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Abstract—Identification of critical segments in a road network
is a crucial task for transportation system planners as it allows
for in depth analysis of the robustness of the city’s infrastructure.
The current techniques require a considerable amount of compu-
tation, which does not scale well with the size of the system. With
recent advances in machine learning, especially classification
techniques, there are methods, which can prove to be more
efficient replacements of current approaches. In this paper we
propose a neural network (NN) based approach for classification
of critical roads under user equilibrium traffic (UE) assignment.
We, furthermore, introduce a novel predictor attribute, which
captures the contrast between UE and system optimum (SO)
assignment on the network. Our results demonstrate that the
neural network can achieve considerable identification precision
of critical road segments and that the SO related attributes
significantly increase the classification power. We, furthermore,
demonstrate that the NN approach outperforms the commonly
used approach of linear regression (LR) and another popular
classification approach from the field of machine learning, namely
support vector machines (SVM).
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TRANSPORTATION systems are the medium, which al-
lows the safe and reliable functioning of nation’s or city’s

economy and further promote personal well-being. In case
of a disaster the transportation system is the most critical
module of a complex system as it supports all other lifelines
by allowing them to transport people, supplies and tools to
damaged sites. Therefore, it is vital that transportation network
is 1) planned for robustness and 2) critical points are identified
so that mitigation strategies can be tailored ahead of time and
applied when necessary.

It is shown that daily traffic is highly predictable and that
there exist regular patterns that can be exploited. This stability
of choices made by traffic participants together with network
topology also leads to traffic concentration on mainly a few
links of the network as shown in [1].

This observation means that generic modelling techniques
can be used to model the traffic assignment, as it typically
exhibits regular patterns. It, however, also means that since
there are only a few over utilized links, the system is expected
to be very vulnerable to damages to them. Furthermore, it
is possible that some of the non-major roads might prove
to be critical despite a lower experienced traffic volume due
to the high degree of interconnection in the system. It is,
therefore, not a trivial task to identify such a system and
multiple parameters are needed in order to adequately estimate
the criticality of a road.

When considering a UE traffic assignment a change in
capacity of any road with positive flow can make a driver
who has previously decided to take it, to choose an alternative
option. Consequently, the flow on all new roads that the driver
decides to utilize will be altered and therefore traffic condition
on them might also change. Other drivers may then also decide
to take alternative roads and so on until the system reaches an
equilibrium point again. This type of phenomenon can lead
to avalanche effects where small local changes create shifts of
much larger traffic volumes. A road criticality classifier should
therefore, somehow, grasp the dynamics of the system, which
is a function of the demand and the topology of the network.
This seems like an extremely complex task, which is why work
on such techniques is scarce.

Typically, the impact of a capacity reduction of a road or
group of roads is simulated and then explanatory parameters
are sought in order find a correlation, which might be used
later for classification of such roads. This approach resembles
linear regression and therefore does not present any guarantees
for generalization of the classification to unknown scenarios.
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In this work we demonstrate how the problem of critical road
classification can be put into a machine learning framework,
which allows not only for more accurate predictions of road
classes but also for testing the reliability of those predictors
when presented with a scenario, which has not been simulated
yet. The main contribution of this work can be summarized
as follows:

• Design of NN approach, which outperforms LR and SVM
on the classification task of critical roads

• Addition of SO input attributes, which considerably
improve the classification capabilities of all examined
techniques

• Evaluation of classification accuracy magnitude gained
from the different type of attributes used by the models

II. LITERATURE REVIEW

The most commonly used indicator for the criticality of a
road segment is the flow of vehicles on it under equilibrium
traffic assignment conditions [2], [3] and the importance of a
road is considered to be proportional to the traffic load on it
[4]. A critical traffic volume is defined in [5], which is used to
decide if the intersection connected to such a road should have
signalling traffic control management. The work of [6] defines
road criticality as a combination of three factors: 1) V/C ratio,
describing the volume to capacity ratio (or the congestion
factor) of the road, 2) information gain from sensing the road
with respect to estimation of path travel times, and 3) centrality
of the road in terms of percentage of Origin-Destination (OD)
pairs, which utilize the road. A global network robustness
index is presented in [7], which is a combination of link flows,
capacity and network topology.

Graph theory further offers topological measures for critical-
ity of edges, and their centrality, which is naturally correlated
to the criticality. The most vital edges in a network are defined
as the first n edges whose removal will lead to the biggest
increase in average shortest-path distance within the set of all
possible paths [8]. The work of [9] suggests three measures of
centrality for a street: closeness, betweenness, and straightness.
Those measures are found to be correlated to various economic
activities in the respective areas. The work of [10] presents
a substantial review of existing measure of heterogeneity,
connectivity, accessibility, and interconnectivity in graphs. As
the criticality of a road is a function of both the topology and
the traffic demand the measure of entropy has proven useful
in combining the information from those two factors. Family
of graph measures based on entropy are summarized in [11].

Importance of road segments using entropy measures of
nodes has been defined in [12] and used for optimal sensor
positioning. The temporal flow variation has been examined
[13] identifying nodes, which exhibit highly dynamic traffic
conditions and are therefore critical to manage. Another factor,
which should be taken into consideration for determining road
criticality is the mismatch between the demand and capacity
of the road [14].

A statistical analysis in [15], where data from various con-
gested intersections in Shanghai during peak hour is processed
and analysed shows that the characteristics of intersections

varies evidently from site to site. Therefore, the approach
of simply using a set of indicators and combining them in
order to evaluate the criticality of a road would not be robust
enough to cover all possible scenarios, which will make a
road critical. A more elaborate approach would be to simulate
the performance of the system reacting to capacity alterations
of the road network. This methodology would replace the
assessment of criticality based on chosen factors with actual
measurements of the outcomes of capacity disturbances [16],
[17], [18]. In [19] a capacity disruption approach is used
in order to categorize and identify critical segments and the
robustness of the network for different degrees of disruption.

The approaches based on direct measurement of the effect
of capacity disruptions provide a clearer picture, however, they
are computationally expensive. The user equilibrium traffic
assignment, which is an computationally intensive has to be
performed for every examined alteration. When a complete
picture of the system robustness is needed the computation
time for a realistic system can easily become not feasible.
Our work makes use of the established methodology for
determining critical links and aims on developing a much
faster way to evaluate the alterations.

III. SIMULATION AND CASE STUDY

A. Macroscopic Simulation

The three main elements needed to enable our macroscopic
simulation are the road network graph, the origin - destination
pairs of the population and routes that commuters choose.

A road network of the simulated system is available to us,
including speed limits, number of lanes on every road segment,
and connectivity between the edges of the graph. A realistic
number of drivers (375, 000) are generated by sampling their
origins and destinations from a survey data set of real start and
end trip points. After this UE traffic assignment is performed
to compute the routes of the drivers as described in [20].

After the routes are computed the number of drivers passing
through every road segment during the simulation period TS
can be extracted. Knowing the flow Fi, length li, free flow
speed vfi , number of lanes wi and the coefficients αi and
βi, which are calibrated for road i (see a detailed description
in [21]), we can estimate the average traverse time ti along
every road segment using the Bureau of Public Roads (BPR)
function [22]:

ti =
li

vfi

(
1 + αi

(
Fi

2000wiTS

)βi
)

(1)

Our case study examines the city of Singapore with popula-
tion of 5.4 million people and around 1 million registered ve-
hicles including taxis, delivery vans and public transportation
vehicles [23]. It is an island city, thus making the examined
system relatively closed. The road network graph comprises
of 240, 000 edges and 160, 000 nodes.

Two datasets have been used in order to calibrate and
validate the macroscopic simulation. The first one is the
Household Interview Travel Survey (HITS) conducted in 2012
in the city of Singapore, which provides information about the
traffic patterns of commuters. The second data set represents
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GPS traces of a 20, 000 vehicles fleet for the duration of one
month.

Data:
G Road network graph
L Set of examined segments
D OD demand
UE Demand × Graph → Travel time
Laneremove Link × Graph → Graph
Laneadd Link × Graph → Graph
Lanes Link × Graph → N
Result: Set of average population travel times for

respective lane additions and removals ∆Ti

// Compute UE traffic assignment

T ← UE(D,G)
foreach l ∈ L do

G+1
l ← Laneadd(l, G)// Add lane to l

// Re-caluclate UE traffic assignment with

new graph

T+1
l ← UE(D,G+1

l )
// Compute travel time difference

∆T+1
l ← T+1

l − T
if Lanes(l, G) > 1 then

G−1
l ← Laneremove(l, G)// remove lane

from l

// Re-caluclate UE traffic assignment

with new graph

T−1
l ← UE(D,G−1

l )
// Compute travel time difference

∆T−1
l ← T−1

l − T
end

end
Algorithm 1: Quantifying population travel time change
for reduction of capacity of roads

B. Experiment Description

The experiment performed in this paper consists of going
through pre-selected links of interest and measuring the sen-
sitivity of the system to their capacity. Let’s assume that the
computed total travel time of the system is T . Let link i have
wi lanes. The first step is to set the number of lanes to wi−1.
New UE traffic assignment is performed and the total travel
time T−1

i is computed. The second step is to set the number
of lanes to wi+1 and assign the traffic once again to compute
T+1
i . By computing the difference between the computed

travel times, the sensitivity of the system to the capacity of
this road segment can be estimated. In a more abstract way,
we are actually computing the partial derivative of the total
travel time under UE with respect to the selected link. This
procedure was done for roughly 2, 500 road segments, which
were chosen based on both their high throughput at UE or
congestion factor. The sequence of actions is formalized in
Algorithm 1
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Fig. 1: Neural network architecture.

IV. METHODOLOGY

There are three steps, which should be taken in order to
exploit the suggested technique for road criticality prediction.

The first one would be the acquisition of data describing
what would happen to the average travel time of the system
if the capacity of a certain road is reduced. In this paper
this data is gathered by means of simulation as described in
Algorithm 1. It is also possible to acquire such data from
real world measurements although this is considered a harder
approach. In order to do that one would need to cross reference
a data set describing average travel times in a system and a
dataset describing road closures during this time period, car
accidents, which block the road and other activities, which
effectively reduce the capacity of a road. As this data is not
easily accessible (requires a long computational time for the
simulation approach and limited availability for real world data
approach) it is important that the method needs as little training
samples as possible in order to function adequately. In the next
section a study on how the amount of gathered data influences
the performance of the method will be presented.

The second step of the proposed methodology is to train a
set of neural networks to estimate whether a road is critical or
not based on chosen attributes of the road using the collected
data in the first step. The neural network, shown in Fig. 1
consists of input units, which are the values of the chosen
road attributes, hidden layer of neurons, which is used for the
combination of different inputs, and an output layer, where
the outcome of the classification task can be read. The three
layers of neurons are connected via weights, which are trained
during the training phase using the data generated in the first
step. After training, the values of the weights are fixed and
the network is ready for exploitation.

The third step of the proposed methodology consists of
running the neural network for any road the user would like to
classify as critical or not. The user has to provide the attributes
of the road, which should already be computed and then collect
the classification class from the output layer of the network.
In order to increase the performance of the method instead
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of training only one neural network on the data, the training
procedure is repeated for several networks. During the last step
(exploitation) the output of all networks is averaged in order
to come up with the final classification of the road.

The input attributes of the neural network can be split into
three main groups of information: 1) magnitude of the capacity
reduction in terms of the length of the road, from which a
lane is removed, 2) V/C ratio, total flow of vehicles under UE
before the road was closed, and original capacity of the road,
and 3) comparison to system optimum (SO) traffic assignment
computed using the BISOS algorithm [24] in terms of flow
difference on the road and ratio of expected travel time on the
road between SO and UE traffic assignment.

The output, or the target, of the prediction module is a
the class that is assigned to the road. There are two options
for the class: Critical road or not critical road. For ease of
representation we can consider the class as a binary unit, which
is 0 if the road is not critical and 1 if it is. We define the
road as critical if the increase of travel time when the road is
closed Qi = T+1

i − T is bigger than the mean of all assessed
roads plus two times the standard deviation. If we consider
the collection of all travel time increases to be the random
variable Q then road class Ci can be represented as:

Ci =

{
1 if T+1

i − T > µQ + 2σQ

0 otherwise
(2)

V. CRITICALITY PREDICTION COMPARISON WITH OTHER
METHODS

We compare the performance of 3 approaches in order
to evaluate the classification power of the neural network
approach:

1) Linear regression (LR), which represents the typical
methodology used in the transportation field to access
the criticality of a road. A portion of the data is used
to estimate the regression coefficients (training set) and
the rest of the data is used to estimate the classification
power of the method.

2) Support vector machine (SVM), which is a standard
classification method from the field of machine learning
used to compare the method against a more flexible tool
than LR. The SVM utlizes a radial basis kernel function.

3) A group of 100 neural networks (NNs), which are
trained on the same task and their classification outputs
are averaged in order to arrive at the final classification
label. Each neural network has 10 neurons in the hidden
layer and is trained using the Levenberg-Marquaradt
backpropagation algorithm [25], [26].

The main purpose of using machine learning techniques
to evaluate the criticality of a road is to save computational
resources due to the expensive UE computation. An actual
computation of UE traffic assignment would require M ×N
route computations, where M is the number of iterations
needed for convergence and N is the number of agents. For the
case of Singapore, this would mean (using M = 5) 1, 875, 000
route computations. A route computation on the Singapore
network takes about 40ms, which means around 20.8 hours

(a) Classifier precision

(b) Classifier true positive rate

(c) Classifier F score

Fig. 2: Classifier performance as a function of amount of
presented training data

on a single core machine. In comparison the classifier can
output the predicted class of the road within milliseconds. The
UE procedure, however, needs to be performed several times
in order to generate training data. Therefore, it is crucial that
the classifier can achieve satisfactory performance for as little
training data as possible. Fig. 2 illustrates the performance
of the classifier as a function of the amount of training
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data, which is provided to it. The figure shows averaged
values over 100 training runs for every distinct percentage of
randomly sampled training data. We are mainly interested in
two classification performance indicators. First, the percentage
of roads, which are classified as critical and are in fact critical:

[T = 1|C = 1]

[T = 1|C = 1] + [T = 1|C = 0]
(3)

, where T = 1 means that the target class of the road is
“critical” and C = 1 means that the road is classified as
critical. This basically represents the certainty that a road
is critical if the classifier has identified is as such. This is
referred as the precision of the classifier (Fig. 2a). Second,
the percentage of roads, which are critical and are classified
as such:

[C = 1|T = 1]

[C = 1|T = 1] + [C = 1|T = 0]
(4)

This is referred to as the true positive rate (Fig. 2b). The
F-score is a metric, which unifies the true positive rate and the
precision into a scalar, which can be perceived as a weighted
average of the two:

F = 2 · Precision · TruePositive
Precision+ TruePositive

(5)

The F-score metric is used to evaluate the overall classifi-
cation power of a classifier (Fig. 2c).

It can be observed that LR does not benefit significantly
from new incoming data. It presents stable performance, which
can be useful for extremely small amounts of data, however,
as there are more learning samples the other tested methods
outperform it considerably. From the results illustrated in Fig.
2 it can be observed that the high precision of the classifier
is easier to achieve than a high true positive rate. The highest
true positive rate is achieved by the NNs, which is 30% higher
than the one achieved by the SVM.

Next, we examine the importance of the different types
of input provided to the network and try to quantify the
improvement in classification performance due to every type
of input. First we perform the Garson relative importance
test [27]. The results shown in Fig. 3 show that there is no
significant difference in the level of utilization of the different
inputs, which means that all types of inputs are useful for the
network. In order to evaluate the contribution of the individual
types of input, we evaluate the performance of the network
without every single one of them.

Fig. 4 shows the contribution of the three types of pa-
rameters to the classification power of the NN. It can be
observed that, the biggest amount of contribution is presented
by the magnitude of the capacity reduction parameter. The
contribution of this work can be quantified on an abstract level
by the contribution of the SO related inputs to the classification
power, as this is the novel type of parameter added to the set
of inputs. It can be observed that it increases the F-score by
about 20%, which is almost 50% increase.

Fig. 3: Relative importance of input attributes according to the
Garson test.

Fig. 4: Magnitude of F score improvement due to the different
parameter groups

VI. CONCLUSION

In this paper we have presented efforts to speed up the pro-
cess of identification of critical links on urban road networks.
We have presented approach based on neural networks, which
is able to instantly classify whether a road is critical or not
based on a set of computable attributes. We have tested and
compared 3 methods for evaluation of criticality. The neural
network approach was shown to offer the best classification
capabilities over the various training data sizes in terms of
both classification precision and true positive rate. In terms
of classification F-score, it outperforms the linear regression
current methodology by a factor of 2 and the support vector
machine approach by a little over 35%. We further evaluated
the importance and the magnitude of benefit coming from the
different sets of attributes. Our results show that the informa-
tion about the magnitude of the capacity disruption brings the
biggest benefit to the classifier. The set of inputs connected to
SO road properties were also shown to considerably improve
the neural network approach classification power.

This set of promising results opens various possible future
research opportunities. It must be tested whether the trained
classifier can accurately predict transit systems with different
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topology and demand characteristics. A hybrid technique com-
bining machine learning approaches might further improve the
classification power. It is also desirable that the criticality of
a group of roads can be assessed as well, as some extreme
events tend to reduce the capacity of a certain region rather
than just one road.

Last but not least, if the neural network can in fact grasp the
properties of the UE, then it might be used to extract more
specific information about the changes in traffic assignment
as a result of capacity alterations. Currently we have demon-
strated that the network can accurately classify the criticality
of the alteration, however, this approach might also be used
to evaluate quantitatively the change on a system level and
also provide estimations of locally exhibited changes. This
can allow the neural network approach to be used as a strong
computationally efficient tool for UE estimation, thus saving
considerable amount of time for system evaluation.
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