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Abstract— With the growing use of crowdsourced location 

data from smartphones for transportation applications, the task 

of map-matching raw location sequence data to travel paths in 

the road network becomes more important. High-frequency 

sampling of smartphone locations using accurate but power-

hungry positioning technologies is not practically feasible as it 

consumes an undue amount of the smartphone’s bandwidth and 

battery power. Hence, there exists a need to develop robust 

algorithms for map-matching inaccurate and sparse location data 

in an accurate and timely manner. This paper addresses the 

above need by presenting a novel map-matching solution that 

combines the widely-used approach based on a Hidden Markov 

Model (HMM) with the concept of drivers’ route choice. Our 

algorithm uses a HMM tailored for noisy and sparse data to 

generate partial map-matched paths in an online manner.  We 

use a route choice model, estimated from real drive data, to 

reassess each HMM-generated partial path along with a set of 

feasible alternative paths. We evaluated the proposed algorithm 

with real-world as well as synthetic location data under varying 

levels of measurement noise and temporal sparsity. The results 

show that the map-matching accuracy of our algorithm is 

significantly higher than that of the state of the art, especially at 

high levels of noise.  

 
Index Terms—Map-matching, Location, Hidden Markov 

model, Route choice model. 

 

I. INTRODUCTION 

OCATION sequence data sourced from smartphones of 

travelers can be of great use for many Intelligent 

Transportation Systems (ITS) applications. For instance, such 

data can be used to estimate link travel times and to study 

travel behavior. This entails an important first step known as 

map-matching, which matches a sequence of raw location 

measurements to a sequence of road segments that make up 

the path taken by a vehicle. Map-matching algorithms 

combine location sequence data generated by positioning 

technologies with the road network data to provide locations 

on the road network. They mostly rely on densely-sampled 

Global Positioning System (GPS) data as input and use a 

variety of approaches including geometric analysis, 

topological analysis, and probabilistic methods [1]. 
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When the location data are of sufficiently good quality in 

terms of measurement accuracy and sampling frequency (e.g. 

GPS data sampled every few seconds), existing map-matching 

algorithms are capable of achieving excellent results. 

However, in practice, much of the location sequence data 

collected from smartphones are spatially inaccurate and 

temporally sparse. The spatial inaccuracy arises mainly 

because many applications prefer to use energy-efficient, but 

inaccurate, alternatives to GPS such as Wi-Fi positioning and 

cellular network positioning. These positioning technologies 

vary significantly in terms of their energy consumption and 

accuracy. For instance, while cellular network positioning is at 

least 10 times more energy-efficient compared to GPS [2], the 

typical location measurement error associated with the former 

is nearly 2 orders of magnitude higher than the latter [3]. The 

temporal sparsity of the location data results from the need to 

limit the smartphone’s bandwidth usage by sampling the 

locations at sparse intervals. Noisy and sparse location data 

are adequate for many non-ITS applications. However, for 

such data to be usable for ITS applications, the state-of-the art 

map-matching algorithms need to be greatly improved. 

A pioneering work on map-matching noisy and sparse 

location data was published by Newson and Krumm [4] in 

2009. They used a Hidden Markov Model (HMM) to find the 

most likely path corresponding to a timestamped sequence of 

coordinates. Another HMM-based map-matching algorithm 

was proposed by Thiagarajan et al. [5], who tested it on Wi-Fi 

positioning data as well as on GPS data degraded with 

Gaussian noise. While only a few map-matching algorithms 

such the abovementioned ones have been evaluated with high 

levels of noise, most other works have dealt with relatively 

accurate, but sparsely sampled, GPS data. Goh et al. [6] 

proposed a HMM-based algorithm for online map-matching, 

in which partial sequences of road segments are output on the 

fly without waiting for all the data points to be received. Apart 

from HMM, another probabilistic graphical model, 

Conditional Random Fields (CRF), has also been used for 

map-matching [7][8]. 

A less common approach towards map-matching sparsely-

sampled location data is to utilize information about drivers’ 

route choice to select the best path from a set of admissible 

candidate paths. The simplest way of doing this is to use a 

deterministic route choice criterion. For instance, Rahmani 
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and Koutsopoulos [9] generated a number of candidate paths 

in a search graph and selected the path with the minimum 

length from among a subset of paths whose travel times are 

within a threshold. This solution was later improved by Sarlas 

[10], who replaced the deterministic route choice criteria with 

a probabilistic logit route choice model [11] learned from GPS 

log data. Miwa et al. [12] applied a logit route choice model in 

a piecewise manner for short portions of the location sequence 

to select the best among several candidate paths. 

An unconventional map-matching approach proposed by 

Bierlaire et al. [13] has some relevance to the work that we 

present in this paper. Instead of generating an unique best 

fitting path, their solution produces a set of potential paths 

along with a likelihood that the location measurements are 

recorded from each path. As an application example, they 

showed that the potential paths and their associated 

likelihoods can be used to estimate a route choice model. 

Results reported in the literature on map-matching noisy 

location data [4] [5] indicate that the existing algorithms are 

grossly inadequate for map-matching cellular network 

positioning data, whose average errors are in the order of 

several hundred meters. However, cellular network 

positioning has some important advantages over other more 

accurate alternatives, such as Wi-Fi positioning. Wi-Fi 

positioning is usually unavailable in non-built-up areas and 

consumes several times as much battery power as cellular 

network positioning [2]. Many smartphone users keep GPS 

and Wi-Fi disabled to conserve battery life, leaving cellular 

network positioning as the only means of determining their 

location. There have been some works aimed at map-matching 

location data from cellular network positioning. Thiagarajan et 

al. [2] presented a HMM-based system named CTrack, which 

map-matches a stream of densely-sampled cellular base station 

fingerprints augmented with data from smartphone-based 

sensors such as accelerometer and compass. The system 

achieved a median accuracy of about 75%, which was found 

to be lower than the accuracy needed for ITS applications such 

as traffic delay estimation. Schulze et al. [14] used an 

approach based on deterministic route choice to map-match 

locations of the connected cellular base stations, unrefined by 

any fingerprinting process. They found that, on average, only 

about 55% of each track was matched correctly.  

From the above, it is clear that a need exists for developing 

new methods for more accurately matching highly noisy 

location data such as cellular network positioning data to paths 

in the road network. This paper aims to address the above 

need by proposing an innovative extension to the widely-used 

HMM-based approach, which remains the state of the art for 

map-matching noisy and sparse location data. When supplied 

with noisy location data, HMM-based algorithms are prone to 

generating incorrect paths that are implausible from the 

perspective of drivers’ route choice. Intuitively, it appears 

natural to hypothesize that the map-matching accuracy could 

be improved by complementing HMM-based algorithms with 

a model of drivers’ route choice. We explore and validate this 

idea in detail in this paper. We propose a framework for online 

map-matching of highly-noisy and temporally-sparse location 

data for real-time ITS applications. In the proposed 

framework, we use a route choice model estimated from real-

world data to reassess the partial paths generated by a HMM-

based online map-matching method. We thoroughly evaluate 

the above solution with real-world as well as synthetic datasets 

under varying levels of measurement noise and temporal 

sparsity and show that it yields consistently better results 

compared to the state of the art. 

The remainder of the paper is organized as follows. In 

Section II, we build on our previous work [15] and describe a 

HMM-based method for online map-matching of streaming 

location data that have low temporal resolution and accuracy. 

In Section III, we present a methodology for modelling short-

term route choice behavior from data on actual routes taken by 

real drivers. The overall map-matching algorithm, in which a 

multinomial logit route choice model is coupled with the 

HMM-based framework in order to improve the noise 

robustness, is presented in Section IV. In Section V, we 

describe the setup used for evaluating the proposed solution 

and discuss the results. Section VI summarizes our findings 

and concludes the paper. 

II. HMM-BASED ONLINE MAP-MATCHING 

A location observation (or simply observation) 𝑜𝑡 consists 

of the measured latitude, longitude and timestamp 

corresponding to a mobile user’s location at time step 𝑡. A 

road network is a directed graph 𝐺 =  (𝑉, 𝐸), where 𝑉 is a set 

of nodes corresponding to intersections or endpoints of the 

road segments and 𝐸 is a set of edges representing road 

segments. Each road segment has a number of attributes 

including road class, length and free-flow travel time. A path 

𝑝  between nodes 𝑢  and 𝑣  is a sequence of connected road 

segments (edges) 𝑒1, … , 𝑒𝑛 such that 𝑢 is the start node of 

𝑒1 and 𝑣 is the end node of 𝑒𝑛. In the work presented in this 

paper, a path does not necessarily start and end at nodes. It 

could start or end at any point that lies along the centerline of 

any road segment. Given a sequence of 𝑁 observations 𝑜1:𝑁 =
{𝑜1, … , 𝑜𝑁}  and a road network 𝐺, the map-matching problem 

is to find the path 𝑝 in 𝐺 corresponding to 𝑜1:𝑁. 

The location observations are subject to measurement noise 

and therefore the true on-road locations corresponding to them 

are unknown. These true on-road locations are considered as 

the hidden states in the HMM used for map-matching. In 

theory, the state space of the HMM would consist of all 

possible on-road locations in the road network. However, in 

practice, the state space for a given location observation is 

limited to the road segments that lie within a fixed range 

around the measured location. (In our implementation, this 

range equals 4 times the standard deviation of the location 

measurement noise.) Furthermore, for each such road 

segment, only the point along its centerline that is closest to 

the measured location is considered as a state. In this paper, 

we denote the 𝑘𝑡ℎ state at time step 𝑡 as 𝑠𝑡,𝑘. The hidden true 

state at time step 𝑡 is denoted as 𝑠𝑡
∗.  

Two properties of HMMs need to be noted: First, the 

observation 𝑜𝑡 at time step 𝑡 depends only on the hidden state 
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𝑠𝑡
∗ at that time. The second property, known as the Markov 

property, states that the hidden state 𝑠𝑡
∗ at time step 𝑡 depends 

only on the hidden state 𝑠𝑡−1
∗  at time step 𝑡 − 1 and is not 

influenced by the history of hidden states before that. 

The above two dependencies are respectively associated 

with two conditional probability distributions: For an 

observation 𝑜𝑡, each state 𝑠𝑡,𝑘 is assigned an emission 

probability 𝑃(𝑜𝑡|𝑠𝑡,𝑘), which is the conditional probability of 

the observation 𝑜𝑡 being generated if 𝑠𝑡,𝑘 is the true state. The 

probability of the vehicle moving from a state 𝑠𝑡−1,𝑗 at time 

step 𝑡 − 1 to another state 𝑠𝑡,𝑘 at time step 𝑡 is given by a 

transition probability 𝑃(𝑠𝑡,𝑘|𝑠𝑡−1,𝑗). 

The above concepts are illustrated in Figure 1 using a 

simple example, where the points 𝑜1, 𝑜2 and 𝑜3 denote a 

sequence of location observations. The dashed circles in 

Figure 1(a) represent the error range of each location 

observation. The closest points on each of the road segments 

that lie either partially or fully within the error range are 

considered as states. Figure 1(b) illustrates a HMM 

corresponding to the given example. The arrowed lines 

indicate the conditional dependencies in the HMM. The 

dashed arrowed lines indicate the conditional dependency of 

the observations on the states and have an associated emission 

probability. The solid arrowed lines denote the transitions 

between states and are associated with a transition probability. 

In a HMM, there could be multiple sequences of states that 

are consistent with a given sequence of observations. The 

most likely state sequence in a HMM can be efficiently 

calculated using the Viterbi algorithm [16]. Details of the 

emission and transition probabilities used in our map-

matching algorithm and the determination of the most likely 

state sequence are presented below. 

A. Emission Probability 

For each state representing a road segment within the error 

range of a location measurement, the emission probability 

depends on the distance between itself and the observed 

location. It is intuitive to think that states that are closer to the 

observed location would have a higher emission probability 

compared to those that are farther from it. In the case of the 

true state, the distance between itself and the observed 

location is the location measurement error, which is generally 

assumed to follow a Gaussian distribution with zero mean. For 

a given state 𝑠𝑡,𝑘 and a location observation 𝑜𝑡, the emission 

probability is given as 

𝑃(𝑜𝑡|𝑠𝑡,𝑘) =
1

𝜎√2𝜋
𝑒

− 
𝑔(𝑜𝑡,𝑠𝑡,𝑘)

2

2𝜎2                                              (1) 

where 𝜎 is the empirically-estimated standard deviation of the 

measurement error and 𝑔(𝑜𝑡 , 𝑠𝑡,𝑘) is the great-circle distance, 

which is the shortest distance along the surface of the earth, 

between 𝑜𝑡 and 𝑠𝑡,𝑘. Points at low latitudes that are separated 

by short distances can be treated as being on a two-

dimensional plane and in such cases, the Euclidean distance 

can be used as an approximation of the great-circle distance. 

We use this approximation as it reduces the amount of 

computation required. 

 It is worth noting that, in practice, the location measurement 

error may not strictly conform to the above model, especially 

in dense urban networks. Irrespective of the positioning 

technology used, the error is known to exhibit non-Gaussian 

characteristics and geographical variations. However, the 

model based on Gaussian distribution, while simple, has been 

shown to be effective in several previous works on map 

matching [2][4][6]. 

B. Transition Probability 

The transition probability between a state 𝑠𝑡−1,𝑗 at time step 

𝑡 − 1 and another state 𝑠𝑡,𝑘 at time step 𝑡 depends on the 

features of the optimal path between them. In our work, we 

consider the path with the minimum free-flow travel time, 

found using the well-known Dijkstra’s algorithm [17], as the 

optimal path.  

For computing the transition probability, Newson and 

Krumm [4] relied on the idea that transitions through 

circuitous paths are less likely compared to direct paths. They 

used  the difference between the driving distance along a path 

and the great-circle distance between the current and previous 

location observations as a measure of the circuitousness of the 

path. This measure of circuitousness has a couple of 

 
(a) An example showing raw location measurements and the states 

corresponding to them. 

 

(b) HMM representation of the above example with arrows indicating the 
conditional dependencies. 

Fig. 1.  Illustration of the HMM framework for map-matching. 
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drawbacks. First, as pointed out in [18], the transition 

probability’s dependence on the current and previous 

observations violates the properties of an ideal HMM. In the 

case of highly noisy location measurements, the great-circle 

distance between the observed locations may introduce 

significant errors in estimating the circuitousness of a path. 

The second drawback relates to the fact that the transition 

probabilities computed based on the above measure of 

circuitousness vary greatly for equally plausible transition 

paths depending on the sampling interval [19].  

Taking the above factors into consideration, we propose a 

new measure of circuitousness for the optimal path between 

states 𝑠𝑡−1,𝑗  and 𝑠𝑡,𝑘 as 

𝑦(𝑠𝑡−1,𝑗, 𝑠𝑡,𝑘) =
𝑑(𝑠𝑡−1,𝑗, 𝑠𝑡,𝑘) − 𝑔(𝑠𝑡−1,𝑗 , 𝑠𝑡,𝑘)

𝛥𝑇
                (2) 

where the functions 𝑑 and 𝑔 give the driving distance and the 

great-circle distance in meters, respectively, between the states 

and 𝛥𝑇 is the time interval between time steps 𝑡 − 1 and 𝑡 in 

seconds. In our implementation, the driving distance between 

two points on the road network is the length of the minimum-

travel-time path between them found by Dijkstra’s algorithm.   

We also consider a measure of temporal implausibility in 

order to assign low transition probabilities to paths that cannot 

be traversed within the time interval 𝛥𝑇 unless the vehicle 

travels at an unreasonably high speed. We define the measure 

of temporal implausibility for states 𝑠𝑡−1,𝑗  and 𝑠𝑡,𝑘 as 

𝑧(𝑠𝑡−1,𝑗 , 𝑠𝑡,𝑘) =
𝑚𝑎𝑥 ((𝑓(𝑠𝑡−1,𝑗, 𝑠𝑡,𝑘) − 𝛥𝑇), 0)

𝛥𝑇
              (3) 

where 𝑓(𝑠𝑡−1,𝑗 , 𝑠𝑡,𝑘) is the free-flow travel time, in seconds, of 

the optimal path between states 𝑠𝑡−1,𝑗  and 𝑠𝑡,𝑘. 

Based on analysis of true transition paths from real drive 

data, the measure of circuitousness defined in (2) and the 

measure of temporal implausibility defined in (3) are assumed 

to follow exponential distributions. We define the transition 

probability of moving from state 𝑠𝑡−1,𝑗 to state 𝑠𝑡,𝑘 as 

𝑃(𝑠𝑡,𝑘|𝑠𝑡−1,𝑗) = 𝜆𝑦𝑒−𝜆𝑦𝑦(𝑠𝑡−1,𝑗,𝑠𝑡,𝑘) 𝜆𝑧𝑒−𝜆𝑧𝑧(𝑠𝑡−1,𝑗,𝑠𝑡,𝑘)       (4) 

where 𝜆𝑦 and 𝜆𝑧 are parameters of the exponential 

distributions to be empirically determined.  

C. Online Viterbi Inference 

The Viterbi algorithm computes the most likely sequence in 

the HMM using the following recurrence relations.  

    𝑉1,𝑘 = 𝑃(𝑜1|𝑠1,𝑘)                                                                        (5) 

𝑉𝑡,𝑘 = 𝑃(𝑜𝑡|𝑠𝑡,𝑘) 𝑚𝑎𝑥𝑗 (𝑉𝑡−1,𝑗  𝑃(𝑠𝑡,𝑘|𝑠𝑡−1,𝑗))                   (6) 

In the above equations, 𝑉𝑡,𝑘 denotes the joint probability of the 

most likely state sequence ending at state 𝑠𝑡,𝑘 based on the 

observations 𝑜1,…,𝑜𝑡. The index j in (6) that maximizes 𝑉𝑡,𝑘  is 

stored as the back pointer for state 𝑠𝑡,𝑘. It points to the 

predecessor state 𝑠𝑡−1,𝑗 of the state 𝑠𝑡,𝑘 in the most likely 

sequence ending at the latter.  

When map-matching is performed in offline mode, the 

Viterbi algorithm outputs the most likely state sequence from 

time step 1 to time step 𝑁 after all the 𝑁 observations are 

received and processed. In such a case, the state 𝑠𝑁,𝑥 at time 

step 𝑁 that has the highest joint probability is selected as the 

final state in the most likely sequence. From that state, the 

complete sequence is traced backwards using the back 

pointers. The path 𝑝 corresponding to the given observation 

sequence 𝑜1:𝑁 is obtained by concatenating the optimal paths 

between successive states in the most likely state sequence. 

For many real-time applications that receive live streams of 

input data, the Viterbi algorithm needs to be performed in an 

online manner such that portions of the most likely state 

sequence are generated from time to time without waiting for 

all the observations to be received. In some cases, partial, 

optimal state sequences can be generated using the concept of 

transitive closure, which defines the reachability relations in a 

directed graph [20]. This method, which has been used for 

online map-matching in [6], checks for a convergence 

condition where there remains only one state at a time step 

that is reachable through a chain of back pointers from every 

state of a subsequent time step. This idea is illustrated in 

Figure 2, where tracing backward from any of the states at 

time step 5 leads to the shaded state 𝑠3,2 at time step 3. In such 

a case, we say that a convergence condition has occurred with 

𝑠3,2 being the convergence state. In the given example, the 

partial sequence up to the convergence state (i.e. 𝑠1,3, 𝑠2,2, 

𝑠3,2) can be released as output as it cannot be altered by future 

observations received after time step 5. Thus, in online mode, 

the Viterbi algorithm can output a part of the most likely state 

sequence each time a convergence state is found.  

When online map-matching is performed as described 

above, the emission, transition and joint probabilities 

associated with the states at the current time step are computed 

when a location observation is received. The determination of 

the transition probabilities, which involve a number of shortest 

path computations between states at the previous and current 

time steps, account for most of the computation time. The 

number of shortest path computations can be large if the 

number of states per time step, which depends on the level of 

location measurement noise, is high [19].  A heuristic 

 
Fig. 2. An example of the convergence condition in the Viterbi algorithm. 
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technique that limits the number of states per time step can be 

used to significantly reduce the computation time with 

negligible loss of accuracy [21][15]. This heuristic technique 

is applied during the operation of the Viterbi algorithm by 

retaining only a fixed number, say 𝑘, of states with the highest 

joint probabilities for further computation. An useful rule of 

thumb is to set this number 𝑘 equal to the standard deviation 

of the location measurement noise in meters. 

D. A Limitation of HMM-based Map Matching 

A major weakness of HMM-based map-matching stems 

from the Markov independence assumption, according to 

which the probability distribution of the next state depends 

only on the current state and not on the past or future states. 

This results in the loss of contextual information when 

calculating the probability distribution of the next state. It has 

been argued by Srivatsa et al. [22] that mobility in a road 

network is non-Markovian, especially when a vehicle intents 

to reach a specific destination, typically through the shortest or 

fastest path. In other words, the paths taken by vehicles are 

influenced by the drivers’ route choices, which are not well 

accounted for in the HMM framework. This limitation 

becomes more apparent when the location observations have a 

high level of measurement noise. Given a noisy observation 

sequence, some parts of the most likely path found by the 

HMM-based approach may not make sense from a route 

choice perspective.  This is illustrated using a simplified 

example in Figure 3 where the HMM-based approach may 

find the state sequence 𝑠1,1, 𝑠2,1, 𝑠3,1 as the most likely one, 

although the alternative sequence 𝑠1,1, 𝑠2,2, 𝑠3,1 appears 

intuitively more probable from the standpoint of human route 

choice. As we show later in this paper, this weakness of 

HMM-based map-matching can be largely overcome through 

the appropriate use of a route choice model that gives the 

choice probabilities of each alternative path in a given context. 

Unlike HMMs, probabilistic frameworks such as CRFs are 

not limited by the Markov independence assumption and 

therefore, in theory, can model higher-order dependencies 

among more than two states. However, the exact inference of 

parameters in higher-order CRFs is known to be intractable. 

Existing CRF-based map matching methods [7][8] consider 

only first-order dependencies between adjacent states and 

hence suffer from the same inability as HMMs to utilize 

contextual information. 

III. SHORT-TERM ROUTE CHOICE MODELLING 

Given a number of alternative paths between two points on 

a road network, a route choice model can be used to estimate 

the probability of each of the alternative paths being chosen by 

a driver. For this purpose, we use a multinomial logit model 

with a few simplifying assumptions. 

A. Multinomial Logit Model 

In most route choice models, the driver’s preference for an 

alternative path is quantified by a value called utility and the 

driver is assumed to choose the alternative path with the 

highest utility. In some application contexts, the characteristics 

of the individual drivers are considered in the calculation of 

utility. In this work, we consider all drivers to be identical.  

Given a set of alternative paths, called the choice set, 𝐶, the 

utility associated with alternative path 𝑝𝑖 ∈ 𝐶 is given by 

𝑈𝑖 = 𝑉𝑖 + 𝜀𝑖                                                                                 (7)                            

where 𝑉𝑖  is a deterministic term and 𝜀𝑖 is a random term for 

capturing the uncertainty involved. The deterministic term 𝑉𝑖 

is modelled as a linear-in-parameters function of the attributes 

of alternative path 𝑝𝑖 . We use the following attributes to 

determine the utility of a path as these factors are generally 

known to influence drivers’ route preferences. (We also 

considered the length of the path, but tests showed that it does 

not appear to be significantly correlated with route choice.) 

1. Free-flow travel time (FTT; in seconds) 

2. Number of traffic signals (NTS)  

3. Average road class (ARC; road classes are numbered 

from 1, starting with the highest) 

4. Number of class changes (NCC) 

The deterministic term of the utility for alternative path 𝑝𝑖  is 

given by 

𝑉𝑖 = 𝛽𝐹𝑇𝑇𝐹𝑇𝑇𝑖 + 𝛽𝑁𝑇𝑆𝑁𝑇𝑆𝑖 + 𝛽𝐴𝑅𝐶𝐴𝑅𝐶𝑖 +  𝛽𝑁𝐶𝐶𝑁𝐶𝐶𝑖   (8) 

where 𝐹𝑇𝑇𝑖  is the FTT attribute of alternative path 𝑝𝑖 , 𝛽𝐹𝑇𝑇 is 

a coefficient parameter corresponding to the FTT attribute, 

and so on. For convenience, we rewrite (8) as 

𝑉𝑖 = 𝜷′𝒙𝑖                                                                                      (9) 

where 𝜷′ is a vector of coefficient parameters 

(𝛽𝐹𝑇𝑇 , 𝛽𝑁𝑇𝑆, 𝛽𝐴𝑅𝐶 , 𝛽𝑁𝐶𝐶) and 𝒙𝑖  is a vector of attributes 

(𝐹𝑇𝑇𝑖 , 𝑁𝑇𝑆𝑖 , 𝐴𝑅𝐶𝑖, 𝑁𝐶𝐶𝑖) corresponding to the alternative 

path 𝑝𝑖 . 

In a multinomial logit model, the random term 𝜀𝑖 in (7) is 

assumed to be independent and identically Gumbel 

distributed. The scale factor of the random term is irrelevant to 

the choice of the alternative with the highest utility [23] and is 

therefore typically normalized to one. Without loss of 

generality, the mean of the random term can be assumed to be 

zero if an alternative-specific constant is included in the 

calculation of the deterministic term of the utility. The 

alternative-specific constant, which is an unknown parameter 

to be estimated, captures the bias towards an alternative due to 

the unobserved factors. However, the notion of alternative-

specific constants is not intuitively meaningful in the context 

of route choice, where alternative paths in different situations 

 
Fig. 3.  The HMM-based approach may produce unreasonable paths for highly 

noisy location data. 
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may not have anything in common with each other. For 

instance, it does not make sense to suppose that the 𝑘𝑡ℎ 

alternative path in one choice set has the same level of bias as 

that of the 𝑘𝑡ℎ alternative path in another choice set. We, 

therefore, do not include alternative-specific constants in the 

model. In effect, we assume that the unobserved factors have 

the same impact on all the alternative paths. Overall, the route 

choice model used in our work can be considered as a 

reasonable approximation of the multinomial logit model. This 

simplified model gives the probability of a driver choosing 

alternative path 𝑝𝑖  within the choice set 𝐶 as 

𝑃(𝑝𝑖|𝐶) =
𝑒𝜷′𝒙𝑖

∑ 𝑒
𝜷′𝒙𝑗

𝑝𝑗∈𝐶

                                                             (10)  

B. Choice Set Generation 

In order to estimate or apply a route choice model, it is 

necessary to have a process for generating the alternative paths 

that exist between two points on a road network. For any 

origin-destination pair in a road network, the number of all 

possible alternative paths between them could be very large. 

However, this may include many highly circuitous and 

unreasonable paths that are irrelevant in the context of route 

choice. We, therefore, aim to generate a choice set containing 

a limited number of reasonable and distinct alternative paths. 

For finding multiple paths between a given origin and 

destination, a k-shortest-paths algorithm [24] is generally 

considered to be the straightforward approach. However, it has 

been empirically found that k-shortest-paths algorithms tend to 

produce paths that are highly similar [25]. A commonly 

observed example involves a path along a freeway and an 

alternative path that repeatedly exits and re-enters the freeway 

through slip roads at interchanges. Another approach, known 

as the link-penalty approach, performs repeated shortest-path 

computations and minimizes overlapping among paths by 

imposing a penalty on links in paths that are already found. 

Our proposed method for choice set generation, explained 

below, is broadly based on the link-penalty approach. 

It needs to be noted that we, in this work, are concerned 

with short paths whose travel times are typically in the order 

of a few minutes. These short paths may not correspond to the 

complete trips made by drivers (e.g. from home to work). 

Rather, the short paths that are of interest to us connect pairs 

of points that lie along the overall paths taken by drivers. It is 

worth recalling that we intend to use a route choice model for 

improving the partial paths generated by the HMM-based 

online map-matching method described earlier. The time 

points at which the vehicle was at the start and end points of 

the partial paths and therefore the elapsed time between them 

are assumed to be available. 

Our analysis of data from real drives shows that between 

points separated by a few minutes of travel, there are rarely 

more than 3 or 4 reasonable alternative paths. Therefore, we 

limit the choice set to a maximum of 5 alternative paths. The 

first alternative path in the choice set is pre-identified and 

made available. During the estimation of the route choice 

model, the true path chosen by the driver is included as the 

first alternative in the choice set. During the application of the 

model, the HMM-generated partial path is considered as the 

first alternative path in the choice set. As paths found based on 

the minimum-travel-time criterion are known to account for 

most of the paths chosen by real drivers [26], the minimum-

travel-time path is always included in the choice set.  

After the pre-identified first alternative path and the 

minimum-travel-time path (if different from the former) are 

added to the choice set, we apply a penalty to the links that are 

part of the above paths. This is done by inflating the travel 

times of the relevant links by a factor in order to reduce the 

chances of them being part of subsequent alternative paths 

found based on the minimum-travel-time criterion. However, 

as pointed out in [25], applying a penalty to links that are close 

to the start point or end point of the paths may cause 

unreasonable paths to be found subsequently. Therefore, while 

inflating the travel time of a link that lies along a path in the 

choice set, we take the distances along the path from the start 

point to the link and from the link to the end point into 

consideration. The inflated travel time of link 𝑒, with start 

node 𝑢 and end node 𝑣, lying along path 𝑝𝑖  between start point 

𝑞 and end point 𝑟 is given by 

𝜏′(𝑒) = 𝜏(𝑒) + 𝜏(𝑒) 𝜔
𝑚𝑖𝑛(𝑑𝑖(𝑞, 𝑢), 𝑑𝑖(𝑣, 𝑟))

𝑑𝑖(𝑞, 𝑟)
              (11) 

where 𝜏(𝑒) is the original travel time of link 𝑒, 𝜔 is the 

inflation factor and the function 𝑑𝑖 gives the driving distance 

between two points along path 𝑝𝑖 . Our trials show that an 

inflation factor value of 5 produces the best results in practice.   

Subsequently, we compute the minimum-travel-time path 

thrice. After each path computation, the travel times of the 

links in the path are inflated as explained above. The 

computed path is included in the choice set only if it does not 

overlap any of the alternative paths already present in the 

choice set by more than a proportion 𝛼, which we empirically 

set to 50%. Also, the computed path should be temporally 

possible in order to be added to the choice set. Allowing for a 

high degree of speeding, a path is considered to be temporally 

possible if its free-flow travel time is not more than thrice the 

actual elapsed time between its start and end points. In this 

manner, the choice set is populated with a maximum of 5 

 
Fig. 4. An example of multiple alternative paths produced by the choice set 

generation method (Base map image: Google Maps). 
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alternative paths. Figure 4 shows an example case of three 

alternative paths generated by the above procedure along with 

their attributes. The overall flow of the choice set generation 

method for a given origin and destination is as follows. 

1. Add pre-identified path 𝑝𝑝 to choice set 𝐶. 

2. Compute minimum-travel-time path 𝑝𝑚. 

3. Add 𝑝𝑚  to 𝐶 if different from 𝑝𝑝. 

4. Inflate the travel times of all links in 𝑝𝑝 and 𝑝𝑚. 

5. Compute the current minimum-travel-time path 𝑝𝑚. 

6. Add 𝑝𝑚  to 𝐶 if it does not overlap any path in 𝐶 by 

more than 50% and is temporally possible. 

7. Inflate the travel times of all links in 𝑝𝑚. 

8. Repeat steps 5-7 twice. 

9. Reset the travel times of all links to original values. 

C. Model Estimation 

The 𝛽 parameters in the multinomial logit model (see 

equations (8) – (10)) can be estimated from a sample of choice 

observations. In the context of route choice, the choice 

observations correspond to path choices made by real drivers. 

A choice observation 𝑛 consists of a choice set 𝐶𝑛 with several 

alternative paths and information about which alternative path 

was actually chosen by a driver. Given a path chosen by a 

driver between two points during a real drive, it is included as 

the first alternative in a choice set. Subsequently, other 

feasible alternatives paths are generated using the choice set 

generation method. This process is repeated for a number of 

chosen paths obtained from real drive data. Maximum 

likelihood estimation is commonly used for estimating the 

parameters of route choice models. It estimates the value of 

the parameters for which the sample of choice observations is 

most likely to have occurred [27]. 

IV. THE OVERALL MAP-MATCHING ALGORITHM 

Our complete solution for online map-matching of highly 

noisy and sparse location data utilizes the HMM-based online 

map-matching module presented in Section II as well as the 

route choice model described in Section III. The proposed 

overall solution is as described below.  

The HMM module receives and processes location 

observations from a vehicle-based user on the fly. Each time a 

convergence condition is detected by the Viterbi algorithm in 

online mode as described in Section II-C, the partial path up to 

the convergence state is released for further processing. We 

refer to this path as the HMM-generated partial path. The 

convergence states correspond to points on the road network 

where the vehicle’s location is matched with a relatively high 

degree of certainty. Therefore, it can be said that the start and 

end points of the HMM-generated partial paths are generally 

accurate, while the paths themselves may have a degree of 

error associated with them. Multiple alternative paths are 

generally plausible between the start and end points of the 

HMM-generated partial path.  

Let 𝑞 and 𝑟 be the start and end points, respectively, of a 

HMM-generated partial path. The choice set generation 

procedure described in Section III-B is applied to generate a 

number of reasonable and largely distinct alternative paths 

between 𝑞 and 𝑟. As noted earlier, the choice set 

unconditionally includes the HMM-generated partial path as 

one of the alternatives.  

We now face the task of identifying the most-likely path 

from among the several alternative paths in the choice set. We 

consider the alternative path that has a high probability of 

being chosen by a driver and is highly consistent with the 

sequence of location measurements as the most-likely path. 

Towards this end, for each alternative path, we calculate two 

probability measures that we refer to as the route choice 

probability and the observation generation probability, 

respectively. 

The route choice probability 𝑃(𝑝𝑖|𝐶), which is the 

probability of a driver choosing the alternative path 𝑝𝑖  within 

the choice set 𝐶, is calculated as given in (10) based on the 

multinomial logit model. The observation generation 

probability of an alternative path is the probability that the 

given location observations were generated while traveling 

along that path. Let 𝑜1:𝐾 be a sequence of 𝐾 location 

observations corresponding to the alternative paths in the 

choice set. Assuming Gaussian-distributed location 

measurement errors, we define the observation generation 

probability for a given alternative path 𝑝𝑖  as 

𝑃(𝑜1:𝐾|𝑝𝑖) = ∏
1

𝜎√2𝜋
𝑒

− 
𝑔𝑐(𝑜𝑘,𝑝𝑖)2

2𝜎2

𝐾

𝑘=1

                                  (12) 

where 𝜎 is the standard deviation of the location measurement 

error to be empirically estimated and 𝑔𝑐(𝑜𝑘 , 𝑝𝑖) is the great-

circle distance between 𝑜𝑘 and the point closest to it on 𝑝𝑖 . 

Among all the alternative paths in the choice set, the one for 

which the product of the route choice probability and the 

observation generation probability is the highest is identified 

as the most likely path taken by the vehicle between the start 

and end points. This forms the partial output of the overall 

map-matching algorithm.  

The steps in the proposed overall solution can be 

summarized as follows: 

1. If a convergence condition is detected in the Viterbi 

algorithm, produce the HMM-generated partial path. 

2. Generate a choice set of multiple alternative paths 

 
Fig. 5.  The roads covered during the taxi-based data collection in Singapore 
are shown in black (Base map image: Google Maps). 
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including the HMM-generated partial path. 

3. For each alternative path, compute the route choice 

and observation generation probabilities. 

4. Output the alternative path that maximizes the 

product of the route choice and observation 

generation probabilities and go to step 1. 

V. EVALUATION 

We evaluate the proposed map-matching solution using real 

as well as synthetic location data. In the following, we first 

describe the processes of collecting data, identifying the 

ground truth and estimating the model parameters of the 

HMM and the route choice model. Subsequently, we describe 

the evaluation setup and present the results. 

A. Data Collection and Ground Truth Determination 

We use noisy location data based on cellular network 

positioning for our evaluation. The location data were 

collected during taxi trips made in Singapore using an Android 

smartphone with the GPS and Wi-Fi functions disabled. For 

this purpose, we used an application that sends the cellular 

base station fingerprints to the Google location server and 

obtains the location estimates from the server through the 

Android location application program interface. Our test 

dataset consists of 21807 location points recorded mostly at 

the rate of one point per second during 20 taxi trips, which 

covered a total distance of 421 km. The roads covered during 

the taxi trips are shown in Figure 5.  

The ground truth locations and paths corresponding to the 

above trips were determined using GPS data recorded at the 

rate of one sample per second using another smartphone. We 

first applied the HMM-based map-matching method described 

in Section II to the GPS locations, whose measurement errors 

are typically in the order of a few meters. The map-matched 

locations and paths thus obtained were subjected to thorough 

manual inspection and correction with the aid of the 

knowledge about the actual paths taken during the taxi trips. 

While the ground truth paths obtained in the above manner are 

100% accurate, the ground truth locations corresponding to the 

measured locations could be off by up to a few meters due to 

the unavoidable GPS error. However, this is a reasonable 

approximation considering the fact that the typical 

measurement error of the cellular network positioning data 

used in this work is in the order of several hundred meters. 

An alternative ground truth dataset created using the GPS 

tracks from a separate set of 1000 drives totaling 13139 km 

was used for estimating the path-related parameters explained 

in Sections II-C and III-A. These GPS tracks, provided by a 

Singapore-based ITS company, were collected and 

anonymized from the users of a mobile application.  

B. Parameter Estimation 

The first parameter to be estimated is the standard deviation 

of the location measurement error 𝜎 used in (1) and (12). For 

each location data point obtained through cellular network 

positioning during the taxi trips, the measurement error is 

nothing but the great-circle distance between itself and the 

corresponding ground truth location. For the test dataset, the 

mean, median and worst-case measurement errors were 300 

m, 258 m and 4652 m, respectively. In line with the practice 

followed by several map-matching algorithms [4][6], we 

calculate the standard deviation of the measurement error 

using the Median Absolute Deviation (MAD), which is a 

robust estimator resilient to outliers. If {𝑔𝑖} is the set of all 

measurement errors in the test set and if the errors are assumed 

to be Gaussian distributed with zero mean, the standard 

deviation is given as 

𝜎 = 1.4826 𝑚𝑒𝑑𝑖𝑎𝑛𝑖(𝑔𝑖)                                                     (13) 

For the test dataset, 𝜎 is 382 m. 

The transition probability model given by (4) requires the 

parameters 𝜆𝑦 and 𝜆𝑧, corresponding to the measures of path 

circuitousness and temporal implausibility, respectively, to be 

estimated. It needs to be recalled that the transition probability 

depends on the features of the short paths that connect states 

corresponding to two successive time steps. For estimating 𝜆𝑦, 

we use the ground truth paths in the alternative ground truth 

dataset. Each ground truth path is randomly segmented into 

multiple short paths, whose travel durations range from 1 

 
Fig. 6. Histogram of the measure of circuitousness. 

 
Fig. 7. Histogram of the measure of temporal implausibility (with only the 
non-zero values considered). 

TABLE I 

ESTIMATED PARAMETERS OF THE ROUTE CHOICE MODEL 

Parameter Corresponding attribute 
Estimated 

value 
𝑡–Test value 

𝛽𝐹𝑇𝑇 Free-flow travel time (s) -0.019 -6.97 

𝛽𝑁𝑇𝑆 Number of traffic signals -0.100 -5.48 

𝛽𝐴𝑅𝐶  Average road class -0.244 -2.25 

𝛽𝑁𝐶𝐶 Number of class changes -0.272 -4.68 
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minute to 5 minutes. Overall, there are a total of 4828 paths 

with an average length of 2.6 km.  

As evident from the histogram shown in Figure 6, the 

values of the measure of circuitousness for all the paths follow 

an exponential distribution. The rate parameter 𝜆𝑦  of the 

exponential distribution can be estimated as the inverse of the 

mean of all such values. For the alternative ground truth data 

set, 𝜆𝑦 is 0.69. Contrary to our expectation, the values of the 

measure of temporal implausibility for all the paths do not fit 

well to an exponential distribution. This is because for about 

95% of the paths, the measure of temporal implausibility is 

zero. However, we are mainly interested in the paths with a 

non-zero measure of temporal implausibility. When only such 

paths are considered, the values of the measure of temporal 

implausibility follow an exponential distribution as shown in 

Figure 7. The rate parameter 𝜆𝑧   of this distribution is 

estimated to be 13.35.  

For estimating the 𝛽 parameters in the route choice model 

explained in Section III-A, we use as input a number of true 

paths that are obtained by randomly segmenting the paths in 

the alternative ground truth dataset. A total of 2016 such paths 

are used. These paths, which correspond to portions of real 

drives, have an average travel duration of approximately 6 

minutes and an average length of 4.2 km. Each of these true 

paths is included as the first alternative path in a choice set. 

The choice set generation procedure is used to generate up to 4 

alternatives to the true path. Thus, each choice observation 

consists of a choice set with up to 5 alternatives, with the first 

alternative being the chosen one. The 𝛽 parameters, estimated 

by maximum likelihood using the Biogeme [28] software 

package, are presented in Table I. All the estimated parameters 

are statistically significant (p < 0.05). 

C. Evaluation Setup and Metrics 

We use the following two sets of location sequence data as 

inputs for evaluating the proposed map-matching algorithm: 

1. A real dataset consisting of the cellular network 

positioning data collected during the taxi trips, but 

made temporally sparse by subsampling at intervals 

ranging from 1 to 5 minutes. 

2. A synthetic dataset created by adding random 

Gaussian noise to the ground truth locations 

corresponding to the points in the real dataset. The 

standard deviation of the added Gaussian noise 

ranges from 200 m to 1000 m. For each noise level, 

the input locations are sampled at intervals ranging 

from 1 to 5 minutes. 

The F-score, which is the harmonic mean of precision and 

recall, is used to evaluate the accuracy of the algorithm. For a 

path output by the map-matching algorithm, the F-score, 

precision and recall are defined as  

𝐹_𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                  (14) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝐿𝑚𝑎𝑡𝑐ℎ𝑒𝑑

                                                          (15) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝐿𝑡𝑟𝑢𝑡ℎ

                                                                    (16) 

where 𝐿𝑚𝑎𝑡𝑐ℎ𝑒𝑑  is the length of the output path, 𝐿𝑡𝑟𝑢𝑡ℎ is the 

length of the corresponding ground truth path and 𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡  is 

the length of the portions of the output path that overlap with 

the ground truth path. 

We also evaluate the timeliness of the algorithm. Timeliness 

is quantified by the input-to-output latency, which in this 

context is the time elapsed between the time a location 

observation was received and the time when the map-matched 

path corresponding to it is output. 

We compare the accuracies and the mean latencies of the 

following three map-matching solutions under varying levels 

of spatial inaccuracy and temporal sparsity. 

1. The HMM-plus-route-choice-model (HMM+RCM) 

algorithm:  This is the proposed overall solution that 

uses the HMM and the route choice model. 

2. The HMM-only algorithm: This solution includes 

only the HMM-based online map-matching method 

presented in Section II. 

3. The Newson-Krumm algorithm: This is the HMM-

based algorithm proposed in [4] that is widely 

regarded as the state of the art for map-matching 

noisy and sparse location data. 

D. Results 

Figure 8 shows the accuracies (F-scores) of the compared 

solutions when applied to the real dataset with sampling 

intervals ranging from 1 to 5 minutes. For all sampling 

intervals, the accuracy of the proposed HMM+RCM algorithm 

is significantly higher than the Newson-Krumm algorithm. 

The HMM+RCM algorithm also outperforms the HMM-only 

algorithm, especially at longer sampling intervals. The 

accuracy of the proposed methods degrade gracefully as the 

sampling interval increases. Averaging over all sampling 

intervals, the accuracies of the HMM+RCM algorithm, the 

HMM-only algorithm and the Newson-Krumm algorithm are 

91.3%, 89.6% and 81.2%, respectively.  

The mean latencies observed when the algorithms are 

applied to the real dataset are presented in Figure 9. Quite 

predictably, the mean latency increases with increasing sample 

interval for all the algorithms. (The HMM-only and the 

HMM+RCM algorithms use the same HMM module and 

hence have the same latency.) The Newson-Krumm algorithm 

achieves relatively lower mean latencies at low sampling 

intervals but not at higher sampling intervals. 

We use the synthetic dataset to study the effect of 

measurement noise on the map-matching performance. Figure 

10 presents the average accuracy results obtained under 

varying levels of noise with all the sampling intervals (1 to 5 

minutes) considered. While the Newson-Krumm algorithm 

degrades drastically with increasing levels of noise, the 

HMM+RCM and HMM-only algorithms display a high degree 

of noise robustness. The HMM+RCM algorithm manages to 

achieve an accuracy of over 80% even when the standard 

deviation of measurement noise is increased to 1000 m. 
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Figure 11 shows the relationship between the mean latency 

and the noise level. The mean latency of the HMM+RCM and 

HMM-only algorithms increases steadily with increasing 

levels of noise and is moderately higher than that of the 

Newson-Krumm algorithm. It may be worth noting that when 

all the sampling intervals are aggregated, the location 

sequences with low sampling intervals contribute more points 

and thus have more influence on the overall mean latency. As 

seen earlier in Figure 9, the mean latency of the Newson-

Krumm algorithm is lower at low sampling intervals. 

The accuracy comparison between the HMM-only 

algorithm and the Newson-Krumm algorithm is particularly 

interesting because both the algorithms differ only in the 

transition probability model used. We attribute the significant 

difference in the accuracies of the above two algorithms to the 

following differences between their respective transition 

probability models. First, while the Newson-Krumm model 

assumes that transitions between states occur through the 

shortest-distance path, we use the minimum-travel-time path, 

which better represents reality. Our analysis of GPS tracks 

from real drives show that in most cases, vehicles move from 

one point to another through the minimum-travel-time path 

along major roads even when a shorter-distance path involving 

minor roads exist between those points. Second, as explained 

in Section II B, there are some drawbacks in the distance 

difference measure used  by Newson and Krumm to quantify 

the circuitousness of a transition path. It relies on the distance 

between the current and previous location observations and 

therefore is adversely affected by the location measurement 

errors, especially in the case of highly noisy data. Also, 

Newson and Krumm appear to ignore the fact that the 

distribution of their distance difference measure varies 

significantly for different sampling intervals. In contrast, our 

measure of circuitousness takes the sampling interval into 

consideration and is independent of the location observations. 

 
Fig. 8.  Comparison of map-matching accuracy on the real dataset for various 

sampling intervals. 

 

Fig. 9. Comparison of mean latency on the real dataset for various sampling 

intervals. 

 
Fig. 10.  Comparison of map-matching accuracy on the synthetic dataset for 

various levels of noise (averaged over all sampling intervals). 

 

Fig. 11.  Comparison of mean latency on the synthetic dataset for various 
levels of noise (averaged over all sampling intervals). 
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Finally, unlike the Newson-Krumm model that does not 

consider the travel times of the transition paths, our model 

includes a measure of temporal implausibility that helps to 

assign low transition probabilities for paths whose free-flow 

travel times are higher than the sampling interval.  

We believe that the accuracy results presented above are 

superior to those reported by other works in the literature that 

dealt with comparable levels of measurement noise (e.g. [2] 

and [14]). The results appear to suggest that the impact of the 

route choice model becomes more apparent at higher levels of 

temporal sparsity and noise. This is quite intuitive, as noisy 

and sparse location data gives rise to a higher number of 

plausible paths between the convergence states in the HMM, 

thereby justifying the use of a route choice model to identify 

the most likely path. 

VI. CONCLUSIONS 

As a considerable portion of location data crowdsourced 

from road users is highly inaccurate and sparse, it is important 

to develop robust algorithms capable of map-matching such 

data in an accurate and timely manner. In this paper, we have 

presented an innovative solution for the above problem. It 

extends the HMM-based state-of-the-art approach for online 

map-matching by combining it with a route choice model 

estimated from real drive data. We propose and use a choice 

set generation procedure for generating a number of 

reasonable alternatives for each partial path found using the 

HMM. The alternative paths are assessed based on their route 

choice probabilities given by the route choice model as well as 

their consistency with the observed locations in order to 

identify the most likely path. 

We have evaluated the proposed algorithm using real-world 

location data obtained through cellular network positioning as 

well as synthetic data with high levels of added measurement 

noise. The results show that the algorithm achieves 

substantially higher accuracy compared to the state of the art 

besides being robust to high levels of noise and sparsity. The 

main implication of the results is that it appears feasible to 

effectively utilize smartphone location sequence data sourced 

from users at low sampling frequencies using energy-efficient 

positioning technologies. We believe that users are more likely 

to allow their locations to be sampled if the sampling is 

performed in the above manner without placing undue 

demands on the smartphone’s bandwidth and battery power. 

There are a few avenues available for extending this work.  

In particular, there is a need to further improve the timeliness 

of the proposed map-matching algorithm. A possible way of 

doing this is to explore probabilistic approaches [20] for 

heuristically limiting the latency of the algorithm without any 

significant loss of accuracy. Another area of future work is to 

validate the proposed solution in a practical deployment 

scenario where location observations with varying degrees of 

accuracy are received from a large number of users with 

heterogeneous travel behavior. It is also desirable to develop a 

more advanced route choice model that takes the attributes of 

the driver and other factors such as the time of travel (e.g. 

peak/off-peak hour) and prevailing traffic conditions into 

consideration. A more open-ended future task is to explore the 

possibility of overcoming the limitation arising out of the 

Markov independence assumption in the HMM by developing 

a higher-order probabilistic graphical model, where the 

transition probability depends on several past and future states. 

It would be interesting to compare the map-matching solution 

based on such a model with the proposed HMM+RCM 

algorithm. 
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