
Low Complexity Techniques for
Robust Real-time Traffic Incident Detection

Kratika Garg, Alok Prakash, Thambipillai Srikanthan
School of Computer Science and Engineering

Nanyang Technological University, Singapore 639798

Email: kratika001@e.ntu.edu.sg, {alok, astsrikan}@ntu.edu.sg

Abstract—Traffic congestion is one of the leading reasons
for the development of intelligent transportation systems(ITS).
Traffic incidents are the second biggest cause of traffic conges-
tions after infrastructural bottlenecks. Real-time traffic incident
detection for timely clearing of roads is required to ensure smooth
traffic flow. Apart from the real-time performance, scalable
solutions which can monitor wide areas in a cost-effective manner
are required. In this paper, robust, lean and real-time stationary
foreground object detection technique to detect traffic incidents
has been presented. We use block-based analysis in contrast to
the conventional pixel-based analysis to lower the computational
complexity of the proposed technique and achieve real-time
performance. Experimental evaluations on widely used datasets
demonstrate that the proposed method can achieve comparable
accuracy to the existing state-of-the-art techniques. The real-time
performance of the proposed system has also been demonstrated
by implementing it on a low-cost embedded platform, Odroid XU-
4, that still achieves a frame rate of 40 frames/second, thereby
enabling real-time detection of traffic incidents.

I. INTRODUCTION

The ever rising demand for mobility leads to increased

traffic congestion that puts additional pressure on the already

constrained road infrastructure, especially in urban areas. The

major causes of traffic congestion can be classified into six

categories, namely, bottlenecks, traffic incidents, work zones,

bad weather, poor signal timing and special events. Among

these, bottlenecks and traffic incidents are the leading causes

that account for 40% and 25% of all the traffic congestions,

respectively [1]. While the bottlenecks, which refer to the

insufficient road capacity, can only be eased through additional

infrastructure, traffic incidents, which refer to accidents, vehi-

cle breakdowns, illegally parked vehicles, dropped objects, etc.

can be effectively tackled by taking necessary steps to alleviate

the congestions resulting from these incidents [2]. This can be

achieved through timely dissemination of information to the

relevant authorities as well as other road users and quick clear-

ance of obstacles, collectively termed as stationary foreground

objects (SFO), on the road after a traffic incident. This, in turn,

necessitates mass deployment of low-cost intelligent sensors

to enable automatic real-time detection of SFO.

Existing work in this area typically uses tracking based al-

gorithms to detect stationary vehicles or abandoned objects [3]

[4]. However, the computational complexity of these tech-

niques increases significantly with increasing scene complex-

ity [5] and hence are not suitable for implementation on low-

cost embedded platforms needed for large scale deployment.

Authors have also proposed ‘persistence of foreground pixels’

based methods to detect stationary foreground objects, but

these are not robust in crowded situations [6] and typically

generate many false alarms during heavy traffic. Few existing

work [5] [7] have focused on low-complexity techniques for

SFO detection, but they only target specific problems of

detecting parked vehicles and hence are not suitable for the

multitude of traffic incidents scenarios as highlighted above.

In our earlier work [8], we proposed a novel block-based

technique to reduce the overall complexity in estimating traffic

density on roads. A block variance based foreground detection

strategy was proposed to estimate the percentage occupancy

on the road in a compute-efficient manner. However, in that

work we did not focus on the SFO detection, which requires

additional processing to ensure that SFOs do not get assim-

ilated into the background and are robustly detected without

generating any false alarms during heavy traffic.

In this paper, we leverage the techniques in [8] to propose

a block-based low-complexity, generalized stationary fore-

ground object detection technique, which can cater to the de-

tection of all traffic incidents namely accidents, stuck vehicles

(e.g. vehicle breakdowns, illegally parked vehicles), dropped

objects, etc. The proposed technique is intended to aid traffic

authorities by rapidly, reliably and robustly relaying real-time

information after any traffic incident. This can significantly

reduce the response time for traffic incidents, which can lead

to fast clearance of roads and smoother traffic flow.

The main contributions of this paper are:

1) A low-complexity block-based real-time stationary fore-

ground object detection technique for various types of

traffic incidents. The proposed technique can effectively

deal with climatic changes, static and moving shadows,

crowded situations as well as camera jitter.

2) The proposed techniques have been evaluated on a low-

cost, low-power embedded platform, using the popular

iLids Parked Vehicle Detection dataset to confirm its

efficiency and potential for mass deployment.

II. RELATED WORK

Cuevas et al. in [9] provided a detailed review of the various

methods proposed in the literature for stationary foreground

object detection. In the existing literature, detecting stationary

foreground objects (SFO) has been mainly used to detect

abandoned objects [9].

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

978-1-5386-1526-3/17/$31.00 ©2017 IEEE

Fig. 1: Overall Flow

Traditionally, tracking based techniques have been most

commonly used for detecting stationary foreground objects.

Some of these methods were developed specifically to detect

stationary vehicles [3], [10], while others used a more gener-

alized approach of detecting stationary/abandoned objects [4],

[11]. However, it has been highlighted in the existing literature

that these techniques become computationally complex and

ineffective when the scene gets crowded [5].

Apart from tracking, persistence is the next most widely

used technique for detecting SFOs. Such techniques are more

generic in nature and have been proposed for a generalized

stationary/abandoned object detection. These techniques are

based on the persistence of the pixels that are categorized as a

part of the foreground (FG) for a predefined number of frames

[12]–[14]. However, these techniques lead to false positive

detections during crowded conditions e.g. heavy traffic [6].

In addition to tracking and persistence, the strategy proposed

by Proikili et al. [15], called Dual FG Comparison(DFC), is

also one of the commonly used methods for SFO detection. It

uses two background models constructed at different learning

rates, the background with fast learning rate which changes

rapidly is used to detect the moving objects while the one

with a slow learning rate detects the long-term changes i.e.

SFOs. Many variations of this method have been proposed in

the literature [16]–[18]. However, these techniques suffer from

the fundamental issue of deciding the suitable learning rates

for the long term and short term backgrounds which leads to

low usability [9], [19].
Although several methods have been proposed in the litera-

ture for stationary foreground object detection, only a handful

of them focus on the detection of traffic incidents. Some low-

complexity techniques [5], [7], [20] that primarily focused on

the real-time detection of parked vehicles on the roads were

proposed after the i-Lids parking vehicle detection challenge

dataset [21] was released in 2007. In order to lower their

complexity, they restricted their region of interest to the ‘no-

parking zones’ on the side of the roads. Pun et al. proposed

a hybrid background model which was constructed offline to

reduce complexity [5]. Lee et al. used a more generic approach

of segmentation and tracking but in 1-dimension to reduce

computations [7]. Boragono et al. proposed a DSP-based

system for real-time detection of the parked vehicles [20].

However, these techniques achieve real-time performance by

limiting the detection to a small area on the side of the roads,

and hence are unsuitable for the detection of traffic incidents

like accidents, vehicle breakdowns etc. that can potentially

occur anywhere along or on the side of the road.

III. PROPOSED METHOD

Figure 1 shows the proposed two-phase approach for sta-

tionary foreground object detection. The first phase, called

Initialization, is a one-time process in which the region

of interest (ROI) is marked, block of interests (BOIs) are

generated and a background is initialized. The second phase,

called BOI Processor, is a recurring process in which each

frame is divided into BOIs and sent to the BOI Processor.

This phase performs Foreground Block Detection, Background

Maintenance, Shadow Block Elimination, and Stationary Fore-

ground Block Detection. In the following subsections, we

explain the various steps involved in these two phases in detail.
The techniques used for ROI Marking, BOI Generation,

Background Initialization, Foreground Block Detection, and

Shadow Block Elimination have been adapted from [8]. We

have included the details of these techniques in this paper to

present the proposed SFO detection technique in a holistic

manner while highlighting the important changes made to

these techniques to suitably adapt them for the detection of

stationary foreground objects.

A. Region of Interest (ROI) Marking
The first step in the Initialization phase is to mark the

region of interest (ROI) in the frame. Traffic incidents that take

place within the lanes obstruct and degrade the traffic flow.

Hence, we need to monitor and detect any SFO in the area

within the lanes. Since Initialization is a one-time process,

we manually mark the lane boundaries for each lane to get the

ROI. The outcome of this step can be visualized in Figure 2a

where a black line marks the boundaries of the lanes. This

process can also be automated in future using a lane detection

algorithm [22], [23].

B. Blocks of Interest Generation
Followed by ROI Marking, blocks of interest or BOIs are

generated to be used for further processing. As stated in [8],

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

(a) (b) (c)

Fig. 2: (a) ROI (b) BOI (c) Background

the size of these blocks must be selected carefully based on

the context of the problem. Blocks must be small enough

to allow accurate localization of the smallest vehicles plying

on the roads. At the same time, smaller block sizes reduce

the efficiency of the block-based technique and increase the

runtime of the algorithm.

In Figure 2b, the yellow blocks represent the blocks of

interest in each lane. Since, this paper focuses on the detection

of stationary foreground objects, which are predominantly

vehicles, the size of BOIs have been selected to be smaller

than the size of the smallest vehicle plying on the road. This

enables us to localize even the smallest stationary vehicles.

Hence, we have defined the length of a block as V/3 where

V is the length of the smallest vehicle that crosses the road

segment. To estimate V in image coordinates, we use the

technique presented in [8], which uses the fact that the ratio

of two distances in world coordinate system and the image

coordinate system remains same. Hence,

LW/V L = Lw/Vl (1)

where, LW and V L are lane width and smallest vehicle length

in the world coordinate, while Lw and Vl are lane width

and smallest vehicle length in the image coordinate system

respectively. The LW is always fixed for a particular road

segment and V L for the smallest vehicle (i.e. motorcycle) is

around 1.8 m. The ratio LW/V L is defined as λ, hence eq.

(1) can be rewritten as follows.

λ = Lw/Vl (2)

For a lane width of 3.6 m, λ is calculated as 2. Using the

above equation, each lane is divided into BOIs. Starting from

the bottom the lane, the block length is calculated as follows:

BOI Length = Vl/3 = Lw/(λ ∗ 3) (3)

In Fig. 2b, it can be visualized that the length of each BOI is

approximately equal to one-third of the length a small vehicle.

In our earlier work presented in [8], the BOIs are further

divided vertically and only the central vertical division is used

to estimate the traffic density. However, in this paper we refrain

from creating the vertical divisions since all parts of the lane

need to monitored to detect traffic incidents.

C. Background Initialization

The block based background initialization technique pre-

sented in [8] uses the stability of the signature of BOIs across

frames to construct the background. The signature of a BOI

has been defined as the variance of the pixel intensities in a
BOI. When no vehicle passes through a BOI, the signature

is expected to be the same across frames. This signature is

illumination invariant as the intensities of all pixels change

uniformly, especially since the size of the blocks is relatively

small. In order to check the stability of this signature, the

variance of the variance values (VoV) of a BOI from several

frames is calculated. It is expected to be low when no vehicle

passes through the BOI.

In this paper, we also use this property to initialize the

background. However, a new background maintenance step,

as explained in the next subsection, has been added after

the initialization step to ensure that the SFOs do not get

assimilated into the background.

Let the background and current frame for a BOI bi, at time

t, be defined as Bt(bi) and It(bi). For each BOI bi, a circular

buffer is constructed which stores the variance values of N
most recent frames. Once the buffer is full, the variance of

the variance values stored is calculated. We have used this

V oV parameter, which can be mathematically defined as:

V oV (bi) = σ2(var(It−N (bi)) : var(It(bi))) (4)

If V oV (bi) < TB , where TB is a pre-defined threshold, the

pixel intensities of BOI from the current input frame are

duplicated to the background image, i.e.

Bt+1(bi) = It(bi) (5)

As presented in [8], N is set to 4 and TB is set to 100. This

process is repeated until the background is constructed for all

BOIs. An example of the constructed background for the Easy

video in the iLids dataset [21] can be seen in Figure 2c.

D. Background Maintenance

Unlike the technique presented in [8], where the back-

ground maintenance is similar to background initialization,

the proposed background update procedure is also dependent

on the classification of a BOI as background or foreground,

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

in addition to the check on the stability of the background

signature used for the background initialization. This ensures

that the stationary foreground objects do not get incorporated

into the background. For the update procedure,

if It(bi) is background,

Bt+1(bi) =

{
It(bi) V oV (bi) < TB

Bt(bi) V oV (bi) ≥ TB

(6)

if It(bi) is foreground,

Bt+1(bi) = Bt(bi) (7)

These regular updates to the background, ensure that the

technique is adaptive to illumination changes and forma-

tion/fading of static shadows on the road.

E. Detection of Foreground Blocks

After background initialization, the detection of the blocks

occupied by foreground objects is started. The foreground

blocks detection technique proposed in [8] is based on the

observation that there is a significant change in the block vari-

ance of the foreground blocks with respect to the background.

This is characterized by the normalized variance difference

with respect to the background for a BOI, which is defined

as:

ΔV (bi) =
abs(V ar(Bt(bi))− V ar(It(bi)))

max(V ar(Bt(bi)), V ar(It(bi)))
(8)

However, this parameter fails to detect parts of the fore-

ground objects that have similar variance as the background,

e.g. the top of heavy vehicles. Although, even in these cases,

there is an intensity difference between the background and

the foreground pixels. Thus, in order to cope with such failures

in [8], we used an additional parameter i.e. the ratio of

foreground pixels in the BOI. The foreground pixels were

generated from a thresholded difference image. This parameter

can be defined as

FGR(bi) =
Foreground Pixels in It(bi)

Total Pixels in It(bi)
(9)

Here, we wish to highlight that foreground pixels were not

solely used for detecting foreground blocks as they are more

susceptible to slight illumination changes, background noise,

etc., which requires additional pixel level computations to deal

with the false positives.

Finally, the geometric mean of the two parameters i.e.

Occ(bi) was used to classify the BOIs into background and

foreground blocks, which can be defined as follows:

Occ(bi) =
2 ∗ΔV (bi) ∗ FGR(bi)

ΔV (bi) + FGR(bi)
(10)

It(bi) =

{
foreground Occ(bi) ≥ TO

background Occ(bi) < TO

(11)

A threshold of TO = 0.3 has been used as suggested in [8].

F. Elimination of Moving Shadow Blocks

The foreground block detection method detects any sig-

nificant changes with respect to the background. However,

this also leads to the detection of moving shadow blocks.

In order to avoid detecting these moving shadow blocks as

a foreground object, in this paper we have leveraged the

shadow block elimination techniques presented in [8] with a

minor adjustment. Next, we describe this technique and the

adjustment used to eliminate the moving shadow blocks.
The technique is based on the observation that shadows do

not lead to change in the texture of the background surface. We

used the Normalized Cross Correlation (NCC) measure pre-

sented by Jacques et. al. on the foreground segmented pixels

to estimate the texture similarity [24]. We took a logarithm of

the NCC equation in order to reduce the computational cost of

the pixel based calculations. The modified equation that was

used is presented as follows:

log(NCC(i, j)) (12)

= log(ER(i, j))− 1

2
(log(EB(i, j)) + log(EI(i, j)))

where,

ER(i, j) =
∑
n

∑
m

B(i+ n, j +m)I(i+ n, j +m)

EB(i, j) =
∑
n

∑
m

B(i+ n, j +m)2

EI(i, j) =
∑
n

∑
m

I(i+ n, j +m)2

−N ≤ n ≤ N ;−N ≤ m ≤ N

A pixel (i,j) is pre-classified as shadow pixel if

log(NCC(i, j)) > Tncc, where Tncc is a pre-defined

threshold. However, NCC is prone to wrong classification of

dark foreground object pixels as shadows. In order to prevent

such misclassifications, in [8] we used a refinement stage

which was presented in [25] due to its ability to deal with

shadows as well as reflections on the road. It uses the ratio

of intensities between foreground and background pixels to

differentiate between shadows and pixels from a dark object.

For a pre-classified pixel (i, j), the intensity ratio R(i, j)
defined by [25] is presented as follows:

R(i, j) = (I(i, j)−B(i, j))/(I(i, j) +B(i, j)) (13)

If R(i, j) lies between [−TR,+TR], the pixel is classified as

a shadow. After the classification of all foreground pixels in

a BOI as shadow/non-shadow pixels, blocks containing more

than 95% shadow pixels are eliminated. This high threshold

ensures that BOIs covered by both foreground objects and

shadows are not classified as shadow blocks.
The thresholds had to be slightly adjusted from the ones

presented in [8] for our proposed technique in order to achieve

optimal performance. They were set to log(0.95) and 0.4 for

Tncc and TR respectively.

G. Stationary Foreground Blocks Detection
After detecting the foreground objects in the earlier steps,

the proposed method uses a two-step process to identify the

stationary foreground objects on the road. In the first step,

the persistence of detection is used to detect candidate blocks

for stationary foreground object detection whereas, in the

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

second step the persistence in appearance is used to verify

the candidate blocks and detect stationary foreground objects.

The persistence of detection of each BOI is measured by

a foreground counter defined as fcount(bi) and updated as

follows:

if It(bi) is foreground,

fcount(bi) = fcount(bi) + 1 (14)

if It(bi) is background,

fcount(bi) = 0 (15)

Once this value crosses a predefined threshold TFC , the

candidate blocks for detection of stationary foreground objects

are identified. In the proposed algorithm, TFC is set to the

required alarm time, which can be set by the user.

Although, the persistence of detection has been a widely

used parameter to detect stationary foreground objects, the

persistence of detection as foreground blocks also takes place

when there is heavy traffic on the roads [6]. Thus, in order to

distinguish between heavy traffic and the stationary foreground

objects the additional step is applied in the proposed method.

In this step, the persistence of the intensities in addition

to the first step is used to differentiate between heavy traffic

and stationary objects. In order to test this persistence, we

evaluate the stability of the signature of the pre-identified

candidate blocks. While the blocks occupied by stationary

objects would experience a stability in their appearance, the

blocks, seemingly occupied by heavy traffic, continuously

change due to the movement of traffic. In section III-C, we

presented a measure to calculate the stability in our approach

for background initialization. Here, we use the same concept

again to detect the stationary objects. Thus, in the second step,

the candidate blocks which fulfill the following condition are

finally classified as stationary foreground objects.

V OV (bi) < TB (16)

Hence, the objects are detected as stationary foreground

objects, if the following two conditions are met:

if fcount(bi) > TFC

It(bi) =

{
stationary foreground V OV (bi) < TB

foreground V OV (bi) > TB

(17)

Once a stationary foreground is detected, an alarm would be

turned on and the image would be transmitted to the manual

operator to take necessary actions.

In addition to the detection of a stationary foreground object,

it is also useful to know the exact time when it moved off (e.g.

for vehicles) or was removed (e.g. for dropped objects). This

is particularly important for the detection of illegal parking,

since, typically there is a grace time for which a vehicle is

allowed to wait before being classified as an illegally parked

vehicle. In the proposed method we monitor the stationary

foreground blocks to detect the time when the object is

moved/removed. As soon as there is no change detected with

respect to the background in this stationary foreground blocks,

they are marked as background blocks and fcount(bi) is

Algorithm 1: Stationary Foreground Object Detection

1 for each bi do
2 if It(bi) is foreground then
3 fcount(bi) = fcount(bi) + 1;

4 if fcount(bi) > TFC then
5 V oV (bi) = σ2(var(It−N (bi)) : var(It(bi)));
6 if V oV (bi) < TB then
7 SFO(bi) = 1;

8 Alarm: SFO Detected in bi;
9 end

10 end
11 else
12 fcount(bi) = 0;

13 if SFO(bi) == 1 then
14 SFO(bi) = 0;

15 Alarm: SFO Moved from bi;
16 end
17 end
18 end

TABLE I: Dataset

iLids [21] BMC [26]

Sample Frame
Image Size 720*576 640*480
Climatic Conditions Cloudy, Sunny Sunny, Cloudy, Foggy,

Windy
Camera Jitter Yes No
Background Shadows Yes Yes
Moving Shadows Long Small

updated to zero. This signifies that the stationary object has

moved or has been removed from the scene.

Algorithm 1 summarizes our stationary foreground object

detection technique. For each BOI bi, if It(bi) is classified as

foreground, then foreground counter for that BOI fcount(bi)
is incremented (Line 3). Next, a foreground persistence check

is done to identify candidate blocks for stationary foreground

object detection (Line 4). In order to identify the SFOs from

these candidate blocks, the persistence of appearance check is

applied, the SFOs are detected and SFO bit for the BOI is set

(Line 5-9). If It(bi) is classified as background, the foreground

counter is reset (Line 12) and if a SFO was previously detected

in that BOI, it is reported that it has moved (Line 13-16).

IV. RESULTS

In this section, we present details about the datasets

used, quantitative and qualitative evaluations of the proposed

method, comparison with state-of-the-art methods as well

as the run-time performance. We implemented the proposed

algorithms in C++ on a PC with Intel Xeon processor running

at 3.50 GHz with 16 GB RAM using Windows 7 operating

system. Additionally, to test the portability of the proposed

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

techniques on low-cost embedded platforms, it has also been

implemented and evaluated on the Odroid-XU4 platform [27].

We will discuss the details of this platform in Section IV-C.

The stationary foreground object detection technique has

been tested on the AVSS iLids Parked Vehicle dataset [21]. It

consists of three daylight video clips marked as Easy, Medium

and Hard according to the difficulty level. In Easy, a van is

parked close to the camera, in Medium a car is parked close

to the camera, but it has sudden camera shakes which make

it challenging. Lastly, in Hard, a car is parked very far away

from the camera which is also partially occluded by a road sign

making it extremely challenging. It also contains a night-time

video clip. In addition to the iLids dataset, Background Models
Challenge (BMC) Dataset [26] has been used to evaluate

foreground block detection in different climatic conditions.

More details about both the datasets used for evaluating the

proposed technique are presented in Table I.

A. Qualitative Results

In this section, we present the qualitative results for the

proposed method. First, the output images for the detection of

the stationary foreground objects have been presented. This is

followed by some additional results that prove the robustness

of the proposed techniques in different climatic conditions.

In Figure 3, qualitative results of stationary object detection

can be visualized. The labels on the images show the detection

of the stationary object along with the lane number and block

number. The stationary vehicles are effectively detected for all

four videos namely iLids - Easy, Medium, Hard and Night,

as can be seen in Fig. 3a, 3b, 3c and 3d respectively. The

blocks marked in red are the ones which are detected as

encapsulating the stationary vehicle. There are some false

positive foreground detections in the Night video due to

headlight reflections on the road. However, these do not lead

to any false alarms for stationary foreground objects as the

reflections coming from moving cars change continuously

as well as rapidly and hence do not exhibit persistence in

appearance, which is a necessary condition for the proposed

stationary foreground object detection technique.

Next, we experimented with the BMC dataset to display the

robustness in the detection of foreground blocks. Figures 4a-

4d show the results for cloudy, sunny, foggy and windy

conditions respectively. From these results, it can be seen

that the proposed techniques are invariant to climatic changes.

Specifically, from Figure 4c, it is evident that the proposed

techniques can effectively differentiate between shadows and

dark vehicles, hence detecting the dark foreground objects

accurately. In yet another situation, as observed in Figure 4d,

the proposed method robustly detects the grey vehicle even

though its appearance is very similar to the road background.

B. Quantitative Results

In this section, we provide the quantitative results and

comparison with state-of-the-art SFO detection techniques.

(a) (b)

(c) (d)

Fig. 3: Detection of Stationary Foreground Object for (a) iLids-Easy (b) iLids-Medium (c) iLids-Hard (d)iLids-Night

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

(a) (b)

(c) (d)

Fig. 4: Detection of Foreground Blocks for BMC

(a) Cloudy (b) Sunny (c) Foggy and (d)

1) Accuracy for Detection of Foreground Blocks: In order

to assess the robustness of the detection of foreground blocks,

we evaluate our techniques on the BMC Dataset. The ground

truth provided by the authors for the BMC Dataset contains

the classification of each pixel as foreground/background. To

evaluate our block based approach using this ground truth, we

map our BOIs onto their ground truth (18 per lane) and define

any block that has at least 10% foreground pixels, out of the

total pixels, as a foreground block. The blocks which have 0%-

10% foreground pixels are ignored. Using this ground truth,

the True Positive Rate (TPR) and False Positive Rate (FPR)

is calculated.

An additional preprocessing step of histogram equalization

is applied for this dataset. Table II presents the TPR and FPR

values for the videos in the BMC Dataset which have been

taken in different climatic conditions. We are able to achieve

a high value of recall i.e. TPR for all climatic conditions. Even

in challenging foggy conditions, we are able to achieve a TPR

of more than 90%. Furthermore, the value of False Alarm Rate

i.e. FPR is extremely low.

2) Stationary Foreground Object Detection Accuracy: As

mentioned earlier, the AVSS iLids Parked Vehicle dataset

has four videos namely Easy, Medium, Hard and Night,

each containing an illegally parked vehicle. To compare the

accuracy of illegal parked vehicle detection, the time duration

of its detection has been used. It is characterized by the start

time, i.e. 1 min after a vehicle has been illegally parked and

an end time, i.e. when the illegally parked vehicle starts to

TABLE II: Foreground Block Detection Accuracy

Video TPR FPR

Cloudy 99.60% 0.47%
Cloudy with noise 99.80% 0.47%
Sunny with noise 98.91% 0.48%
Foggy with noise 92.34% 0%
Windy with noise 99.83% 0.49%

move again. The absolute error with respect to the ground

truth is used as a metric for comparison with state-of-the-art

techniques.

For our approach, since one stationary object is detected

in multiple consecutive blocks, the average value of the start

and end times for the detected stationary foreground blocks is

taken to compare with state-of-the-art techniques.

The detailed results are presented in Table III. The proposed

method achieves the best average performance among the

techniques which have been evaluated on all the four videos,

including the extremely challenging Night video. Using our

proposed approach, there is a slight error recorded in the end

time for all videos. This error is attributed to the fact that the

corresponding blocks take some time to get updated as the road

background, which is the criteria established in the proposed

method to detect when the stationary foreground object has

moved as described in Section III-G. This error is slightly

higher in the iLids-Medium video in which another vehicle

follows the stationary vehicle on its tail end, when it starts

moving, hence leading to a delay in the recorded end time.

We will take steps to rectify this problem in our future work.

C. Run-Time Performance
We first measured the run-time performance of the proposed

algorithm on Intel Xeon CPU, 3.50 GHz with 16 GB RAM

running Windows 7. The frame rates achieved by the proposed

method for the iLids Dataset are presented in Table IV. On

average, it achieves a frame rate of around 260 frames/second

for the iLids daylight videos, which has a resolution of

720*576 pixels. A higher frame rate is achieved for the night

video as the moving shadow elimination block is not used.

Fig. 5: Odroid XU4

In order to evaluate the efficiency of the proposed techniques

on an embedded platform, we also executed and verified

them on a state-of-the-art mobile application development

platform — Odroid-XU4 [27] from Hardkernel shown in 5.

This platform contains a Samsung Exynos 5422 mobile SoC

that implements ARM big.LITTLE technology with a cluster

of four ARM Cortex A15 cores (big cores) and a cluster of

four ARM Cortex A7 cores (small cores). In our current setup,

this platform runs on the popular Ubuntu 15.10 LTS operating

system. We run our algorithm on a single A15 core, running

at 2GHz. In contrast to the 130W thermal design power (TDP)

of the Intel Xeon CPU, the Exynos 5422 SoC is constrained

to a maximum of ∼10W TDP and is hence representative of a

typical SoC used in low-cost low-power embedded platforms.

The third column in Table IV shows the frame-rates

achieved on this platform. On average, we achieved a frame-

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

TABLE III: Performance on iLids Dataset

Easy Medium Hard Night All
Start End Abs.

Err.
Start End Abs.

Err.
Start End Abs.

Err.
Start End Abs.

Err.
Avg.
Err.

Ground Truth 02:48 03:15 - 01:28 01:47 - 02:12 02:33 - 03:25 03:40 - -
Boragano et al. [20] 02:48 03:19 4s 01:28 01:55 8s 02:12 02:36 3s 03:27 03:46 8s 5.75s
Venetianer et al. [4] 02:52 03:16 5s 01:43 01:47 15s 02:19 02:34 8s - - - 9.33s
Guler et al. [11] 02:46 03:18 5s 01:28 01:54 7s 02:13 02:36 4s 03:28 03:48 11s 6.75s
Lee et al. [7] 02:51 03:18 6s 01:33 01:52 10s 02:16 02:34 5s 03:25 03:36 4s 6.25s
Pun et al. [5] 02:48 03:19 4s 01:31 01:50 6s 02:12 02:35 2s - - - 4s
Proposed Approach 02:48 03:18 3s 01:28 01:55 8s 02:12 02:36 3s 03:23 03:42 4s 4.5s

rate of 40 frames/second for the iLids daylight videos. This

clearly shows the efficiency of the proposed techniques and

ensures that they can be implemented on low cost embedded

platforms for mass deployment.

The real-time performance of our techniques can be at-

tributed to the nature of calculations in the proposed approach.

The proposed method is primarily based on a block level

analysis, which leads to a major reduction in computational

complexity, especially in comparison to techniques that rely

on pixel-level analysis. The computationally complex shadow

elimination technique based on NCC [24], has only been used

on a limited number of pixels. It has also been modified to use

‘logarithmic’ calculations instead of multiplications and square

root, enabling the use of look-up tables and hence suitable for

implementation on low-cost embedded platforms. Owing to

the low complexity of our method and portability on low-

cost hardware platforms, it is suitable for mass deployment to

enable real-time traffic incident detection.

TABLE IV: Achieved Frame-Rate

Video (No. of BOIs) Intel Xeon Odroid XU4

iLids-Easy (36) 270.05 40.47
iLids-Medium (42) 257.87 39.36
iLids-Hard (54) 270.32 41.28
iLids-Night (30) 453.50 69.18

V. CONCLUSION

In this paper, we introduced a novel technique for detecting

stationary foreground objects on the road for traffic incident

detection, which is a stepping stone towards pro-active traf-

fic congestion management. The proposed method incorpo-

rates a block based background initialization, maintenance,

foreground block detection with shadow elimination and a

stationary foreground block detection technique which has

significantly low computational complexity when compared

to existing approaches that rely on pixel-based analysis. This

technique can be used to relay real-time information of traffic

incidents to the concerned authorities which would enable

timely dissemination of information and fast clearance of

roads, hence, reducing the probability of traffic congestion.

Experiments on different traffic videos demonstrated that the

proposed method is robust to illumination changes, climatic

conditions and shadows; gives real-time performance and has

comparable accuracy with existing state-of-the-art techniques.

REFERENCES

[1] “Operations Story - Federal Highway Administration U.S.” http://www.
ops.fhwa.dot.gov/aboutus/opstory.htm.

[2] R. P. Loce et al., “Computer vision in roadway transportation systems:
a survey,” Journal of Electronic Imaging, 2013.

[3] Q. Fan et al., “Long-term object tracking for parked vehicle detection,”
2014.

[4] P. Venetianer et al., “Stationary target detection using the objectvideo
surveillance system,” 2007.

[5] C.-M. Pun, “A real-time detector for parked vehicles based on hybrid
background modeling,” Journal of Visual Communication and Image
Representation, 2016.

[6] D. Ortego et al., “Multi-feature stationary foreground detection for
crowded video-surveillance,” 2014.

[7] J. T. Lee et al., “Real-time illegal parking detection in outdoor environ-
ments using 1-D transformation,” IEEE TCSVT, 2009.

[8] K. Garg et al., “Real-time road traffic density estimation using block
variance,” in WACV, 2016.

[9] C. Cuevas et al., “Detection of stationary foreground objects: A survey,”
CVIU, 2016.

[10] A. Bevilacqua et al., “Real time detection of stopped vehicles in traffic
scenes,” 2007.

[11] S. Guler et al., “Stationary Objects in Multiple Object Tracking,” 2007.
[12] W. Hassan et al., “Illumination invariant stationary object detection,”

IET Computer Vision, 2013.
[13] L. Maddalena et al., “Stopped object detection by learning foreground

model in videos,” IEEE TNNLS, 2013.
[14] J. Pan et al., “Robust abandoned object detection using region-level

analysis,” in ICIP, 2011.
[15] F. Porikli, “Detection of temporarily static regions by processing video

at different frame rates,” 2007.
[16] Y. Zeng et al., “A Novel Abandoned Object Detection System Based

on Three-Dimensional Image Information,” Sensors, 2015.
[17] R. Wang et al., “Static and moving object detection using flux tensor

with split gaussian models,” in CVPRW, 2014.
[18] W. Wang et al., “A new approach for real-time detection of abandoned

and stolen objects,” 2010.
[19] A. Albiol et al., “Detection of parked vehicles using spatiotemporal

maps,” IEEE ITS, 2011.
[20] S. Boragno et al., “A DSP-based system for the detection of vehicles

parked in prohibited areas,” 2007.
[21] “i-LIDS Parked Vehicle Dataset,” http://www.eecs.qmul.ac.uk/∼andrea/

avss2007 ss challenge.html.
[22] Y. Li et al., “On Automatic and Dynamic Camera Calibration based on

Traffic Visual Surveillance,” 2007.
[23] M. Dubska et al., “Automatic Camera Calibration for Traffic Under-

standing,” in BMVC, 2014.
[24] J. Cezar et al., “Background Subtraction and Shadow Detection in

Grayscale Video Sequences,” in Computer Graphics and Image Pro-
cessing, 2005.

[25] A. Gawde et al., “Lightweight and robust shadow removal for foreground
detection,” in AVSS, 2012.

[26] A. Vacavant et al., “A benchmark dataset for outdoor fore-
ground/background extraction,” LNCS, 2013.

[27] “Odroid-XU4,” http://goo.gl/Nn6z3O.

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

