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Abstract

Elimination of moving shadows is an essential step to
achieve accurate vehicle detection and localization in auto-
mated traffic surveillance systems that aim to detect vehicles
on road scenes captured by surveillance cameras. However,
this is still a challenging problem as existing pixel based
methods miss parts of vehicles and region-based methods,
while accurate, incur higher computations. In this paper,
we propose a highly accurate yet low-complexity block-
based moving shadow elimination technique, which can ef-
fectively deal with varying shadow conditions. A novel
shadow elimination pipeline is proposed that employs com-
putationally lean features to quickly classify distinct vehi-
cles from shadows, and uses a more sophisticated interior
edge feature only for classification of difficult scenarios.
Extensive evaluations on freely available and self-collected
datasets demonstrate that the proposed technique achieves
higher accuracy than other state-of-the-art techniques in
varying scenarios. Additionally, it also achieves over 20
times speedup on a low-cost embedded platform, Odroid
XU-4, over a state-of-the-art technique that achieves com-
parable accuracy. Experimental results confirm the real-
time capability of the proposed approach while achieving
robustness to varying shadow scenarios.

1. Introduction
Smart traffic law enforcement systems are an essential

part of current and future smart cities to maintain smooth

traffic flow and alleviate congestion on roads. Such sys-

tems need to employ complex video analytics pipelines to

automatically process the video data captured from the ex-

tensive CCTV camera networks, in order to extract useful

information such as traffic density on various roads, acci-

dent detection, vehicle breakdowns, etc..

A common necessity and typically the first step in all

such application pipelines is to accurately detect the vehi-

cles on road scenes. For traffic surveillance scenes with

a stationary camera, background modeling techniques are

typically used instead of the high-complexity generic vehi-

cle detectors[20, 21] and segmentation techniques [16, 30].

Background modeling methods leverage on the availability

of a static background (i.e. road) to model it and extract the

moving objects as foreground. However, the extracted fore-

ground not only contains the vehicles but also their mov-

ing cast shadows. This leads to several errors in the sub-

sequent stages of the application pipeline that rely heavily

on accurate vehicle detection and localization, such as over

estimation of vehicle sizes and road occupancy rates, and

erroneous vehicle tracking.

Several techniques have been proposed in the literature

to deal with cast shadows. A number of background model-

ing techniques[28, 13, 27] have attempted to eliminate cast

shadows during the background/foreground classification

process. However, these techniques fail to handle ”hard”

cast shadows(dark shadows shown in Fig. 1) [29]. Thus,

moving shadow elimination methods that strive to classify

each pixel in the foreground mask into a vehicle or shadow

pixel have been proposed in the literature [19, 25, 22].

These existing techniques can be broadly classified into

two categories: pixel based and region based. The pixel

based methods [8, 12] generally rely on the fact that shad-

ows make the surface, on which they are cast, darker with-

out changing the color. Therefore, the spectral information

is exploited to distinguish the shadow pixels from the pix-

els belonging to the vehicles. However, these techniques

wrongly classify parts of vehicles that have similar color as

the road background, as shadows [19, 25].

In contrast, recently proposed region-based methods

[24, 4, 7, 9, 23] first segment the foreground into regions

and then classify these regions as either vehicle or shadow,

based on texture or color similarity with the background.

When compared to the pixel based methods, this approach

ultimately provides a more accurately segmented vehicle

from the foreground without losing parts of vehicles as

shadows. However, the region based methods incur heavy

computations in the initial pixel accurate region segmen-

tation. These techniques, while more accurate, are hence

not suitable for implementation on cheap embedded devices

needed for large scale deployment in smart cities. There-

fore, a computationally lean and rapid, yet robust, technique
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for moving shadow elimination is essential for realizing the

smart cities of the future.

In this paper, we propose a novel region based tech-

nique for moving shadow elimination that extracts prede-

fined vehicle-sized blocks proposed in [10] as candidate re-

gions and classifies them into vehicle or shadow. This top-

down context-specific block assignment avoids the heavy

computations that are otherwise needed, for pixel wise re-

gion segmentation, in the existing region based methods.

The proposed technique ensures that we retain the entire

vehicle after moving shadow elimination, while minimally

allowing some shadows (that are very close to the vehicles)

to be classified as vehicles. As will be shown later in our

evaluations in Section 4, this strategy is able to achieve even

higher accuracy in vehicle detection compared to the best

performing region based methods.

The main contributions of this work are:
• A block-based evaluation and classification of pixels

in the foreground mask, inspired by the earlier work

on block based foreground detection for incident de-

tection on road traffic scenes [10]. The main objective

of our work is to remove large shadows that drastically

impact the vehicle localization.

• We use a computationally lean set of features and cues

in a cascaded fashion during the classification step,

where simpler aggregate features are used in the ear-

lier stages for fast detection of distinct vehicle blocks.

A more complex, interior edge based feature, is only

applied at the later stage on a much smaller subset of

shadow candidates, to recover vehicle blocks that look

very similar to shadows. We employ vehicle size con-

straints to further eliminate false shadow detections by

using the novel block assignment method.

• We provide extensive evaluations of our proposed

method on a wide range of road scenes in compari-

son to state-of-the-art shadow elimination techniques

on a real low cost embedded platform. As existing

datasets of road scenes [19], only contain side shad-

ows (as shown in Fig. 1a), we have collected addi-

tional traffic data with front/back and long shadows

as shown in Fig. 1b, 1c and 1d respectively, and in-

clude them in our evaluations. Additionally, there is

a lack of annotated datasets with vehicle cast shad-

ows (1 extremely low-angle video in CDNet[29] and

10 frames in UCSD dataset[19]). Thus, we propose

a semi-automated ground truth generation method to

generate vehicle-shadow masks for the datasets.

2. Related Work

Excellent surveys on existing work on detection of mov-

ing shadows can be found in [25, 22]. As we are interested

only in moving shadow removal, all these methods assume

(a) (b) (c) (d)

Figure 1: Different types of Vehicle-Shadow scenarios

that the foreground mask has been generated and a back-

ground reference image is available. The basis of all meth-

ods is to distinguish the vehicle from the shadow by mea-

suring the similarity of the shadow with the corresponding

background image.

The first stage in moving shadow elimination is to limit

the search for shadows to only those foreground pixels that

are darker than the background. In [17], the expected lo-

cation of the shadow with respect to the object is explic-

itly estimated to refine the shadow detection. However, in

road scenes captured from stationary cameras, this relative

shadow location can be calibrated offline. As the chromatic-

ity is not affected under a shadow, the spectral information

is used in [8, 12] to extract shadow regions with similar

chromaticity as the background. However, in traffic scenes,

color is not always a very strong feature, and therefore,

these methods are known to suffer [25]. In [11, 33], the

object shape with various shadow positions is modeled, us-

ing geometric features to first extract the object and then re-

move the unwanted shadow pixels. These methods are only

applicable in very sparse traffic conditions, when the fore-

ground masks of the vehicles are distinct from each other,

and therefore unsuitable in realistic traffic scenes. A signif-

icant cue for detecting shadows is that the edges and tex-

ture on the background remain unchanged when covered by

a shadow. Texture similarity is used for small patches in

[15], and for larger regions after segmentation in [24, 4, 23].

Block based methods have also been proposed that operate

on uniform sized blocks directly [7] or after clustering them,

to form larger regions [9]. Although segmentation and

block based methods that classify foreground regions have

improved accuracy, they are still too heavy in computations

for embedded implementations where shadow elimination

needs to be performed real-time alongside other video ana-

lytics tasks. Recent methods [14, 18] employ thresholding

of various wavelet coefficients to remove shadow pixels but

are far from real-time even on high-end desktop platforms.

3. Proposed Approach

Our proposed approach for block-based moving shadow

elimination is summarized in Fig. 2. First, the input pixel-

wise foreground mask is used to generate vehicle-sized

foreground blocks. Then, the pre-defined direction of shad-

ows is used to extract candidate shadow blocks. Next, low-

complexity aggregate features based on intensity and coarse

texture, followed by a more sophisticated feature based on
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Figure 2: Overview of Proposed Approach [Red: Shadow,

Blue: Candidate Shadow, Green: Vehicle, (Best viewed in

color)]

interior edges, are successively employed to recover vehicle

blocks from candidate shadow blocks. Additionally, pre and

post-processing steps based on the size of the vehicle are

applied to further refine the technique. Finally, a vehicle-

shadow mask is generated by marking all foreground pixels

inside a shadow block as shadow pixels and the rest as ve-

hicle pixels. These steps are discussed in detail below.

3.1. Vehicle-Size Block Assignment

In order to extract the candidate shadow regions, we

employ the block assignment proposed in [10] on the in-

put pixel-wise foreground masks, and generate foreground

blocks, with a width equal to the lane width and length equal

to 1/3rd of a small vehicle (shown in Fig. 2-D). Only blocks

containing at least 5% foreground pixels are considered.

3.2. Shadow Elimination

All the foreground blocks are now processed to be clas-

sified as vehicle and shadow blocks using our multi-feature

cascaded shadow elimination technique as described below:

3.2.1 Pre-processing

The BoIs are divided in such a way that length of three

blocks is equivalent to that of a small vehicle. Thus, sin-

gle foreground blocks surrounded by background cannot

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: Relative Position of Shadows with respect to Ve-

hicles: Shadows at (a) Left (b) Right (c) Back (d) Front (e)

Back and Right (f) Back and Left (g) Front and Left (h)

Front and Right

Figure 4: Candidate Shadow Block Filtering based on

Shadow Direction

contain a vehicle. We employ this constraint on the ex-

pected size of vehicles, to classify such blocks as shadows,

as shown in Fig. 2-I.

3.2.2 Shadow Direction

As the camera view is fixed for static traffic surveillance

cameras, the expected direction of cast shadows with re-

spect to the vehicle, can be pre-calibrated based on the time

of day and the vehicle flow direction. At the block level, we

consider 8 possible directions, in which shadows accom-

pany vehicles (shown in Fig. 3). For a given direction, we

employ the following connectivity checks to extract the can-

didate shadow blocks:

Block Connectivity: A foreground block is considered as

a candidate shadow only if it is connected with other

foreground block(s) in the given shadow direction. For

right/left/front/back shadows there should be at least 1

foreground block (representing a possible vehicle) at the

left/right/back/front of the candidate shadow block. For

the remaining four orientations, a combination of the above

rules is applied. For example, in Fig 3e, a combination of

the rules for back and right shadows can be used.

Mask Level Connectivity: Block connectivity check results

in candidate shadow blocks that represent these cases - (a)

two vehicles moving side by side without any shadows, and

(b) shadow connected to a vehicle. We therefore employ

a check for mask level connectivity, by looking for fore-

ground pixels along the boundary of connected foreground

blocks to further refine the candidate shadow blocks (shown

in Fig. 4).
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3.2.3 Intensity

Shadows are always darker than the background. There-

fore, brighter foreground blocks are considered vehicles. In

addition, if the foreground block is too dark such that the

color/texture of the background is not preserved, we clas-

sify them as vehicles as well (e.g. black colored vehicles).

For each foreground block Bi, the mean of intensity differ-

ence, μi, between the input frame I , and the background

M , for all the foreground pixels, F is computed as:

μK
i =

∑x2
x1

∑y2
y1(I

K(x, y)−MK(x, y)) ∗ (F (x, y))

255 ∗Ni

for K = R,G,B
(1)

where (x1, x2) and (y1, y2) represent the boundaries of

Bi and Ni is the total number of foreground pixels in Bi.

A foreground block Bi is classified as a candidate shadow

block, only if it meets the following criterion: tl < μK
i <

tu for K = R,G,B. The thresholds [tl, tu] are set to

[-0.5, 0] based on empirical evaluations.

3.2.4 Coarse Texture

Shadows result in a uniform drop in intensity with respect to

the background, unlike dark vehicles that will contain some

texture. We distinguish this with a coarse texture feature.

For each foreground block Bi, we compute the variance of

intensity difference, V ari between the input frame I , and

the background M , for all the foreground pixels, F as:

V arKi =
∑x2

x1

∑y2
y1((I

K(x, y)−MK(x, y)) ∗ F (x, y))2

Ni
− (μK

i )2

for K = R,G,B

(2)

A foreground block Bi is classified as a vehicle if it meets

this criterion: max(V arRi , V arGi , V arBi ) > tV , where tV
was set to 1000.

3.2.5 Interior Edges

After employing the coarse feature, only some dark vehi-

cle parts with low texture remain as candidate shadows, as

shown in Fig. 2. As shadows do not add any additional

textures, absence of edges inside the shadow regions (i.e.

interior edges) is a significant cue for shadow elimination,

as in [31]. Therefore, we compute an interior edge fea-

ture, to further recover remaining vehicle blocks from the

shadow candidates, using an interior edge map as shown in

Fig. 5. First, the gradient map for the input frame I is com-

puted as EI . This may contain background edges due to

pavement markings/static shadows in addition to the edges

due to the vehicle. Therefore, we also compute the gradient

Figure 5: Interior Edge Map Generation

map for the background M , represented as EM and subtract

this from EI , to generate a thresholded difference edge map

ED, that contains only edges contributed by the foreground.

In addition, a boundary edge image EB is generated by ap-

plying the Sobel filter on the foreground mask. Finally, the

boundary pixels from the boundary edge map EB are used

to erode the foreground edge map, ED. This removes all

boundary edges leaving behind only interior edges. Fore-

ground blocks that contain interior edge pixels (> 5% of

the block) are classified as vehicles as shown in Fig. 2-IV.

It should be noted that in Fig. 5, we show the interior edge

map calculation for all the foreground areas, for illustra-

tion. However, for the proposed method, only the candidate

shadow blocks remaining after the previous set of features

are applied, are passed through this step.

3.2.6 Post-processing

We apply a final post processing step to recover dark and

non-textured vehicle blocks, as vehicles. We apply the ve-

hicle size constraint that vehicles should be at least 3 con-

nected blocks. For example, in Fig. 2-IV, a vehicle block

in the rightmost lane is mis-detected as a shadow block. As

this leads to the recovered vehicle being smaller than its ex-

pected size, this block is classified as a vehicle at this step.

4. Results

In this section, we present details about our dataset

which covers diverse scenarios, followed by our novel

semi-automated ground truth generation technique. Further,
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we provide details on evaluation metrics and experimental

setup, followed by the quantitative and qualitative compari-

son of the proposed approach with state-of-the-art methods.

4.1. Datasets including Additional Videos for Di-
verse Scenarios

There is a significant lack of freely available datasets

of road traffic scenes for the evaluation of moving shadow

elimination techniques. The available datasets are also lim-

ited to side shadow cases as shown for the Highway dataset

in Table 1. We collected additional videos of real traffic

scenes with shadows in different directions, sizes and inten-

sities. In terms of shadow sizes, we chose medium to long

shadows that lead to large errors in the estimation of vehicle

size. The additional videos also contain shadows in differ-

ent directions with respect to the vehicle. Since the objects

of interests for traffic scenes are vehicles on the road, we

limit our region of interest to the road pixels. All these de-

tails have been summarized in Table 1.

4.2. Ground Truth Generation Technique

In addition to the lack of publicly available datasets for

shadow elimination techniques for traffic scenes, the ground

truth available with the datasets is also limited. For exam-

ple, there are only 10 ground truth annotated frames avail-

able for the widely used Highway dataset [25]. In this pa-

per, we propose a semi-automated technique to create pixel-

level ground truth to evaluate shadow elimination for accu-

rate vehicle detection, shown in 6.

We employ a deep-learning based object detector

YOLO[20] to extract the vehicle bounding boxes. This is

combined with the input foreground mask generated by a

background modeling technique. The bounding boxes are

then overlaid over the foreground masks and pixel-level

ground truth mask is generated by marking all foreground

pixels inside/outside the bounding box as vehicle/shadow.

Since these two steps may not be 100% accurate, we take

additional steps to mitigate their impact on the evaluation.

We apply median filter on the foreground masks (to fill

small holes and remove stray noise), manually remove the

frames still containing noise and correct the YOLO bound-

ing boxes.

For our evaluations and for generating ground truth,

we use the foreground masks created by state-of-art back-

ground modelling techniques. Since the shadow elimina-

tion techniques require background image in addition to the

foreground mask to operate, the following techniques were

chosen from the BGS Library[26]. Independent Multimodal

Background Subtraction[6] was used for all the videos ex-

cept HighwayI as it was unable to generate the background

model for this short video. Multilayer[32] was used for

HighwayI. These can be treated as a realistic input to any

shadow elimination engine. We would like to highlight that

Figure 6: Ground Truth Generation Technique

the same foreground mask is given as an input to all tech-

niques used for evaluation to ensure fair comparison.

4.3. Evaluation Metrics

For the evaluation procedure, similar to [5], we measure

the vehicle detection accuracy to evaluate how each shadow

elimination technique improves the reliability of vehicle de-

tection. Precision, Recall and F-Measure are used as eval-

uation metrics for comparing the proposed technique with

existing state-of-the-art techniques.

Thus, vehicle/shadow pixels are treated as posi-

tive/negative pixels respectively. Precision, Recall and F-

Measure are used for evaluation.Recall in vehicle detection

is the same as shadow discrimination rate [25], and ideally,

a 100% recall (i.e. no missed vehicle parts) is necessary for

higher level tasks that rely on vehicle detection and local-

ization.

An average of these metrics over all frames from a video

is used to compare with the state-of-the-art techniques. The

number of frames used for each video is presented in Ta-

ble 1. For the comparisons, the implementation in [25] has

been used for the baseline shadow elimination techniques

based on Chromaticity[8], Physical[12], Small Texture [15],

Large Texture[24]. The implementation of the other two

state-of-the-art techniques Color Constancy [4] and Tone

Mapping [7] is taken from [1] and [3] respectively.

4.4. Experimental Setup

All the algorithms have been executed and verified on

a state-of-the-art low cost mobile application development

platform - Odroid-XU4 [2] from Hardkernel. This platform

contains a Samsung Exynos 5422 mobile SoC that imple-

ments ARM big.LITTLE technology with a cluster of four

ARM Cortex A15 cores (big cores) and a cluster of four

ARM Cortex A7 cores (little cores). In our experimental

setup, this platform runs on the ubiquitous Ubuntu 15.10

operating system.

4.5. Quantitative Evaluations

As seen in Fig. 7, the proposed approach achieves better

performance than other state-of-the-art techniques for traf-
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Table 1: Dataset used for Evaluations

HighwayI[19] Lakeside1 Lakeside2 PayaLebar1 PayaLebar2 PayaLebar3

Frame

Region of Interest
Size 320*240 640*480 640*480 640*480 640*480 640*480
Frames 390 1787 1855 1116 671 426
Direction Left Back+Left Front+Left Left+Back Back+Right Front+Right
Shadow Size Long Medium Medium Long Medium Medium
Intensity Medium Medium Medium Low High High

Figure 7: Quantitative comparison with state-of-the-art techniques

fic scenes with front/back+left/right shadows (Lakeside1,

Lakeside2, Payalebar2, PayaLebar3), while maintaining a

comparable performance for side shadow cases (Highway1,

PayaLebar1).

It should be noted that in general, our block-based tech-

nique achieves a high recall similar to other region-based

techniques like Large Texture [24] and Color Constancy [4].

This is achieved by multi-feature block-based approach.

The vehicle sized block assignment and prior information

available for our application helps eliminate vehicle blocks

on the basis of size and shadow direction. They also pro-

vide large enough regions such that other features i.e. inten-

sity, variance and interior edges can be applied effectively

to achieve accurate performance.

We would also to highlight that the proposed ap-

proach achieves comparable precision to state-to-the-art

techniques. We would like to highlight that this slightly low

precision value is caused by shadow pixels in the vicinity of

vehicle boundaries which do not affect the overall vehicle

size estimation drastically.

In addition to the comparison with state-of-the-art tech-

niques, we also evaluated the effectiveness of our cascaded

multi-feature pipeline by performing an ablation study in

Fig. 8a. This shows that Interior Edge is the strongest

feature. Removing other features leads to a fall in recall

value. This shows that each feature recovers parts of vehi-

cles which cannot be recovered by the remaining features

as shown in Fig. 8c-f. Additionally, Fig. 8b shows that

our cascaded approach reduces the number of foreground

blocks that need to be classified after each step, thus reduc-

ing overall complexity by computing the highly complex

feature (Interior Edge) as the last step.

4.6. Qualitative Evaluations

As shown in Fig. 10, the proposed method achieves con-

sistently accurate performance across varying scenarios un-

like existing state-of-the-art techniques.

Our evaluations confirm that the pixel based techniques,

Chromaticity [8] and Physical [12] (rows 3 and 4), fail in

detecting many dark shadows and also detect dark vehicle

parts as shadows. This is because they employ color-based

features at pixel level, which are not very effective in sunny

traffic scenes. In contrast, we do not face this issue, as the

classification is performed at a larger vehicle sized block

level, similar to region based methods.

Small texture based method [15] (row 5) fails to detect

shadow pixels when the road background has low texture.

Also, it eliminates parts of vehicles that appear similar to

1975



(a) (b)

(c) (d) (e) (f)

Figure 8: (a) Ablation Study (b) Percentage of Foreground

Blocks Processed by each feature; Blocks that can only be

recovered by (c) Shadow Direction: recovers parts similar

to shadows in the intensity and texture, but not present in the

shadow direction. (d) Intensity: recovers parts which have

similar texture as the road, but different mean intensity. (e)

Coarse Texture: recovers parts which have texture change

near the boundary pixels, thus, not contributing to interior

edges. (f) Post Processing: recovers parts that are present

in shadow direction, look similar to shadows but violate the

vehicle size constraint (Best viewed in color)

the background, as shadows. Similarly, the block-based

technique, Tone-Mapping[7] (row 8) also misses out parts

of vehicles. This is because the evaluation patches for these

methods are too small compared to the size of a vehicle.

Unlike these techniques, we use larger regions with a size

relative to our foreground (i.e. vehicles) which makes us

resilient to such classification errors.

As expected, techniques that evaluate larger regions

Large Texture[24] and Color Constancy[4] achieve higher

accuracy without missing parts of vehicle. However, they

fail to detect shadows completely for some cases as seen in

row 6 and 7. This is due to ineffective segmentation into

regions. In contrast, the top down vehicle size block assign-

ment leads to crude segmentation of the foreground, which

can be - vehicle blocks, vehicle+shadow blocks and shadow

blocks. Thus, the false positive detections, due to segmen-

tation process, are limited to shadow pixels inside the vehi-

cle+shadow blocks.

4.7. Accuracy vs Speed Trade-off

In addition to the robustness, we have also compared the

speed (achieved frame rate) of the proposed method with

existing state-of-the-art techniques. Fig. 9 shows the accu-

racy vs speed trade-off for all the discussed techniques. All

the techniques were implemented on the Odroid-XU4 plat-

Figure 9: Accuracy vs Speed Trade-off comparsion

form in C++ and the average performance across all testing

videos is presented. Tone Mapping [7] is excluded from this

evaluation as its implementation is in Matlab.

It can be seen that we are able to achieve the best trade-

off in terms of accuracy and speed compared to all the other

techniques. This is attributed to the block-level classifica-

tion approach that does not involve the heavy computations

incurred by explicit segmentation as in [24, 4]. In addition,

the cascaded approach ensures that majority of the distinct

vehicle blocks are classified using computationally efficient

aggregate features. The robustness is still maintained by

employing the more sophisticated internal edge feature for

only those vehicle blocks that are similar to shadows.

5. Conclusion
In this paper, we introduced a novel technique to elimi-

nate moving shadows for traffic surveillance scenes, which

is an essential step for fast and accurate detection of vehi-

cles on the road. The proposed method incorporates a block

based shadow elimination technique that uses multiple fea-

tures(i.e., size, color and texture) in a cascaded fashion to

classify foreground blocks into vehicle and shadow blocks.

We also proposed a technique to generate ground truth and

evaluate shadow elimination techniques in a speedy yet ef-

fective manner. Extensive evaluations using multiple traffic

videos on a low cost embedded platform confirmed that the

proposed techniques not only achieve higher performance,

in terms of accuracy, but also execute faster than existing

state-of-the-art techniques for varying vehicle-shadow ori-

entations. In future, we would like to further improve the

precision of the proposed technique by eliminating shadow

pixels in the vicinity of vehicle boundaries.
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