
Efficient Hardware Accelerator for NORX
Authenticated Encryption

Sachin Kumar, Jawad Haj-Yahya and Anupam Chattopadhyay
School of Computer Science and Engineering, Nanyang Technology University, Singapore

Abstract—Authenticated encryption with associated data
(AEAD) plays a significant role in cryptography due to its ability
to provide integrity, confidentiality and authenticity at the same
time. There is an unceasing demand of high-performance and
area-efficient AEAD ciphers due to the emergence of security at
the edge of computing fabric, such as, sensors and smartphone
devices. Currently, a worldwide contest, titled CAESAR, is being
held to decide on a set of AEAD ciphers, which are distinguished
by their security, runtime performance, energy-efficiency and low
area budget. In this paper, we focus on optimizing the hardware
architecture of NORX by applying a pipeline technique. Our
pre-layout results using commercial ASIC TSMC 65 technology
library show that optimized NORX is 40.81% faster, 18.01%
smaller, and improved the throughput per area by 76.9% when
compared with state-of-the-art NORX implementation.

I. INTRODUCTION

Authenticated-Encryption with Associated-Data (AEAD)
scheme protects both privacy and authenticity of the message
when it is transformed into ciphertext where there may be
additional information, such as a packet header, that travels
alongside the ciphertext and must get authenticated with it. The
need for AEAD emerged from the observation that securely
combining a confidentiality mode with an authentication mode
could be error prone and difficult [1], [2]. Number of practi-
cal attacks introduced into production protocols and applica-
tions by incorrect implementation, or lack, of authentication
(including SSL/TLS)[3]. Moreover, developing two separate
algorithms for encryption and authentication can increase
implementation complexity of the cipher in software as well
as in hardware.

An AEAD scheme typically consists of two tasks. The first
one is encryption EK(AD,M) which takes as input a shared
key K, public associated data AD and the message to be en-
crypted M and returns a tagged ciphertext C. The second one
is decryption/verification DK(AD,C), which either returns an
invalid symbol ⊥ if the received ciphertext, associated data and
the authentication data do not match, or the decrypted message
M , otherwise. There are three main typical approaches which
are adopted for AEAD: Encrypt-then-MAC (EtM), Encrypt-
and-MAC (E&M) and MAC-then-Encrypt (MtE) as shown in
Fig. 1. In the first approach, the plaintext is first encrypted
and message authentication code (MAC) is computed based
on the resulting ciphertext. This approach can be used to reach
highest definition of security in authenticated encryption(AE)
provided that MAC should be strictly unforgeable while in
the second approach, MAC is produced with the help of plain
text and the plaintext is encrypted without the MAC. In the

MAC-then-Encrypt (MtE) approach, a MAC is computed from
the plaintext. The MAC and plaintext both are encrypted to
produce ciphertext. The ciphertext along with its encrypted
MAC are sent together. Its mostly used in SSL/TLS [4].

Plaintext

Encryption

Hash function

Key

Ciphertext  MAC

(a)

Plaintext

Encryption
Hash 

function
Key

Ciphertext  MAC

(b)

Plaintext

Encryption

Hash 
function

Key

Plaintext  MAC

Ciphertext
Encrypt-then-MAC (EtM)

Encrypt-and-MAC (E&M)

(c)

MAC-then-Encrypt (MtE)

Fig. 1: Approaches to Authenticated Encryption with Associ-
ated Data

The most widely used authenticated scheme is AES-GCM
[5] which is based on the Advanced Encryption Standard
(AES). Even most efficient hardware implementation of AES-
GCM may not be suitable in modern world of computing
and data movement due to the bottleneck caused by slow
multiplication of Galois field. The security and performance
requirement in many modern applications such as smart de-
vices, sensors etc., are difficult to accomplish by the current
AE standard. Therefore, there is a need to have faster, smaller
and lesser power-hungry AE cipher. With the great interest and
importance of AE, a worldwide contest, named as CAESAR
1, competition was announced in 2014 [6]. This competition
mainly signifies the current need for practical, secure and

1CAESAR stands for ”Competition for Authenticated Encryption: Security,
Applicability, and Robustness”.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE



efficient AEAD schemes which also aims for finding authen-
ticated encryption schemes that can offer better performance
over AES-GCM. In the survey presented in [7], the round
two candidates of the CAESAR competition were categorized
into five families on the basis of their base constructions:
block cipher-based, stream cipher-based, key-less permuta-
tions, hash-function-based and dedicated schemes. AEAD
ciphers based on block-cipher allows block-level parallelism
while using the underlying block cipher, such as the Offset
Code Book mode OCB [8], [9], [10], the Synthetic Counter-
in-Tweak mode (SCT) [11] and the Offset Two-Round mode
(OTR) [12]. In September 2016, the CAESAR competition
committee announced the selection of 15 AEAD schemes
as candidates for round 3 of the CAESAR competition [6]
wherein some AE algorithms are based on AES primitives
such as AES-OTR, SILC, CLOC etc. while some of them are
based on sponge based construction such as ASCON, NORX
etc.

The experimental study for the evaluation of their hardware
performance of AEAD schemes selected in the third round of
CAESAR competition is also equally important. Basic imple-
mentation of all candidates are done on various platforms with
different interfaces. Furthermore, performance of the several
designs is better on some platforms, e.g., Field Programmable
Gate Array (FPGA). However, FPGA boards are mainly used
for verification of the design with the help of programmable
gates but it does not provide actual performance metrics of
the design which can only be achieved by implementing the
design in Application-Specific Integrated Circuits (ASIC). In
addition, all the available hardware implementations of the
CAESAR competition candidates on the ATHENa hardware
evaluation website [13] are fully sequential implementations,
i.e. to start processing a new block, all the previous blocks
have to be finished. These implementations do not take full
advantage of the specific characteristics of the schemes based
on the aforementioned modes.

The sponge-based cryptographic primitives, due to their
relatively hardware-friendly design and proven security results,
are gaining popularity. A prominent example of this is Secure
Hash Algorithm (SHA-3), which is standardized by NIST. In
this paper we focus on achieving efficient hardware implemen-
tation of NORX, a sponge-based AE scheme in the third round
of CAESAR contest. The underlying primitives of NORX is
the function G, which requires only bitwise logical AND,
XOR, and shift operations, making it a strong contender as
CAESAR winning candidate. However, no efficient hardware
architecture for NORX has been proposed so far.

II. AUTHENTICATED ENCRYPTION SCHEME BASED ON
SPONGE CONSTRUCTION

The sponge function and duplex construction are being
widely used to develop many cryptographic algorithms includ-
ing authenticated encryption schemes. The duplex construction
is used to develop AE algorithms submitted to CAESAR such
as ASCON, NORX, Ketje etc. [6]. In duplex construction
function, the fixed permutation F are determined by the

following two parameters: bitrate r and capacity c [14] [15].
Input/output length or the state size (S) are computed by
adding the parameters bitrate r and capacity c (i.e. S = r+c).
For a fixed state size (S), there is always a trade-off between
security and speed because of giving different values for
bit-rate and capacity. For instance; higher bitrate makes the
algorithm faster with lower security and vice versa. In the
duplex construction, input blocks (plaintext) are given into
the bitrate part of the permutation F . If an input block is
smaller than r bits, it gets padded to achieve the full r bits.
After processing by the permutation F , r-bit output blocks
(ciphertext) are squeezed out. In the process, the capacity (c)
part of the state size (S) is never directly manipulated, neither
for absorbing nor for squeezing.

Authentication encryption with associated data (AEAD) can
be developed by using the duplex construction as depicted in
the Fig. 2. First, the concatenation of a secret key K and a
nonce are given into the initial state. The permutation F is ap-
plied on the initial state. The following steps show the duplex
construction operation on n blocks of plaintext Pi, computing
the ciphertext Ci correspondingly, where i = 0, · · · , n. For the
plaintext Pi, the ciphertext Ci is computed by XOR-ing the
plaintext with the bitrate part squeezed out from the state. The
permutation F is kept calling until the last block of plaintext.
Besides plaintext blocks, public associated data blocks can
be processed similarly by absorbing them without encryption.
The encryption is completed by getting a r-bit authentication
tag T . It can be noticed that the sponge-based authenticated
encryption schemes is developed by using duplex construction
but their security largely depends on the internal structure of
permutation F which is usually implemented as a sequence of
elementary operations called as rounds. It can be assumed that
permutation F with more rounds makes cryptanalysis more
complex and the relevant AEAD becomes more secure but
with the more hardware cost.

pad

K ||nonce

r

c

F

pad

Plaintext P0

Ciphertext C0

F

pad

Plaintext P1

F

Ciphertext C1

pad

Plaintext Pn

F

Ciphertext Cn

tag T

Fig. 2: Duplex construction based Authenticated encryption
scheme.

III. NORX CIPHER AND ITS ARCHITECTURE

NORX has an unique parallel architecture based on monkey
duplex construction [15] along with its two versions i.e. either
NORX-32 or NORX-64. This AEAD scheme comes with an
associated data supporting arbitrary parallelism. In addition,

978-1-5386-4881-0/18/$31.00 ©2018 IEEE



the NORX algorithm is developed with the help of Addition-
Rotation-XOR(ARX) primitives instead of modular addition.
This cipher was optimized to be efficient in both software
as well as hardware with a single-instruction multiple-data
(SIMD)-friendly core and no secret-dependent memory lock-
ups. The underlying permutation F is designed by referencing
ChaCha stream cipher where in the integer addition is replaced
by a simple bit-wise XOR operation i.e. (a⊕ b)⊕ (a∧ b)� 1
which leads to improve its hardware efficiency.

K 01 01 02 02 04 04 08 K K

A0
An 1 M0 Mn 1C0 Cn 1 Z0 Zn 1init (K, N, w, l, p, t)

Fig. 3: Authenticated Encryption with associated data proce-
dure of NORX [6].

In the Fig. 3, the core algorithm F of NORX is a permu-
tation of S = r + c bits, where S is called the width or state
size, r the rate (or block length), and c the capacity. F is
called a round and F l denotes its l−fold iteration. The state
is viewed as a concatenation of 16 words, i.e. S = s0||...||s15,
out of which s0, ..., s11 are called the rate words where data
blocks are injected and s12, .., s15 are called the capacity words
which remain untouched. Conceptually, the 16 state words are
arranged in a 4× 4 matrix:

S =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15


The pseudocode for the NORX core permutation F l is given

in Algorithm 1. A single NORX round F processes the state
S by first transforming its columns with the function G using
function Col(S), and then transforming its diagonals using
function Diag(S) as depicted in Fig. 4 (A). The G function
uses cyclic rotations and non-linear operation interchangeably
to update its four input words (due to space-constraint, func-
tion G is not included).

IV. OPTIMIZED HARDWARE ARCHITECTURE OF NORX

The state-of-the-art NORX hardware implementation which
is reported in [6] has duplication of resources, the operations
S ← Col(S) and S ← diag(S) at the F l function that is
shown in Algorithm 1 duplicate the G function eight times,
the operations are done in two phases, at the first phase four G
functions operates on the four columns of the matrix, once the
result is ready then the second phase starts, where additional
four G functions operates on the four diagonals of the matrix
as shown in Fig. 4 (A).

In order to optimize NORX, the original algorithm of F l(S)
has been modified as presented in Algorithm 2, where this
algorithm is sharing the same resources of the four G functions
to apply them on both columns and diagonals using the

Algorithm 1 Algorithm of given NORX (not including im-
plementation of G).

1: function F l(S)
2: for i = 1 to l do
3: S ← Col(S)
4: S ← Diag(S)
5: return S
6: end for
7: return S
8: end function
9: function Col(S)

10: (s0, s4, s8, s12)← G(s0, s4, s8, s12)
11: (s1, s5, s9, s13)← G(s1, s5, s9, s13)
12: (s2, s6, s10, s14)← G(s2, s6, s10, s14)
13: (s3, s7, s11, s15)← G(s3, s7, s11, s15)
14: return S
15: end function
16: function Diag(S)
17: (s0, s5, s10, s15)← G(s0, s5, s10, s15)
18: (s1, s6, s11, s12)← G(s1, s6, s11, s12)
19: (s2, s7, s8, s13)← G(s2, s7, s8, s13)
20: (s3, s4, s9, s14)← G(s3, s4, s9, s14)
21: return S
22: end function

Algorithm 2 Algorithm of the optimized NORX(not including
implementation of G)

1: function F l(S)
2: T . Temporary matrix T, includes transformation of S
3: for i = 1 to l do
4: S ← ColDiag(S)
5: T [0, 4,8 ,12 ]← S[0,5 ,10 ,15 ]
6: T [1, 5,9 ,13 ]← S[1,6 ,11 ,12 ]
7: T [2,6 ,10 ,14 ]← S[2, 7,8 ,13 ]
8: T [3,7 ,11 ,15 ]← S[3, 4,9 ,14 ]
9: T ← ColDiag(T )

10: S[0,5 ,10 ,15 ]← T [0, 4,8 ,12 ]
11: S[1,6 ,11 ,12 ]← T [1, 5,9 ,13 ]
12: S[2, 7,8 ,13 ]← T [2,6 ,10 ,14 ]
13: S[3, 4,9 ,14 ]← T [3,7 ,11 ,15 ]
14: end for
15: return S
16: end function
17: function ColDiag(S)
18: (s0, s4, s8, s12)← G(s0, s4, s8, s12)
19: (s1, s5, s9, s13)← G(s1, s5, s9, s13)
20: (s2, s6, s10, s14)← G(s2, s6, s10, s14)
21: (s3, s7, s11, s15)← G(s3, s7, s11, s15)
22: return S
23: end function

978-1-5386-4881-0/18/$31.00 ©2018 IEEE



functions ColDiag(S) that is called twice, at the second call
we transform the state matrix S using the temporary state
matrix. The proposed hardware architecture based on Algo-
rithm 2 is shown in Fig. 4 (B). The optimization removes four
instances of the G function by converting the implementation
in sequential, a buffer was added to collect the intermediate
results of the status matrix. A small logic was added that
rearrange the status matrix that is received from the first stage
of calculation (applied on column). It also prepares the data in
correct order for the diagonals calculation stage. Moreover, a
Finite State Machine (FSM) logic is added in order to control
the flow. In order to account for the additional delay due to
the insertion of the pipe stage, few counters that controls the
main pipeline of the NORX were modified.

G

G

G

G

Input
Status 

G

G

G

G

Intermediate 
Status 

G

G

G

G

Input 
Status

 Intermediate 
Status Buffer

Clock

Output 
Status

Output 
Status

Rearrange 
Status Matrix

(A)

(B)

Columns/ Diagonals
 Operations

Columns
 Operations

Diagonals
 Operations

Fig. 4: NORX hardware architecture (A) Before optimization
(B) After the proposed optimization.

V. EXPERIMENTAL RESULTS AND COMPARISON

To evaluate the hardware performance of proposed hardware
architecture of NORX cipher (denoted by Optimized NORX),
the Optimized NORX is compared against the given NORX
architecture [6]. Both designs are described in VHDL lan-
guage and functionally verified by given test vectors using
pre-layout simulation tool. In what follows, the designs are
synthesized and mapped to TSMC 65nm standard cell library
by using Synopsys Design Compiler version J-2014.09. There
are two cases. In the first case, the designs are optimized for
minimum achievable delay. In the second case, the designs are
constrained for achieving minimum hardware area at minimum
frequency. The areas are reported in µm2 as well as in
kilo gate equivalent (KGE) which is computed by dividing
the measured area by the area of two input NAND gate (for

this library, area of nand gate is 1.44 µm2). The synthesis
results for both cases are shown in Table I and Table II.

TABLE I: Synthesis results of Optimized NORX and NORX
at minimum delay.

Metrics NORX Optimized NORX Improvement
Delay (ns) 2.23 1.32 40.8%

Frequency (MHZ) 448.43 757.57 68.9%
Throughput (Gbps) 57.40 83.11 44.8%

Area (µm2) 123180.48 100988.64 18.01%
KGE 85.54 70.13 18.01%

Throughput/Area
(Gbps/KGE) 0.67 1.185 76.9%

Table I shows that Optimized NORX is 40.8% faster
and achieved 44.8% gain in throughput and saves the hard-
ware area by 18.01% when compared with given NORX.
The elimination of four G function significantly improved the
efficiency (throughput per area metric) of Optimized NORX
by 76.9% over the existing NORX design.

TABLE II: Synthesis area of Optimized NORX and NORX at
448.43 Mhz.

AEAD Ciphers Throughput
(Gbps)

Area
(µm2)

KGE Throughput
/Area

NORX 57.40 121675.68 84.50 0.67
Optimized NORX 49.20 77057.28 53.51 0.92

Improvement 36.7% 36.7% 37.3%

Since there is always a trade-off between area and delay,
area can be further reduced by performing the simulation
at 448.43Mhz (slowest between both designs). In Table II,
the experimental result shows that although the throughput
is lower for the Optimized NORX, the area is reduced by
36.7% and as well as the efficiency of the optimized NORX
(throughput per area) improved by 37.3% when compared with
existing NORX architecture. Moreover, when compared with
AES-based AEAD ciphers of CAESAR as shown in Table
III, the synthesis results shows that Optimized NORX is a
promising candidate to win CAESAR competition [6] due to
its excellent throughput and area-efficiency results.

TABLE III: ASIC synthesis results comparison of Optimized
NORX with AES-based ciphers from CAESAR competition.

AEAD ciphers Frequency (Mhz) Throughput (Gbps) Efficiency (Gbps/KGE)
AEGIS GMU 550.54 8.65 0.07

AEZ GMU 581.40 2.98 0.04
CLOC GMU 588.24 6.84 0.07
JAMBU AES 495.05 3.17 0.12
OCB GMU 460.83 4.92 0.05
SILC GMU 500.00 6.40 0.14

COLM 505.05 5.88 0.05
Deoxys 549.45 2.43 0.05

Optimized NORX 757.57 83.11 1.185

VI. CONCLUSION

In this paper, a novel low area and high-speed hardware
architecture for NORX cipher is proposed. The efficiency
of the optimized NORX is improved by eliminating four
G functions with the help of pipeline technique. Based on
the pre-layout synthesis results, we show that the optimized

978-1-5386-4881-0/18/$31.00 ©2018 IEEE



NORX significantly improves on the basic implementation
available in literature, and outperforms all other CAESAR
candidates in terms of throughput and throughput-per-area
metrics.

ACKNOWLEDGEMENT

This research project is funded by the National Research
Foundation Singapore under its Campus for Research Excel-
lence and Technological Enterprise (CREATE) programme.

REFERENCES

[1] M. Bellare, P. Rogaway, and D. Wagner, “A conventional authenticated-
encryption mode,” manuscript, April, 2003.

[2] T. Kohno, J. Viega, and D. Whiting, “The cwc authenticated encryption
(associated data) mode,” ePrint Archives, 2003.

[3] D. J. Bernstein, “Failures of secret-key cryptography,” Invited talk at FSE
at 20th International Workshop on Fast Software Encryption, Singapore,
2013.

[4] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,”
Journal of Cryptology, vol. 21, no. 4, pp. 469–491, Oct 2008.

[5] M. J. Dworkin, “Sp 800-38d. recommendation for block cipher modes
of operation: Galois/counter mode (gcm) and gmac,” Gaithersburg, MD,
United States, Tech. Rep., 2007.

[6] CAESAR Competition, “CAESAR submissions,”
https://competitions.cr.yp.to/caesar-submissions.html, 2016.

[7] F. Abed, C. Forler, and S. Lucks, “General classification of the authen-
ticated encryption schemes for the CAESAR competition,” Computer
Science Review, 2016.

[8] P. Rogaway, M. Bellare, and J. Black, “OCB: A block-cipher mode of
operation for efficient authenticated encryption,” ACM Transactions on
Information and System Security (TISSEC), vol. 6, no. 3, pp. 365–403,
2003.

[9] P. Rogaway, “Efficient instantiations of tweakable blockciphers and
refinements to modes OCB and PMAC,” in International Conference
on the Theory and Application of Cryptology and Information Security,
Jeju Island, Korea, 2004, pp. 16–31.

[10] T. Krovetz and P. Rogaway, “The software performance of authenticated-
encryption modes,” in International Workshop on Fast Software Encryp-
tion, Lyngby, Denmark, 2011, pp. 306–327.

[11] T. Peyrin and Y. Seurin, “Counter-in-tweak: authenticated encryption
modes for tweakable block ciphers,” in Annual International Cryptology
Conference, CA, USA, 2016.

[12] K. Minematsu, “Parallelizable rate-1 authenticated encryption from
pseudorandom functions,” in EUROCRYPT 2014, Copenhagen, Den-
mark, 2014, pp. 275–292.

[13] George Mason University, “ATHENa: Automated Tools for Hardware
EvaluatioN,” https://cryptography.gmu.edu/athena/, 2017.

[14] A. Dwiedi, M. Klouček, P. Morawiecki, I. Nikolić, J. Pieprzyk, and
S. Wójtowicz, “Sat-based cryptanalysis of authenticated ciphers from
the caesar competition,” in 14th International Joint Conference on e-
Business and Telecommunications (ICETE 2017), Madrid, Spain, 2017,
pp. 237–246.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Duplexing the
Sponge: Single-Pass Authenticated Encryption and Other Applications.
Springer Berlin Heidelberg, 2012, pp. 320–337.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE


