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Rapid and Robust Background Modeling Technique
for Low-Cost Road Traffic Surveillance Systems

Kratika Garg , Nirmala Ramakrishnan, Alok Prakash , and Thambipillai Srikanthan

Abstract— Fast and accurate detection of vehicles on road traf-
fic scenes captured by traffic surveillance cameras, is essential for
large-scale deployment of automated traffic surveillance systems.
The state-of-the-art techniques typically employ background
modeling for low-complexity foreground detection. However, this
is a challenging problem as these methods need to be robust
to varying road scene conditions (such as illumination changes,
camera jitter, stationary vehicles, and heavy traffic) leading
to huge computation cost. In this paper, we propose a highly
accurate yet low-complexity foreground (i.e., vehicle) detection
technique, which can effectively deal with the varying road scene
conditions, and generate accurate pixel-level foreground masks
in real-time. We propose a novel robust block-based feature
suitable for modeling road background and detecting vehicles as
foreground, and employ Bayesian probabilistic modeling on these
features. The experimental evaluations on widely used traffic
datasets demonstrate that the proposed method can achieve
comparable accuracy to the existing state-of-the-art techniques
but at a much higher processing frame rate (40x speedup over
PAWCS). The real-time performance of the proposed system
has also been demonstrated by implementing it on a low-cost
embedded platform, Odroid XU-4, that still achieves a frame rate
of over 80 frames/s, thereby enabling the real-time detection of
foreground objects in road scenes.

Index Terms— Traffic surveillance, background modeling,
Bayesian framework.

I. INTRODUCTION

MODERN smart cities require traffic surveillance sys-
tems to ensure smooth traffic flow and optimized road

usage for commuters. Among the various surveillance sensors
deployed across cities, data from CCTV cameras provide
the richest information that can be used for a myriad of
applications, for example, traffic flow estimation, incident
detection, law enforcement, and behavior understanding. There
are two ways of automating such systems - central server
computing and on-board computing. Central server computing
systems for distributed traffic surveillance cameras necessitates
huge bandwidth requirement for sending high-resolution video
data that makes large-scale deployment of these camera-based
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sensors an expensive, and therefore, unscalable proposition.
On the contrary, on-board computing systems only communi-
cate events of interest for traffic surveillance systems to the
central command station, thereby significantly alleviating the
bandwidth requirements. Additionally, on-board local process-
ing also allows for localized decision making on the road
network in real time. For example, smart cameras at road
intersections can detect high traffic density in a particular
direction and activate the corresponding green traffic signal for
a prolonged period, if possible. A set of such sensors could
also work collaboratively to provide for a ‘green wave’ on
roads in specific directions. Several attempts have been made
to improve these systems, but they are usually too computa-
tionally complex to achieve real-time performance on low-cost
embedded platforms, which makes them costly for mass
deployment. Therefore, affordable on-board processing solu-
tions are required for large-scale automation of video-based
traffic surveillance systems. Even after years of research in
this field, development of low cost yet robust solutions still
remains a challenging problem [1].

Detection of vehicles on road scenes is the first step in a
vision-based traffic surveillance system. Background modeling
is a common approach to achieve this, in which the moving
vehicles are considered the foreground and stationary regions
of the scene, i.e., road, are considered the background. These
techniques generate a foreground mask where each pixel is
classified as background or foreground. Background modeling
has been widely researched over the years, however, it still
remains an open problem due to the large number of chal-
lenges associated with it [2], e.g. dealing with the variety of
changes like illumination changes, weather changes, camera
jitter, image noise; stationary foreground objects; similar fore-
ground and background intensities (i.e. camouflage); uniform
foreground regions (i.e. foreground aperture), etc.

Among the several techniques that have been proposed for
background modeling, most of them are generic in nature
and aim to generate perfect pixel level foreground masks
for any scene, often sacrificing the computational efficiency
of the algorithms to achieve robustness [3], [4]. While the
application-agnostic design of these high complexity back-
ground modeling techniques allows them to be used for a
variety of situations, including traffic-surveillance applications,
they are not suitable for implementation on low cost embedded
platforms. Existing work has also proposed compute-efficient
techniques that limit the area of foreground detection to suit a
particular traffic-surveillance application such as traffic density
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Fig. 1. Overall flow of the proposed approach. Yellow/blue blocks represent foreground/background blocks. (Best viewed in color).

estimation [5], [6] and incident detection [7], [8]. However,
the information generated by these techniques is limited to
these applications and therefore not usable for higher level
tasks like vehicle tracking for behavior analysis.

For a real-world traffic surveillance sensor, a balance
between application specific and generalized techniques is
necessary. We ideally require a robust yet low-complexity
foreground object detection technique that can be deployed
to extract the information about traffic flow and traffic inci-
dents in real-time without limiting the amount of informa-
tion required for the tracking and classification of vehicles
needed for long-term/higher level analysis. In this paper,
we present such a background modeling technique that can be
effectively used to detect foreground masks for road scenes
in real-time even on low cost embedded devices. Similar
to other application-specific techniques, we also leverage
application-specific characteristics to reduce the computational
complexity of the proposed technique. However, unlike them,
we take overall traffic surveillance as the application at hand,
where all vehicles on the road are treated as foreground and
need to be detected. We limit our region of interest to road
lanes and use the significant size of the foreground objects,
i.e., vehicles, to move to a low-complexity block-level process-
ing technique. In addition to that, we achieve higher resilience
to environmental changes by harnessing the spatial relationship
between pixels compared to pixel-based techniques. In this
paper, we employ a block processing method to initialize
and maintain a background image, and classify each block
as background or foreground, which enables the generation of
pixel-level foreground masks. Fig. 1 shows the complete flow
of the proposed approach.

The rest of the paper is organized as follows. In Section II,
the most popular approaches for background modeling are
presented and the main contributions of our approach are
discussed. Section III explains the proposed approach in detail.
In Section IV, the proposed technique has been evaluated
and compared with other state-of-the-art methods. Finally in
Section V, we draw our conclusions.

II. RELATED WORK

In the literature, several techniques for processing traffic
surveillance videos have been proposed that focus on a specific
problem. For example, vehicle counting techniques [5], [6]
based on virtual loop detectors detect and count vehicles

at the start of each lane, and illegal parking detection
techniques [7], [8] monitor the restricted zones (double solid
lines at the side of the lanes) for parked vehicles. Although
these methods are computationally lean, their output cannot
be directly used for other higher level tasks such as vehicle
tracking.

On the other hand, generalized background modeling tech-
niques have been employed for detecting foreground objects
of interest, i.e., vehicles on road scenes [9], [10]. It involves
construction and maintenance of a background model/image,
followed by a background or foreground classification result-
ing in pixel-level foreground masks, which can be used by
higher level surveillance tasks. An excellent survey of the
techniques is presented in [2].

Most background modeling methods rely on pixel-level
modeling with pixel intensity as the feature. Gaussian Mix-
ture Model (GMM) [11] is a classic and widely used para-
metric statistical model, which employs multiple Gaussian
models to represent the variations in background pixel
intensities. Several adaptive variants [12], [13] of this tech-
nique have been proposed in the literature since then.
Non-parametric methods [14], [15] based on kernel density
estimation (KDE) [16] do not make any assumptions about the
underlying model and rely solely on the observed background
intensities. Instead of using explicit models, some pixel-based
approaches [17], [18] maintain a cache of the intensity values
as the background model. However, all these pixel-based
techniques ignore the spatial relationship of the pixels with
their neighborhood. This leads to missed detections when the
foreground objects have a similar color to the background and
false detections in the presence of camera jitter [19].

Recently, deep convolutional neural networks have been
employed to learn the spatial features such as color and texture
for background modeling, which can generate pixel-level fore-
ground masks [20]–[23]. However as described in [23], [24]
the accuracy of these methods relies heavily on the quality of
the ground truth segmentation masks in the training datasets
and how well they represent all possible variations in the
background for that scene. Generating such diverse datasets
with accurate foreground masks is non-trivial. Also, they are
not able to achieve real-time performance ( 30 frames/second)
even on high-end GPUs [23].

As both the spatial features as well as temporal behav-
ior is crucial for background modeling, recent state-of-the-
art techniques that do not employ deep-learning incorporate
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spatiotemporal awareness in their pixel-level decision-making
process to improve robustness, e.g. [3] and [4] model features
like Local Binary Similarity Pattern (LBSP) instead of pixel
intensities [25], [26]. These techniques achieve better perfor-
mance than other state-of-the-art techniques; however, this
comes at the cost of higher computational complexity.

On analyzing the state-of-the-art techniques, we observed
that most of them aim to develop a generalized background
modeling method that can work in all scenarios. In order
to achieve robustness to all the challenges associated with
background modeling, these techniques often end up requiring
high-end computational platforms (e.g., GPUs) to achieve
real-time performance. However, if we focus only on back-
ground modeling for traffic surveillance applications, there
are multiple opportunities to achieve robust solutions without
sacrificing the run-time performance. First, for most highway
and urban traffic scenes, the main objects of interest are found
on the road. This can help reduce computational complexity
by processing only the road regions. Also, the background
modeling needs to cater to only the dynamic changes hap-
pening to the road surface that are less diverse. Second, for
our application, the size of foreground objects of interest (i.e.,
the vehicles) is known. This provides the opportunity to model
“larger” regions of the image instead of modeling each pixel,
reducing the complexity of background modeling. In addition
to that, this allows us to employ a strict background update
strategy that never assimilates persistent foreground objects
like slow moving/ stationary vehicles, unlike pixel-based meth-
ods. Third, unlike other foreground objects (e.g., pedestri-
ans), the trajectories of vehicles are reasonably uniform and
predictable. This enables the use of temporal continuity of
vehicles to achieve better performance. Fourth, since we are
dealing with similar foreground objects (i.e., vehicles) that
repeatedly appear in the scene, properties of the foreground
objects can also be learned over time. This helps in improving
the robustness to “once off” changes in the background, e.g.,
a sudden change in illumination due to a cloud cover, which
could otherwise lead to false foreground detections.

In this paper, we propose a novel block-based back-
ground modeling and foreground detection technique for traffic
scenes, that is robust to illumination changes, camera jitter,
image noise and deals with heavy traffic and stopped vehicles
effectively. The proposed block-level modeling enables the
generation of accurate pixel-level foreground masks, without
the need for any other post-processing. The main contributions
of our proposed approach are:

1) Selection of each road lane as the region of interest
(RoI), and its further division into blocks of interest
(BoIs), large enough for vehicle detection.

2) A novel spatial feature, BoI variance, that is invariant
to illumination changes, camera jitter, and noise.

3) Two separate probability models for background and
foreground that learn the relative shift in the aggre-
gate/spatial feature (i.e., BoI variance difference), and
a Bayesian probabilistic framework that combines the
two models.

4) Incorporation of prior information about traffic flow into
the Bayesian framework for improving robustness and its

usage in isolating and dealing with missed detections,
leading to improved foreground detection as well as
background updates.

III. PROPOSED APPROACH

In Fig. 1, we present our proposed block-based fully-
adaptive foreground detection method. During Initialization,
each lane to be monitored on the road scene is marked as
a region of interest (RoI). Each lane RoI is then divided into
blocks of interest (BoI) that allows the detection of the smallest
vehicle on the road. The background is then initialized for each
of the BoIs. (Additional details on the initialization phase are
provided in our earlier work on traffic density estimation [27]
and incident detection [28].) Subsequently, each incoming
frame is processed by the BoI Processor, which is applied
to each BoI, to detect the foreground, update the background
and generate the corresponding pixel-wise foreground mask.
Significant improvements have been made over our previous
work on block-based traffic incident detection technique [28]
in which the foreground blocks were detected using the block
variance difference and foreground pixel ratio. In this paper,
we have moved towards a statistical approach to achieve
an adaptive classification framework by modeling the block
variance difference for background and foreground.

In this section, we first describe the feature used to represent
each BoI, followed by the background initialization strategy.
We then present the proposed models for foreground and
background classification for each BoI. Next, the strategy
for background maintenance is presented. We then provide
detailed considerations for the initialization and updates of
the proposed models. Finally, the foreground mask generation
criterion is presented.

A. BoI Variance as a Feature

For a block-based background modeling technique, the fea-
ture representing a BoI should be invariant to the dynamic
changes that happen on the road background. At the same
time, it should facilitate the detection of vehicle foregrounds.
To this end, we propose the block intensity variance as
the block-level feature representing each BoI. For each BoI
bi in the frame It , the BoI variance σ 2(bi ) is computed
as:

σ 2(bi ) = 1

Nbi

xmax∑

xmin

ymax∑

ymin

(It (x, y))2 − (μ2(bi ))
2 (1)

μ(bi ) = 1

Nbi

xmax∑

xmin

ymax∑

ymin

(It (x, y)) (2)

where It (x, y) is the pixel intensity at location (x, y), μ(bi)
is the BoI mean, (xmin , xmax) and (ymin , ymax) represent the
boundaries of bi and Nbi is the total number of pixels in the
BoI.

We now show the invariance of BoI variance to the follow-
ing dynamic changes:

• Changes in Illumination: Fig. 2 shows that individual
pixel intensities experience significant change for both
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Fig. 2. Effect of illumination change on BoI Mean and BoI Variance on
BoIs from a (a) cloudy frame (b) sunny frame and (c) cloudy frame with a
vehicle.

Fig. 3. Effect of camera jitter on BoI variance using a (a) base frame
(b) frame after camera jitter. Figure (d) shows the foreground mask generated
for (b) by a GMM based technique [13].

illumination changes and vehicle occupancy as shown
using their aggregated value, BoI mean. On the other
hand, BoI variance experiences a low variation for illu-
mination changes, as all the pixels in the BoI undergo an
identical shift in their intensity. However, in the presence
of a vehicle, it does experiences a higher variation.

• Camera Jitter: Similarly, Fig. 3 illustrates that
pixel-based techniques lead to false detections in
the presence if camera jitter as shown in the mask
generated using GMM [13] in Fig. 3d. On the other
hand, small camera movements only lead to a slight
change in the BoI variance.

• Image Noise: Image noises are largely filtered out by
the average during the calculation of variance, while
techniques based on pixel intensity have to cater to them
explicitly in their modeling process [29].

Additionally, the computational complexity of the BoI vari-
ance calculation is also low, which can lead to significant
savings in comparison to per pixel modeling. In the next
subsection, we describe the use of this block feature for
initializing a background image.

B. Background Initialization

Initializing a representative background image which does
not include any foreground objects is a crucial step in
background modeling techniques [30]. In this paper, we pro-
pose a block-level background initialization technique for
free-flowing traffic conditions. We follow a progressive strat-
egy that initializes background for the BoIs which meet
the required criterion and continues until the background is
obtained for all BoIs [2].

The criterion used for initializing the background for each
BoI is the stability of its variance (σ 2) across frames. When
no vehicle passes through a BoI, the variance is expected to
remain stable across frames. In order to check the stability of

the BoI variance across frames, the variance of the variance
values (VoV) of a BoI from several frames is calculated.

Let the background and current frame for a BoI bi , at time t ,
be defined as Bbi

t and I bi
t . For each BoI bi , a circular buffer is

constructed which stores the variance values of N most recent
frames. Once the buffer is full, the variance of the variance
values stored V oV bi is calculated as:

V oV bi = σ 2(σ 2(I bi
t−N ) : σ 2(I bi

t )) (3)

If V oV bi < TB , where TB is a pre-defined threshold, the pixel
intensities of the BoI from the current frame are used to
initialize the background image, i.e. Bbi

t+1 = I bi
t .

In order to obtain the optimum value of N and TB , we per-
formed extensive simulations. N was set to 6 for a frame
rate of 30 fps, corresponding to a duration of 0.2s in which
the stability criterion needs to be met, for the background
to be initialized. For free-flowing traffic, this leads to fast
background initialization whenever the road is seen. For a
lower frame rate, N also has to be reduced (e.g., N =
4 was used for 10-15 fps) to consider the same duration.
For slow-moving traffic, using a higher value of N may be
beneficial to ensure accurate background initialization. TB

was empirically set to 100 based on the observation that
V oV values changed significantly (> 500) in the presence of
vehicles in the past N frames. Thus, a threshold of 100 was
chosen to ensure that the background was only initialized when
variance values experienced low variation across time.

This process is repeated until the background is constructed
for all BoIs. An example of the constructed background for
the BMC dataset [31] can be seen in Fig. 1. After back-
ground initialization, each BoI is sent to the BoI proces-
sor in the subsequent frames, where they are classified as
background/foreground, their background is updated, and their
foreground masks are generated. We first discuss the classifi-
cation process in detail in the next subsection.

C. Model for Background/Foreground Classification

In this section, we present the Bayesian framework used to
model the background and foreground.

1) BoI Variance Difference as the feature: As described in
Section III-A, the proposed BoI variance undergoes significant
change when a vehicle is present in the BoI. Thus, we use the
change in BoI variance relative to the background, i.e., vari-
ance difference as the key feature for the classification process.
For a BoI bi , the variance difference �V bi is calculated as
follows:

�V bi = abs(σ 2(Bbi
t ) − σ 2(I bi

t )) (4)

In Fig. 4, we show that the selected feature BoI vari-
ance enables robust vehicle detection in the following
scenarios:

• Low-textured road: Blocks encapsulating low-textured
parts of a road experience low variance and therefore,
there is a significant change in the BoI variance (> 103)
when the block is occupied by a vehicle.

• Static shadows: When a block is covered by static shad-
ows of roadside buildings, trees or other structures, its
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Fig. 4. Change in variance with respect to the current background (Row
2) for three scenarios: (a) Vehicle on smooth road (b) Vehicle on road with
static shadows (c) Vehicle on road with road markings. (Row 1: Yellow:
Foreground, Blue : Background, Orange Box: Variance Difference).

BoI variance increases. However, it still experiences a
large value of �V bi when occupied by a vehicle due to
the change in texture.

• Road markings: Road markings have a similar effect as
the static shadows on the BoI variance values; thus, it also
leads to high values of �V bi in the presence of vehicles.

The above-described cases show the robustness of BoI vari-
ance difference as a feature for all the common road textures
encountered in traffic surveillance applications. In the next
section, we present statistical models for foreground and
background that employ the BoI variance difference �V bi as
the feature.

2) Bayesian Modeling Using BoI Variance Difference:
Changes in the background for outdoor environments can
be characterized as gradual changes (e.g., slow illumination
changes), dynamic changes (e.g., swaying trees) or “once-
off” changes (e.g., camera movement, cloud cover). Modeling
background alone is usually sufficient to deal with the grad-
ual/dynamic changes in the environment. However, dealing
with the “once-off” changes is challenging as it deviates
significantly from the background model, leading to false
positives. This can be alleviated by modeling the foreground
in addition to the background. Therefore, we propose two
separate statistical models for the background and foreground
respectively, that are selectively updated after each classifica-
tion. We use the Bayesian probabilistic framework to combine
the models for the classification process [16], [32], [33].

Applying Bayes rule as described in [34], for a BoI at loca-
tion bi , with a variance difference v, the posterior probability
of it being background Pbi (b|v) (i.e., having observed the BoI
variance difference values in the past frames, when a value v is
observed for the current frame, the probability that it belongs
to background) can be described as:

Pbi (b|v) = Pbi (v|b)Pbi (b)

Pbi (v)
(5)

where b indicates the background, Pbi (v|b) is the probability
of the feature v being observed as a background, Pbi (b) is
the prior probability of the BoI belonging to the background,
and Pbi (v) is the overall probability of the feature v being
observed at the position bi .

Similarly, the posterior probability of the feature v being
foreground ( f ) at location bi is:

Pbi ( f |v) = Pbi (v| f )Pbi ( f )

Pbi (v)
(6)

According to Bayes decision theory, in order to classify
a BoI as foreground the following condition must be met
Pbi ( f |v) > Pbi (b|v). Since it is a two-class problem, i.e., a
particular BoI can only be classified as either background or
foreground, we also know that Pbi ( f |v)+Pbi (b|v) = 1. Thus,
the above equation can be redefined as Pbi ( f |v) > 0.5, or:

Pbi (v| f )Pbi ( f )

Pbi (v)
> 0.5 (7)

On substituting Pbi (v) (adding Eq. 5 and Eq. 6), the above
equation becomes:

Pbi (v| f )Pbi ( f )

Pbi (v|b)Pbi (b) + Pbi (v| f )Pbi ( f )
> 0.5 (8)

Assuming that the prior probability of a BoI being fore-
ground or background is equal, we get Pbi (b) = 0.5 and
Pbi ( f ) = 0.5, thus giving us:

Pbi (v| f )

Pbi (v|b) + Pbi (v| f )
> 0.5 (9)

This simplifies the classification problem to modeling the
observed BoI variance difference as background Pbi (v|b) and
foreground Pbi (v| f ) respectively. For our technique, we use
a stricter threshold of 0.7 instead of 0.5 for the classification
process, so that the borderline cases are not misclassified.

Intuitively, BoI variance difference represents the change
in the current BoI with respect to the background. Thus,
a low (or high) change should signify a high probability of
the current BoI being background (or foreground). Building
on this intuition, we modeled the background and foreground
models as exponentially decreasing and increasing functions
respectively. The conditional probability of a BoI variance
difference, given it is background, was formulated as:

Pbi (v|b) = ex p(−�V bi /λb)) (10)

The conditional probability of a BoI variance difference given
it is foreground was formulated as:

Pbi (v| f ) = (1 − ex p(−�V bi /λ f )) (11)

where λb and λ f represent the rate of decrease and increase
of the background and foreground probability distributions
respectively. Fig. 5d shows the background and foreground
conditional probability models for a BoI from a sunny video
Fig. 5a and a foggy video Fig. 5b from the BMC Dataset [31].

We also adapt the model parameters for the probability
distributions to incorporate the latest information about the
scene using the following equations: If bi is classified as
background,

λb = (1 − αb) ∗ λb + αb ∗ �V bi (12)

else,

λ f = (1 − α f ) ∗ λ f + α f ∗ �V bi (13)
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Fig. 5. Model adaptivity in (a) cloudy and (b) foggy situations from
BMC dataset: (c) λ f (rate of increase for foreground probability distribu-
tion) automatically adapts to lower/higher for foggy/sunny conditions which
leads to (d) Corresponding conditional probability curves (1000th frame)
where a lower/higher variance difference will be classified as foreground for
foggy/sunny scenarios respectively.

where, αb and α f are the learning rates for the background
and foreground models respectively. This enables our models
to adapt themselves over time according to the current scene.
As shown in Fig. 5c, λ f automatically adapts to a higher
value for a sunny scene as compared to a foggy scene. Fig. 5d
shows that for a given BoI variance difference, under foggy
conditions it will have higher probability of being classified as
foreground (as compared to a sunny scene). Therefore, effec-
tively dealing with the lower distinguish-ability of vehicles
during foggy conditions. This enables the adaptive nature of
the proposed Bayesian classification framework. The initial-
ization values and the learning rates for these models are
discussed later in Section III-F.

In the next two sections, we discuss the use of prior
probability and block mean to further enhance robustness by
detecting true foreground cases missed by the above described
model.

3) Incorporating Prior Information: To further improve
the robustness of our Bayesian classification framework we
incorporated the vehicle trajectories as prior information. For
highway/urban traffic scenario the following prior assumptions
can be made:

• Vehicles enter the frame at the first/last block in a lane
for outgoing/incoming traffic respectively.

• The types of trajectories for a vehicle are typically limited
i.e., left/right/forward.

In Section III-C2, the prior probabilities for the appearance of
background and foreground were assumed to be equal (i.e.,
0.5). In this section, the prior probabilities are updated using
the foreground or background classification from the previous
frame. We use the following rules to set the foreground prior
probability Pbi ( f ) as shown in Fig. 6a.

• Case 1: For the blocks that are not in the vicinity of
any foreground block in the previous frames, the prior
probability is reduced to 0.4.

• Case 2: If the block before(or after) for outgoing(or
incoming) traffic was detected as foreground in the pre-
vious frame, the prior probability is increased to 0.6.

• Case 3: If any of the neighboring blocks or the block
itself were detected as occupied in the previous frame,
the prior probability is maintained at 0.5, as the chances
of a vehicle turning in any direction cannot be predicted.

• Case 4: The first(or last) block of each lane for incom-
ing(or outgoing) traffic respectively always has a prior
probability of 0.5 as there is no prior information avail-
able for these blocks.

It is important to note that we only decrease/increase the prior
probability values marginally as there are exceptions to traffic
rules mentioned above e.g., pedestrians crossing the road,
vehicles stopping on the road.

Fig. 6b-c shows that incorporating the prior probability
into our Bayesian classification framework helps increase the
overall robustness of our proposed approach by:

• Increasing the foreground probability for borderline fore-
ground cases (i.e. Pbi ( f |v) is between 0.5 and 0.7) using
Case 2, thereby reducing false negatives as shown in
Fig.6b.

• Decreasing the foreground probability for borderline
background cases (i.e. Pbi ( f |v) is between 0.7 and 0.8)
by using Case 1, thereby reducing false positives as
shown in Fig. 6c.

• Incorporating the prior probability in the background
maintenance procedure to reduce false background
updates. This is discussed in the background maintenance
section i.e. Section III-D in detail.

4) Mean Model: Fig. 6d shows cases when our BoI variance
difference based Bayesian probabilistic framework is unable
to detect the foreground BoIs. This happens when a BoI
is occupied by a smooth part of a vehicle (mostly heavy
vehicles), and the edges are not dominant enough to incur a
significant change in variance. However, in most cases, there
is a change in intensity that can be exploited to detect such
parts.

For such cases, we used BoI mean to distinguish them from
the background. We modeled the BoI mean intensities using
a single Gaussian model, which is defined as:

Pbi
m (x) = 1√

2πσ 2
m

exp
− x−μm

2σ2
m (14)

where,

μm = (1 − αm) ∗ μm + αm ∗ μ
bi
t (15)

σ 2
m = (1 − αm) ∗ σ 2

m + αm ∗ (μ
bi
t − μm)2 (16)
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Fig. 6. (a) Prior probability assignment for the current frame t based on background/foreground classification in the previous frame (t-1) of neighboring
blocks; (b) False negative and (c) False positive detections in Row 1 corrected in Row 2 after the incorporation of prior information; (d) False negative
detections (Row 1) corrected (Row 2) after the incorporation of block mean model (Best viewed in color).

Fig. 7. False negative detections in case of complete camouflage.

Pbi
m (x) represents the probability that x fits the Gaussian model

with a mean μm and variance σ 2
m which adapts over time with

a learning rate of αm . However, as highlighted in Fig. 2 and
Fig. 3, BoI mean is susceptible to illumination changes. Thus,
we used the prior probability o isolate likely false negative
detections effectively. When the foreground prior probability
Pbi ( f ) of a BoI was higher than 0.5, and Bayesian classifier
classified it as background block, we employed the BoI Mean
model. The following detection criterion was used:

i f (Pbi
m (μ

bi
t ) > Pbi

m (μm + 3 ∗ σ 2
m)) : I bi

t = f oreground

(17)

Additionally, we used the classifications from our robust
Bayesian classifier to learn and adapt the BoI mean Gaussian
background model (Details in Section III-F).

Fig. 6d shows cases where BoI mean helps to detect false
negative cases, thus further improving the robustness of the
proposed approach. It should be noted that the proposed
method, would not be able to detect parts of vehicle which
have similar texture and grayscale intensity as the road surface
(i.e., camouflage, shown in Fig. 7) which is a challenging prob-
lem for existing state-of-the-art techniques as well. We aim to
incorporate color information into our models to detect such
cases in the future.

D. Background Maintenance

Background maintenance ensures that the background is
kept updated and any changes to the background due to
environmental variations are assimilated. Therefore, any errors
in this step can lead to prolonged effects on the background or
foreground classification. Thus, we follow a strict background
maintenance scheme for our proposed method using the prior
probability assignment shown in Fig. 6a. First, the prior proba-
bility and classification based on the Bayesian model are used

to decide the BoIs that should be sent for background update.
The BoIs classified as background that have a prior probability
less than 0.5 (i.e., BoIs with no neighboring foreground blocks
in the previous frame) are sent for background update. This
eliminates the chances of a false background update due to a
missed foreground detection (i.e., parts of foreground objects
wrongly classified as background). After this, a stability check
similar to the background initialization step in Section III-B,
Eq. 2 is applied to confirm if it is a background block. Thus,
for the update procedure, we follow a selective update strategy
as follows:

If bi is classified as background and Pbi ( f ) < 0.5,

Bbi
t+1 =

{
α ∗ I bi

t + (1 − α) ∗ Bbi
t V oV bi < TB

Bbi
t V oV bi ≥ TB

(18)

where Bbi
t+1 and Bbi

t are the background images for a block
bi at time t + 1 and t respectively, α is the learning rate
for background image update and TB is the threshold on the
stability criterion (described in Section III-B). Additionally
the first/last blocks in each lane for outgoing/incoming traffic
respectively are also sent for background update if they are
classified as background by the Bayesian classifier.

These regular updates to the background, ensure that the
proposed technique is adaptive to illumination changes, forma-
tion/fading of static shadows on the road, camera movements,
etc. Also, this helps to achieve more accurate pixel-level
foreground masks. In the next section, we present how these
foreground masks are generated.

E. Foreground Mask Generation

Our foreground mask generation strategy follows a simple
thresholded difference for the BoIs classified as foreground,
which is represented as follows:

If I bi
t is foreground,

Mbi
t (x, y) =

{
1 abs(I bi

t (x, y) − Bbi
t (x, y)) > TM

0 otherwi se
(19)

where I bi
t , Bbi

t and Mbi
t is the current image, background

image and the corresponding foreground mask respectively
for a block bi at time t . TM is the threshold used for the
pixel intensities, it is empirically set to 30. An example of the
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generated foreground mask for the BMC dataset is given in
Fig. 1.

F. Model Initialization and Updates

We have created three different models for our pro-
posed approach namely variance difference based back-
ground model Pbi ( f |v) and foreground model Pbi (b|v) in
Section III-C2 and block mean based background model
Pbi

m (x) in Section III-C4. In this section, we describe how
the parameters for each of these models i.e. (λ f ,λb ,(μm ,σ 2

m ))
are adapted using (α f ,αb ,αm).

It is to be noted that the initialization values for the model
parameters do not impact the overall performance of the
algorithm since the proposed method learns on-line and adapts
to the given environment. For our proposed technique, λb and
λ f are initialized to 100. μm and σ 2

m are initialized using
the BoIs that are used to construct the background. For the
variance difference models, there is a risk of over-fitting of the
models, when non-dynamic background is seen for a long-time
(for background model) or very distinct vehicles are observed
for a long time (for foreground model). Therefore, we also put
a minimum and maximum cut-off on the λb and λ f values.
The minimum values are set to the initialization values, and
the maximum values are empirically set to 500 and 2000 for
λb and λ f respectively.

For adapting these models effectively, learning rates play
an important role. For our proposed approach, α f is set to
0.01. This slow learning rate ensures that the foreground model
does not get over-fitted to a certain type of vehicle. For αb,
two learning rates are used i.e. 0.01 and 0.1. When �V bi

is low, αb is set to 0.01 as the model is learning no new
information. However, when �V bi is high, αb is set to 0.1.
This helps incorporate the infrequent changes that occur in
the background due to camera jitter or drastic illumination
changes rapidly. This strategy helps the model to quickly adapt
to dynamic changes in the background and at the same time
retain this for a longer time as the smaller changes are learned
at a slower learning rate. For αm a similar strategy is used.
When μ

bi
t fits the model, αm is set to 0.01, otherwise it is set

to 0.1. We want to highlight that these values were set based
on a standard video frame rate, i.e. (25-30 fps). For extreme
scenarios, e.g., for a frame rate of less than 10 fps, these values
should be increased to ensure that the models adapt effectively.

In Algorithm 1, we summarize our classification models,
model updates and background maintenance in detail.

IV. RESULTS

In this section, we present details about the datasets used,
testing setup, quantitative and qualitative evaluations of the
proposed method and lastly, comparison with state-of-the-art
methods in terms of accuracy and run-time performance.

A. Experimental Setup

All the algorithms are executed and verified on a state-of-
the-art mobile application development platform — Odroid-
XU4 [35] from Hardkernel. In our experimental setup, this

Algorithm 1 Foreground Block Detection

1 for each bi do
2 Pbi (v|b) = ex p(−�V bi /λb)) ;
3 Pbi (v| f ) = (1 − ex p(−�V bi /λ f )) ;

4 Pbi ( f |v) = Pbi (v | f )Pbi ( f )

Pbi (v |b)(1−Pbi ( f ))+Pbi (v | f )Pbi ( f )
;

5 Pbi
m (x) = 1√

2πσ 2
m

exp
− x−μm

2σ2
m ;

6 if (Pbi ( f |v) > 0.7) then
7 I bi

t = foreground;
8 λ f = (1 − α f ) ∗ λ f + α f ∗ �V bi ;
9 else if Pbi ( f ) < 0.5|| “first blocks" then

10 I bi
t = background;

11 UpdateModel();
12 if ( V oV bi < TB ) then
13 Bbi

t+1 = α ∗ I bi
t + (1 − α) ∗ Bbi

t
14 else
15 if Pbi ( f ) > 0.5 && Pbi

m (μ
bi
t ) >

Pbi
m (μm + 3 ∗ σ 2

m) then
16 I bi

t = foreground;
17 else
18 I bi

t = background;
19 UpdateModel();
20 end
21 end
22 end
23 Function UpdateModel is
24 if �V bi < λb then
25 αb = 0.01 ;
26 else
27 αb = 0.1 ;
28 end
29 λb = (1 − αb) ∗ λb + αb ∗ �V bi ;
30 if Pm(μ

bi
t ) > Pm(μm + 3 ∗ σ 2

m) then
31 αm = 0.01 ;
32 else
33 αm = 0.1 ;
34 end
35 μm = (1 − αm) ∗ μm + αm ∗ μ

bi
t ;

36 σ 2
m = (1 − αm) ∗ σ 2

m + αm ∗ (μ
bi
t − μm)2;

37 end

platform runs on Ubuntu 15.10. We run the algorithms on
a single A15 core at 2 GHz. The Exynos 5422 System on
Chip(SoC) on this platform is constrained to a maximum of
∼10W thermal design power and is representative of a typical
SoC used in low-cost, low-power embedded platforms.

B. Dataset and Evaluation Metrics

The proposed technique is more suited for traffic videos
captured from a roadside traffic camera installed on an
overhead bridge or a pole overlooking a street/highway to
minimize occlusion. We therefore select such representative
scenarios from publicly available datasets- the Background
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TABLE I

DATASET USED FOR EVALUATIONS

Models Challenge Dataset [31], iLids Parked Vehicle Detec-
tion Dataset [36] and Change Detection dataset [19]. These
datasets cover a wide range of challenges such as changes in
illuminations and weather, camera jitter, slow-moving traffic,
and stationary vehicles. Table I provides a summary of the
datasets used for the evaluation of the proposed technique.

For quantitative comparisons, we use the BMC Street Test
and four videos (highway, traffic, boulevard, snowFall) from
Change Detection dataset. Precision, Recall, and F-Measure
are used as the evaluation metrics. The implementation of the
state-of-the-art methods has been used from the BGS Library
provided by [37]. In addition to accuracy, in order to compare
the computational complexity of these algorithms, we measure
the run-time performance (i.e., the achieved average frame
rate) on the low-cost embedded platform - Odroid-XU4.
In order to provide a fair comparison, all the state-of-the-art
algorithms from the BGS library are modified to generate the
foreground masks only for the RoIs given in Table I.

C. Quantitative Comparison With State-of-the-Art Methods

First, we compare the proposed method with the foreground
detection technique from our previous work [28]. The pro-
posed method achieved an average improvement of 1%-4%
across the videos of the BMC Street Dataset [31].

We further compare the proposed approach with the state-
of-the-art techniques on videos from BMC Street Dataset [31]
and Change Detection Dataset [19]. Figure 8 shows that the
proposed method outperforms the accuracy of a wide range
of state-of-the-art techniques i.e. basic methods (DPAdaptive-
Median [40], DPPratiMediod [38], SigmaDelta [41]), texture-
based methods (DPTexture [42], LBP_MRF [43]), single
Gaussian models(LBSimpleGaussian [44]), Mixture of Gaus-
sians (LBMixtureofGuassians [12], DPZivkovicAGMM [13]),
Non-parametric methods (KDE [15], IndependentMultimodal
[45], ViBe [17]), Fuzzy-based methods (T2FGMM [46],
LBFuzzyGaussian [47], FuzzySugenoIntegral [48], Fuzzy-
ChoquetIntegral [49]) neuro-fuzzy methods (LBFuzzyAdap-
tiveSOM [50]) and techniques combining multiple features
(MultiCue [51], MultiLayer [39]). It is noteworthy that
the proposed approach which solely relies on block-level

Fig. 8. Quantitative comparison with state-of-the-art techniques.

Fig. 9. Accuracy vs Complexity trade-off comparison.

processing achieves better pixel-level accuracy than state-of-
the-art pixel-based techniques.

Furthermore, we also compare run-time performance (the
achieved frame rate on Odroid-XU4) of the proposed method
with the other state-of-the-art techniques that achieve higher
or comparable accuracy to the proposed method. Fig. 9
presents the trade-off between accuracy (F-Measure) and
computational complexity (frame-rate) for the selected state-
of-the-art background modeling methods. The proposed
algorithm is over 40 times faster than the best perform-
ing state-of-the-art technique, PAWCS [3]. It is clear that
most of the high-performance state-of-the-art techniques like
PAWCS [3], SUBSENSE [4], LOBSTER [52] PBAS [18],
and MultiLayer [39] are not able to achieve a processing
frame rate of even 10 frames/second on the low-cost embedded
platform - Odroid XU4. Hence, these methods are unsuitable
for low-cost, scalable and robust traffic surveillance solutions
that can be deployed at a large scale as envisioned in this
work.

Vibe [17], DPPratiMediod [38], DPZivkovicAGMM [13]
and KDE [15] performed relatively well both on accuracy and
run-time performance. However, our method achieves better
accuracy than all these techniques. Additionally, it has signifi-
cantly lower computational complexity when compared to the
DPPratiMediod [38], DPZivkovicAGMM [13] and KDE [15].
Vibe [17] is the only method that achieves similar computa-
tional complexity as the proposed work. However, as shown in
the following subsection, this method suffers significantly in
challenging scenarios such as camera jitter and slow-moving
traffic.
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Fig. 10. Effect of camera jitter: A frame from the traffic video from CDNet dataset in which the camera jitters has been used.

Fig. 11. Effect of slow moving heavy traffic: A frame from iLids Hard video in which vehicles were moving slowly has been used.

Fig. 12. Effect of stationary foreground objects: Three frames from the iLids Medium video have been used. Row 1- Black Vehicle in the left lane became
stationary. Row 2- Vehicle remained stationary for 60 seconds, Row 3- Vehicle moved away.

Fig. 9 shows that we achieve a processing frame rate
of 80 frames/second that surpasses the requirement for
real-time performance. The high frame rate achieved by our
method provides the opportunity to perform additional steps
like vehicle localization/tracking required for higher-level
analysis in real-time, even on a low cost embedded solu-
tions, such as the Odroid XU4 platform, used in this
work.

In the next subsection, we additionally present qualitative
comparisons of the proposed method in diverse challenging
scenarios on real traffic videos.

D. Qualitative Comparison With State-of-the-Art Methods

Camera jitter, slow-moving heavy traffic, and stationary
vehicles on the road are common challenges in processing
traffic surveillance videos. In this subsection, we provide qual-
itative comparisons of our proposed method with the existing
low complexity state-of-the-art techniques identified in the
previous section, in these challenging scenarios. It should be
noted that moving shadows that accompany the vehicles are
treated as foreground, as in existing background modeling
techniques [2].

1) Camera Jitter: Traffic surveillance cameras face camera
jitter during windy conditions. In Fig. 10, it can be seen that
unlike the proposed method, all other low-complexity methods
and even the highly accurate Multilayer [39] technique suffers
due to camera movement.

We achieved immunity to camera jitter due to two important
reasons: (1) We use BoI variance as the feature, which
is invariant to slight camera movements as described in
Section III-A. (2) We model the foreground variance difference
in addition to the background, which provides additional
information about how much change should be considered a
foreground as described in Section III-C2. This helps us to
effectively classify the “once-off” or “intermittent” changes
as background, unlike pixel-based techniques.

2) Slow-Moving Heavy Traffic: Slow-moving heavy
traffic needs to be detected and reported for traffic surveillance
applications. Figure 11 shows that pixel-based techniques
like ViBe [17], DPPratiMediod [38], KDE [15] and even
PBAS [18], assimilate slow-moving foreground pixels into
the background, thus resulting in a large number of false
negatives. Unlike these techniques, it can be seen that the
proposed method is able to detect slow-moving vehicles
effectively.

Pixel-based techniques make local decisions, thus being
unable to differentiate between persistent foreground pix-
els due to slow-moving heavy traffic and sudden “once-
off” changes in the background. Therefore, they employ a
background maintenance strategy where all persistent changes
are assimilated into the background. On the other hand, our
robust block-level classification framework ensures that “once-
off” background changes are not detected as foreground as
highlighted above. Thus, we follow a strict background update
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strategy which does not assimilate persistent foreground pixels
thus enabling effective detection of slow-moving vehicles.

3) Stationary Foreground Objects: For traffic surveillance
cameras, stationary foreground objects (like illegally parked
vehicles, vehicle breakdowns, accidents) are objects of interest
that need to be detected.

In Fig. 12, it can be seen that most of the techniques
absorb the stationary foreground objects into their background
model due to the same reasons mentioned in the previous
section. Most pixel based methods only concentrate on getting
rid of ‘ghosts’ from the stationary foreground objects once
they have moved, which is being achieved by the existing
techniques. Surprisingly, PAWCS [3], which performs robustly
in all scenarios, and detects the stationary foreground object
as well, leaves a ghost when the vehicle has moved. Fig. 12
shows that we are able to detect the stationary objects on the
road and include them in the foreground mask without leaving
any ghost when the vehicle moves.

V. CONCLUSION

In this paper, we introduced a novel low-complexity yet
robust block-based technique for detecting foreground objects
for traffic scenes. The proposed methods include a BoI based
background initialization, maintenance, and background or
foreground block classification technique, which generates
accurate pixel-level foreground masks. It achieves robustness
to changes like illumination changes, weather conditions,
camera jitter, image noise and effectively deals with traf-
fic situations like stationary foreground objects, slow-moving
heavy traffic. This can be attributed to our robust block
feature, i.e., BoI variance and our highly adaptive classification
framework that detects foreground effectively. Additionally,
block-based processing significantly collapses the computa-
tional complexity of the proposed approach. Experimental
results on a real, low-cost, embedded Odroid-XU4 platform
confirm that the proposed method achieves comparable accu-
racy in real-time to significantly more complex current state-
of-the-art techniques.
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