proposed a comprehensive modeling framework and decision
support system for planning and designing an efficient bus bridging network [6]. A dif-
ferent bus bridging service design was proposed by [5], where bridging bus routes were
generated by a column generation procedure and the most effective combination of bus
routes was identified via a path-based multi-commodity flow model.



However, these studies do not consider the integration between the bridging services
and the existing bus routes. Namely, when MRT disruption occurs, the existing bus
routes could provide complementary bus services to MRT network and divert some dis-
rupted commuters to their destinations or other operating lines. Hence, whether and how
to introduce bridging services should depend on the available complementary capacity
of existing bus routes.

With the development of new technologies aimed at improving the information avail-
able about public transport systems, a large amount of data has become available in
the process of building a resilient MRT network. With the help of data obtained with
transportation smart cards (e.g. EZ-Link card in Singapore) and public MRT/bus line
information, we are able to elicit the origin-destination demands and available compli-
mentary capacity of existing buses, which can be helpful for the design of bus bridging
services. In this paper, we thus propose an approach to develop efficient bus bridging
services to minimize the negative effect of MRT disruption. Our model accounts for the
available complementary capacities of existing bus routes when designing the routes
and frequency of bridging buses. We demonstrate our methodology on one case study
of MRT disruption in Singapore’s Central Business District (CBD) area.

2. Methodology

We develop a mathematical optimization model that allows bus bridging services to be in-
tegrated with the existing bus services. Namely, when MRT disruption occurs, disrupted
commuters can either make use of the complementary services provided by existing
buses or services provided by bridging buses. The proposed model not only designs the
bus bridging service routes, but also determines the frequency of each route.

2.1. In/out passenger flows dataset

The basis for our approach is comprehensive passenger data recorded for Singapore
MRT and bus services for a duration of three months. Each record in this dataset has
a timestamp of tap-in/out together with an MRT/bus stop identification. With that infor-
mation, for each smart card, we can reconstruct the traveled route. Additionally, we
used information about latitudes and longitudes of MRT/bus stops, official records on
MRT/bus service and MRT/bus line information including operational starting time and
ending time, traveling time and frequency of MRTs/buses. Based on the dataset and
the MRT/bus line information, we elicit the following information: 1) the number of com-
muters traveling between each pair of origin-destination stations; 2) the time table and
routes of MRT/bus services; 3) the travel time of the commuters; 4) the available capacity
of each MRT and bus line. This information will be used as an input of our model.



2.2. Bridging services response plan

The design of bridging services includes two main steps: 1) generating a candidate set
of bridging routes and 2) route selection and bus allocation. One common practice for
generating a candidate set of bridging routes is to replicate the MRT services by running
buses parallel to the disrupted rail lines. Other approaches include using shortest path
algorithm [6], a column generation procedure [5], or to generate candidate bus bridging
routes considering more factors such as the pattern of commuter travel demand, travel
time and transfer. In this paper, we focus on the second step (i.e. route selection and
bus allocation) as the candidate set of routes is one of inputs of our model and can be
generated using one of the aforementioned existing approaches.

Before presenting our optimization model, we have to define the following sets: 1) R
denotes the set of bus routes r; R0 and R+ denote the set of existing bus routes and
candidate bridging bus routes, respectively; 2) K denotes the union of disjoint commuter
group k that includes all commuters who go from origin station ok to destination station
sk; 3) Rk is used to denote the set of bus routes that connect bus station ok and desti-
nation sk, that is, commuters in group k can and only can take bus routes in Rk; 4) Lr

denotes the set of edges/legs l for bus route r.

Our optimization model aims at minimizing the total travel time of commuters after dis-
ruption, including the riding time on the bus and the waiting time. First, we adopt the
time-space network proposed by [5] to model the time-dimension. For each group k, we
discretize the whole time period into ū periods associated with demand d(k,u) such that∑

u d(k,u) = Dk, where Dk is number of commuters in group k during the considered pe-
riod. For each bus route r, we discretize the whole period into v̄ service slots. The set of
services slots for route r is denoted by Br := {(r, v),∀v = 1, 2, ....v̄}. Commuters in group
k arrive at bus station ok at time t̃(k,u), wait for bus on route r ∈ Rk to come, board and
travel on bus for ckr units of time. If the coming bus is full, then the commuters have to
wait for the next bus. Let w((k, u), (r, v)) denote the waiting time of commuters in group
(k, u) when bus slot (r, v) is taken. We have: w((k,u),(r,v)) = max{0, t(k,(r,v)) − t̃(k,u)},
where t(k,(r,v)) is the time when bus service slot (r, v) arrives at the origin station ok of
group k. The commuter cannot take bus slot that arrives ok before his arrival and it is
reasonable to assume that commuter will not be willing to wait for a very long time (say,
longer than a limit w̄). Hence, we define set Ω that excludes those impossible combina-
tions of ((k, u), (r, v)): Ω = {((k, u), (r, v)) : t(k,(r,v)) − t̃(k,u) ≥ 0, w((k, u), (r, v)) ≤ w̄},
where w̄ is the limit of waiting time. We generate the matrix of w((k,u),(r,v)) for all (k, u)
and (r, v) based on the time-space network and use it as input coefficients for the model.
Our optimization model will not only select the bridging bus routes, but also simultane-
ously determine the frequency/headway of the selected bus routes and the allocation of
available bus resources among each route.



We define a discrete set of bus deployment plans: Pr := {(r, h) : h ∈ I, ∀hmin
r ≤ h ≤

hmax
r }, where each plan (r, h) is characterized by route index r and the bus headway
h; hmin

r , hmax
r denote the minimum and maximum allowed headways for the route r,

respectively. Let P+ be the union of Pr,∀r ∈ R+. The bus deployment plans for existing
route r ∈ R are already determined and their headway is h0r,∀r ∈ R0. Let β((r, h), (r, v))
be a binary variable that equals 1 if the bus deployment plan (r, h) ∈ Pr covers bus
services plot (r, v), and 0 otherwise. The decision variables for our model are:

• y(r, h) ∈ {0, 1} : ∀r ∈ R+, (r, h) ∈ Pr. y(r, h) takes 1 if bus deployment plan (r, h)
is employed and 0 otherwise.

• χ((k,u),(r,v)) ≥ 0 : the number of commuters in group (k, u) who take bus service
slot (r, v) ∈ Br.

• η(k, u) : the number of commuters in group (k, u) who are unable to get on any bus
by the waiting time limit w̄.

Let c0k denote the travel time of a single commuter in group k ∈ K when no disruption
occurs. The bus bridging route selection and deployment problem can be formulated as:

min
∑

((k,u),(r,v))∈Ω

(ckr + w((k,u),(r,v)) − c0k)χ((k,u),(r,v)) +
∑
(k,u)

θ(k,u)η(k,u) (1)

s.t.
∑

(r,v)∈B

χ((k,u),(r,v)) + η(k,u) = d(k,u), ∀(k, u) (2)

∑
(k,u)

γ(k,(r,l))χ((k,u),(r,v)) ≤ β((r,h0
r),(r,v))Q

0
(r,v), ∀(r, v) ∈ Br, ∀l ∈ Lr,∀r ∈ R0 (3)

∑
(k,u)

γ(k,(r,l))χ((k,u),(r,v)) ≤
∑

h|(r,h)∈Pr

β((r,h),(r,v))Qy(r,h), ∀(r, v) ∈ Br, ∀l ∈ Lr,∀r ∈ R+ (4)

∑
h|(r,h)∈Pr

y(r,h) ≤ 1, ∀r ∈ R+ (5)

∑
(r,h)∈P+

n(r,h)y(r,h) ≤ Amax (6)

χ((k,u),(r,v)) = 0, ∀r /∈ Rk (7)

y(r,h) ∈ {0, 1}, ∀(r, h) ∈ P+; (8)

χ((k,u),(r,v)) ≥ 0, ∀((k, u), (r, v)); η(k,u) ≥ 0,∀(k, u) (9)

The objective function (1) minimizes: 1) the total increase in travel time for commuters
taking buses and 2) the number of commuters who cannot board, weighted by a penalty
parameter θ(k,u). Constraint (2) guarantees that the total number of commuters who
boarded plus the number of commuters who did not board equals the travel demand.



Let γ((k, (r, l)) be a binary variable that takes 1 if leg l is used by commuter group k
when they take bus route r and otherwise 0. Constraints (3) and (4) ensure that on each
leg l ∈ Lr of each bus service slot (r, v), the number of commuters on the slot (r, v) does
not exceed the available bus capacity Q0

(r,v) of existing bus routes and total capacity Q
of introduced bridging bus routes, respectively. Constraint (5) restricts that at most one
bus deployment plan can be employed on each route. Constraint (6) guarantees that the
total number of buses additionally deployed should not exceed the bus resource capacity
Amax, where n(r,h) is the number of buses required for route r with headway set as h.
Constraint (7) ensures that commuters in group k only take bus route r that connects ok
and sk (i.e. r ∈ Rk). Constraints (8) and (9) define the domain of decision variables.

3. Case Study

In this section we demonstrate our methodology by studying one hypothetical disruption
case in the Central Business District (CBD) area of Singapore during morning peak-
hours (i.e. 7:00 AM - 9:00 AM). This region was chosen as it covers the central part of
the Singapore MRT network, with a mixture of residential areas, business areas as well
as commercial ones. The case study concerns a single-direction disruption of the purple
MRT line, where the MRT links from station A to station D are disrupted (see Figure 1).
We assume that the disruption lasts for the whole peak-hour period and that we need
to assign bridging buses to cope with the morning peak-hour demand. Historical data
shows that about 7,400 commuters would be affected if this disruption would actually
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Figure 1: Region we focus on. The affected MRT stations are: station A, B, C, D.



take place as described. Figure 1 shows the MRT network (represented by solid lines)
and the existing bus lines (represented by dashed lines) in the disrupted area.

As mentioned before, the existing buses can provide complementary bus services to
the affected commuters. In total, about 100 buses on these lines normally would pass
the disrupted area during the affected hours, with an average free capacity per bus per
link approximately equal to 74. In order to deal with the consequences of the assumed
disruption, we first generate the candidate bus bridging routes via replicating the MRT
services, considering all possible bus routes parallel to the purple MRT line and then use
the proposed optimization model to find the optimal route selection and bus allocation.
Namely, the commuters can either be diverted to their destination if they alight in the
disrupted area, or to station D to take other operating lines. Travel demand and available
capacity of existing buses are derived from historical smart card data.

The parameters of the optimization model are set as follows: the maximum number of
bridging bus Amax to be deployed is arbitrarily set to be 10 (later on we perform a sen-
sitivity analysis to explore the impact of different bridging bus fleet sizes); minimum and
maximum headways of bridging bus services are set to 1 min and 31 min respectively,
with minimal incremental value set to be 30 seconds; the capacity of bridging bus Q is
set to be 87 (the capacity of one type of bus in Singapore); the limit of waiting time w̄ is
set to equal 30 min and penalty parameter θ(k, u) is set to be 90 mins. The minimum
and maximum headways are set considering factors such as headway ranges of existing
buses, the high morning peak-demand and the capacity of stations, while the penalty
parameter is set to 90 min in order for it to be larger than the maximum waiting time (30
minutes) plus on-board time of disrupted commuters (shorter than 31 minutes).

The proposed model was coded in Python and solved in about 2 minutes by CPLEX
V12.8.0 running on a personal computer with Intel Core i7 at 2.6GHz and 16 GB RAM.
The bridging services plan generated by our optimization model is shown in Table 1. As
it can be seen, all of the bridging buses are allocated to divert commuters to station D
from different affected MRT stations. This is because of two reasons: 1) all commuters
who do not alight in the disrupted area are diverted to station D, which connects three
MRT lines, to take other operating lines; and 2) only one of the existing bus lines (i.e. bus
line 124 shown in Figure 1) can provide complementary bus services to station D.

Furthermore, mainly due to resource constraints, other candidate routes are not se-
lected, such as bridging routes that would directly connect stations C and D, probably as
it could only provide a bridging service to one commuter group. Additionally, if the ex-
isting buses could provide enough complementary services for some commuter group,
then there is no need to provide bridging bus for them. For example, B → C route is



Table 1: Optimal bus bridging services, where N stands for the number of allocated bus.
Bridging bus route path Headway N

A→ D 3 mins 9
A→ B→ D 28.5 mins 1

not selected because: 1) few commuters take MRT during morning peak-hours for such
a short distance; and 2) all of the existing bus lines except for bus line 1 can serve the
affected commuters traveling that route.

Using the proposed bridging service plan, about 43.2% and 40.9% commuters can be
served by the bridging buses and existing buses, respectively. We observe that the
existing buses can serve up almost half of all affected commuters. Hence, in this case,
the complementary capacities of existing buses are relatively important and should not
be ignored when designing bridging bus plans.
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Figure 2: Percentage of commuters served (higher is better).

The red lines in Figures 2 and 3 show the results of a sensitivity analysis performed to
explore the impact of the bridging bus fleet sizes when using our approach. As the size
increases, the average travel delay (including possible longer on-board time and waiting
time for a bus) of all commuters decreases almost linearly and the percentage of served
commuters increases. However, the average travel delay and percentage of served com-
muters almost no longer improve when the number of available buses exceeds 15, as
all affected commuters are served. Assigning more than 15 buses would thus only in-
crease costs, but would not generate any additional benefits. Moreover, we compare our
approach with the existing approaches which do not consider complementary capacities
of existing buses when allocating bridging buses.
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Figure 3: Average travel delay (lower is better).

The difference between the blue and red lines in Figures 2 and 3 show that our approach
always performs better in terms of both the average travel delay and the number of
served commuters, especially when the number of available bridging buses is limited. In
particular, when the number of available buses is less than 15, then our approach can
serve about 10% more disrupted commuters than the existing approaches. This is mainly
because existing approaches may allocate buses to serve commuters who can already
be served by existing buses and result in oversupply on some routes and under-supply
on other routes.

4. Conclusion

The optimization model proposed in this paper can be used for designing bus bridging
services in response to MRT disruptions. Our approach can determine the routes to
select and their corresponding headways in integration with the existing bus services,
which can provide complementary services to MRT services in cases of disruption. We
showed the effectiveness of our model via a case study in the central business district of
Singapore. The results confirmed that our approach could generate solutions to effec-
tively reduce the travel delay of commuters and the number of commuters who could not
board a bus. In this paper, we considered only the cases when the travel demand and
available capacities of existing buses are deterministic and derived from historical data.
However, these parameters are actually subject to uncertainty. Hence, one potential di-
rection of future work is to integrate uncertainty into our optimization model, which could
be quantified by fitting a distribution to the data provided by the smart card records.
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