
A Systematic Security Analysis of Real-Time Cyber-Physical Systems∗

Arvind Easwaran, Anupam Chattopadhyay Shivam Bhasin

School of Computer Science and Engineering Temasek Laboratories

Nanyang Technological University, Singapore Nanyang Technological University, Singapore

e-mail: {arvinde,anupam}@ntu.edu.sg e-mail: sbhasin@ntu.edu.sg

Abstract— Security in Cyber-Physical Systems (CPS) has be-
come a serious concern owing to the rapid adoption of technolo-
gies such as plug-and-play connectivity, robotics and remote co-
ordination and control. It is well understood that the performance
overhead incurred due to security considerations is rather high,
which needs to be captured holistically for a real-time CPS with
strict timing budget and hard deadlines. Additionally, attacks in
real-time CPS may only alter the timing behaviour of system com-
ponents without any changes in functionality, resulting in serious
consequences due to missed deadlines. To address this challenging
issue, it is necessary to understand the role of diverse components
in a real-time CPS and how those expose the system to a malicious
attacker. In this paper, we propose a systematic security anal-
ysis flow, using a novel Attack Sequence Diagram (ASD), which
links the sources, intermediate components and final manifesta-
tions of an attack, thereby clearly delineating the attack surfaces
of a complex real-time CPS. Based on the ASD, it is possible to
evaluate the complexity of an attack, performance overhead of a
countermeasure and explore different design trade-offs for a real-
time CPS. With the help of real-world and synthetic examples, we
demonstrate that ASD seamlessly enables one to map the existing
vulnerabilities and uncover new attack possibilities.

I. INTRODUCTION

Cyber Physical Systems (CPS) undoubtedly occupy the most

prominent place in today’s technology spectrum. The class of

CPS which are governed by strict timing deadlines, are referred

to as real-time CPS. Depending on the criticality of the appli-

cation and the task deadlines, it can be further categorized as

hard or soft real-time CPS. Few examples of such real-time

CPS are Anti-lock Breaking System (ABS) in automotive, tem-

perature/pressure control systems in manufacturing plants, lab-

oratory robotics, and flight controls in avionics.

In many application scenarios for real-time CPS, security of

the system is a growing concern. This is largely driven by the

trend in these systems towards large-scale integration and re-

mote co-ordination and control. Although an open operating

environment for a hitherto closed system offers potential for

performance improvement, it also exposes several new attack

surfaces in the system. Therefore, in recent times researchers

have taken a strong interest in security analysis of real-time

CPS.

A secure CPS aims toward satisfying the fundamental cri-

teria of security, namely, confidentiality of data, integrity of

∗This work was funded in part by MoE Tier-1 grant RG21/13 and MoE

Tier-2 grant ARC9/14, Singapore.

data/control, authenticity of user access, and availability of re-

sources. However, the prioritization of these criteria is highly

domain-specific. The complexity of a real-time systems’ strin-

gent timing constraints adds further to the challenge of con-

sidering security as a design metric. Countermeasures to well-

known attacks result in performance overhead that can affect

timing guarantees due to reduced resource availability. Also,

attacks that alter the timing behaviour of system components

have a significant impact on system performance even if they

do not alter its functional behaviour. Therefore, in such sys-

tems, analysis of security issues at an early design phase un-

doubtedly helps the designer. Along this line, it is suggested

in [21] to work on a language, or a feature of it, to let the de-

signers work on the security enhancement in parallel with other

requirements of CPS.

In order to define the security issues, the first task faced by a

system designer is to identify the possible attack scenarios. An

attack scenario consists of two phases. First, it introduces the

attack through a component in the system. Second, the attack

propagates through the system to manifest itself in a discernible

form in the output. Within the first phase, one needs to identify

an attack technique, e.g., passive/active attack, and also needs

to pinpoint the component that is used to initiate the attack. So

far, to the best of our knowledge, there is no formal approach

to determine different attack scenarios in real-time CPS, though

such methodologies are not uncommon in studying attacks in

computers or network systems [1], which forms the key moti-

vation of this work.

In this work, we argue that the most important observable se-

curity breach in a real-time CPS is caused by the malicious vio-

lation of task deadlines. Depending on the application scenario,

this can result in seriously damaging consequences. More im-

portantly, this is also a design property that is captured well in

the early design phase and therefore, can be analysed well from

the perspective of security.

Contribution. The key contribution of this paper is intro-

duction of Attack Sequence Diagrams (ASDs), which is an ex-

tension of the sequence diagrams used for describing real-time

systems. Using ASDs, it is possible to identify the complete at-

tack scenario in a highly intuitive manner. This is demonstrated

using multiple illustrative examples. ASDs describe attack sce-

narios in the form of task-resource utilization traces. Thus

mapping attacks as an external/internal trigger, ASDs have the

potential to be automated and further integrated in the verifica-

tion process at an early design phase.

The rest of the paper is organised as follows. In Section II

the generic structure of a real-time CPS is presented. Section B

978-1-5090-1558-0/17/$31.00 ©2017 IEEE

3S-3

206

contains our key contribution, the discussions on attack charac-

terization and the proposition of attack sequence diagram, fol-

lowed by several illustrative examples for the same. State-of-

the-art literature in the security of real-time CPS are discussed

in Section IV. Section V concludes this paper and identifies

several research directions.

II. REAL-TIME CPS: GENERIC STRUCTURE

Figure 1 shows some of the central components of a real-

time CPS. This structure is representative of safety-critical sys-

tems such as Integrated Modular Avionics (IMA) [12] and AU-

TOSAR for automotive [13]. It comprises

1. Real-time applications and tasks at the user level,

2. Real-time scheduler and resource-sharing protocol in the

operating system kernel, and

3. Execution platform with peripherals and a communication

network at the hardware level.

���������	

��������	
���
��
��

�����
�����	������	������

���

�������������������	����
�������
������
�����

���	����������
���	�	�	���	�
��� ����
�������

!"�����	
�����	�����	����	�#�������

$��� ������	���������	�%#������#�	
��	������

��������	�

���������	�

�������

���������	

��������	
���
��
��

�����
�����	������	������

���������	

��������	
���
��
��

�����
�����	������	������

���

�������������������	����
�������
������
�����

���	����������
���	�	�	���	�
��� ����
�������

!"�����	
�����	�����	����	�#�������

$��� ������	���������	�%#������#�	
��	������

���������	

��������	
���
��
��

�����
�����	������	������

�������	�������������

Fig. 1. Generic Structure of a Real-Time CPS

In the following text we discuss in detail the requirements,

related to both timing as well as security, for each of these com-

ponents.

Real-Time Applications. Each real-time application repre-

sents a system functionality, and a collection of such applica-

tions may be hosted on a hardware platform. These co-hosted

applications have stringent non-interference requirements to

ensure attack and fault containment, because they may repre-

sent functionalities having different importance (e.g., Design

Assurance Level in avionics [14]) and security (e.g., Multi-

ple Independent Levels of Security or MILS [15]) levels. This

means the allocated hardware resources must be appropriately

partitioned among them (e.g., time- and space-partitioning in

avionics [16]).

Real-Time Tasks. Each real-time application comprises a

set of real-time tasks. Each task can be either periodic if in-

stances of the task are released for execution periodically us-

ing a time-triggered mechanism, or sporadic if instances are

released using an event-triggered mechanism. In the case of

sporadic tasks, it is further assumed that there is a minimum

separation between releases of successive instances so that it

becomes feasible to provide guarantees on deadlines. Thus,

a task is represented using the tuple (T,C,D), where T de-

notes the period or minimum separation between successive

instances, C denotes the worst-case execution time of each in-

stance, and D denotes its relative deadline. Each instance of

the task is required to execute on the processor for as much as

C time units within D time units from its release. C depends

on a lot of factors including state of hardware resources, wait-

ing time to access them and software control- and data-flow.

It is very challenging to estimate C accurately because of the

complexities involved, and therefore pessimistic upper bounds

are often used.

Real-Time Scheduler. The real-time scheduler prioritises

allocation of the processor to task instances so as to meet

deadlines. Additionally, it is also responsible for partitioning

the processor allocations among applications to ensure non-

interference. Several algorithms have been developed for both

single- and multi-core processors. These can broadly be clas-

sified into either fixed-priority scheduling in which priorities

are statically allocated to tasks based on their parameters, or

dynamic-priority scheduling in which priorities are allocated

to task instances at runtime.

An important aspect of real-time schedulers is the offline

guarantees that they provide on deadlines using schedulabil-

ity tests. These tests are used to ascertain whether a given

set of tasks and applications will meet their deadlines when

scheduled under a given algorithm. The correctness of these

tests is fundamentally dependent on the assumed parameters of

the tasks and applications as well as hardware state (e.g., clock

speed of the processor, state of cache, etc.). Any violation of

these parameters or hardware states at runtime has the potential

to invalidate the test and consequently the deadline guarantees.

Resource-Sharing Protocol. Access to shared platform re-

sources such as global variables and I/O devices must be reg-

ulated using a protocol so as to ensure data consistency and

fairness across applications and tasks. Additionally, in real-

time systems, these protocols must also ensure that waiting

times (i.e., time spent waiting to access a shared resource) are

bounded so that deadlines can be guaranteed. Further, it is im-

portant that the protocols reduce priority inversions, that is time

for which a higher-priority task is waiting to access a shared re-

source, while lower-priority tasks are executing on the proces-

sor. With the proliferation of multi-cores, such protocols could

also be used to regulate access to shared hardware resources

such as the processor interconnect and memory controller so

that a bounded waiting time may be achieved.

Execution platform. Important components of the execu-

tion platform include the processor (single- or multi-core), the

hardware timers and the interrupt handling mechanism. A real-

time scheduler uses timers and interrupt handlers to enforce the

task parameters at runtime. These timers are used to trigger ex-

ecution of the scheduler so that periodic tasks can be released as

required and task and application processing budgets can be en-

forced based on their parameters. This ability of the scheduler

to interrupt application processing at pre-defined time instants

is essential to ensure timing correctness of the system.

Other hardware resources. The communication network in

a real-time system is required to provide service with bounded

jitter and taking into consideration message deadlines. Since

a system functionality may be distributed across several hard-

ware platforms in the network, it is also essential to meet end-

to-end latency requirements for applications.

With the growing popularity of multi-core processors, shared

hardware resources such as caches, cache and memory con-

trollers and processor interconnect also play a critical role in

the design of a real-time CPS. It is essential to ensure either

non-interference or bounded interference from tasks and ap-

plications executing in the other cores when accessing these

3S-3

207

resources. Only then task worst-case execution time and appli-

cation non-interference requirements can be satisfied.

III. ATTACK CHARACTERIZATION

In this section we systematically characterise potential at-

tacks in real-time CPS and the impact they have on system

requirements. We consider the critical components in kernel

space and hardware presented in Section II, and identify poten-

tial sources of attacks as well as impact of attacks on task and

application deadlines.

A. Attack Considerations

A key parameter which separates real-time CPS from

generic systems is the importance of deadlines. Real-time sys-

tems are designed in a way that tasks should always be executed

within the given deadline, failing which could lead to serious

consequences. For the same reason, the worst-case execution

time parameter C for tasks is pessimistically computed with

huge safety margins to account for execution time variations

due to complex software and hardware. Note that a violation

of the worst-case execution time estimate at runtime has the po-

tential to lead to a deadline miss, particularly if the system has

a high processor utilization. Further, such deadline misses can

trigger a chain reaction or overload condition in which several

subsequent deadlines are also missed. Given the importance of

deadlines and worst-case execution times in real-time CPS, in

the following we consider an attack as any event that results
in a missed deadline for a real-time task, and refer to it as a

deadline attack.

Deadline attacks are necessarily active attacks because they

must alter the system timing behavior. Therefore, in this sec-

tion we consider attacks that compromise integrity or availabil-

ity or both. Attacks that compromise the integrity of scheduler

or resource-sharing protocol (e.g., changes to task parameters,

task priorities, protocol behavior) have a direct impact on re-

source allocation and waiting times, and hence are important

in our study. Similarly, attacks that compromise the availabil-

ity of hardware and software resources (e.g., I/O and memory

controllers, caches, access to global variables) also have an im-

pact on the timing behavior and hence are part of our study.

Deadline attacks could originate either in the user space from

a compromised task, or in the kernel space from a compro-

mised operating system, or in hardware. However, given the

fact that physical access to these safety-critical systems is not

easy (e.g., access to adaptive cruise control system in automo-

tive), attacks originating from a compromised task or applica-

tion are more likely to occur. This is further supported by the

recent trend in such systems wherein certain non-critical ap-

plications can be directly accessed by untrusted and unverified

systems (e.g., wireless or wired connection of personal devices

to the infotainment system in an automotive). Since these non-

critical applications have access to some of the resources that

are also used by critical applications (e.g., communication net-

work), there is the possibility of an attack path originating in

the non-critical application but terminating in a critical appli-

cation.

B. Attack Sequence Diagram

In this work we present Attack Sequence Diagrams (ASDs)
as an extension of standard sequence diagrams to capture and

illustrate deadline attacks. This is because sequence diagrams

are good for modeling resource requests from real-time tasks,

resource allocation by scheduler and resource-sharing proto-

col, and temporal properties such as resource usage time and

waiting time.

A standard sequence diagram comprises a set of objects

communicating with each other using messages and responses.

In the context of an ASD for a real-time system, these objects

are applications and tasks (denoted as users), scheduler and

resource-sharing protocol (denoted as kernel components) and

hardware and other elements (denoted as resources). Resources

include global variables, I/O controllers, memory and cache

controllers, caches, processing cores, communication network,

etc. Users send messages in the form of resource requests to

the kernel components, and they respond to these requests by

allocating resources to the users so as to meet their require-

ments. Note that hardware resources such as timers and in-

terrupt handlers are internally used by kernel components to

manage allocation to the other resources, but are not directly

allocated to users. Attacks that can be identified by ASD mani-

fest in the form of delayed access to a resource for a user result-

ing in a deadline miss eventually. The source of these attacks

could be either compromised kernel components or users using

resources beyond their budgeted allocation. The kernel com-

ponents could be compromised either due to direct integrity

attacks on their parameters and data or due to indirect attacks

through the hardware resources used by them.

Latronico and Koopman [24] have considered the problem

of generating sequence diagrams for embedded systems that

can be automatically translated to deterministic state charts for

further formal analysis. They proposed addition of state in-

formation for objects, pre-conditions on message parameters,

and timing constraints between successive messages as addi-

tional sequence diagram constructs to achieve this determin-

ism. Among these three constructs, we will use state informa-

tion for kernel components and resources in our ASDs, because

their requests and response to requests depend on it. Further,

upon receipt of a request this state will be updated immedi-

ately (to capture the new pending request), and therefore pre-

conditions and timing constraints between successive requests

are not necessary to achieve determinism.

Definition 1 (Attack Sequence Diagram (ASD)). An Attack Se-
quence Diagram is defined as D = 〈O,R,Sr,Sk,A〉, where

• O denotes a set of objects (users, kernel components and
resources),

• R denotes a set of requests and response to requests,

• Sr denotes a set of states for each resource r ∈ O,

• Sk denotes a set of states for each kernel component k ∈
O, and

• A denotes a set of deadline attacks.

Each deadline attack can be one of the following types.

3S-3

208

1. State attack: In this attack, the state of a kernel compo-
nent or resource is modified at some time instant.

2. Response attack: In this attack, the response from a ker-
nel component or resource is modified at some time in-
stant.

Both these attacks can be defined using a time-dependent
mapping function from one state/response to another (e.g., the
attack function for resource states would be of the form F :
Sr × T → Sr, where T denotes a set of time instants).

A state attack can either alter a subsequent request or re-

sponse from that kernel component/resource, or simply delay

the request or response. Both these consequences can eventu-

ally lead to a deadline miss for a task. Similarly, in a response

attack, although there is no modification to any state, an altered

response can change the resource allocation pattern eventually

resulting in a deadline miss. In the following subsections, we

model example attack scenarios using ASDs.

C. Modeling an Existing Attack

In this section we illustrate a simple attack on the integrity

of the priority parameter of a scheduler. Any changes to the

assigned priority of tasks has a significant impact on the pro-

cessor allocation, and hence tasks are very likely to miss their

deadlines, especially on systems in which the processor is

heavily utilized. This attack was first presented in [18], and

here we illustrate the same using an ASD.

����

���	
 �������� ������������	� ������

��������
� ��������������
�

�����������

��������

��������

���������� ����������������

�����������

��������
�

����������

�

������

������

�

�

����������

����������

���������

���������

Fig. 2. Scheduler priority management system

Example 1. Figure 2 shows an ASD comprising two users
(tasks A and B), one kernel component (scheduler), and two
resources (memory and processor). When a task requests for
a release, the scheduler obtains the priority of the task from a
pre-determined kernel memory location. In the figure, a lower
number denotes higher task priority. It uses this priority to
maintain a priority-queue (state of scheduler) and dispatches
tasks to the processor accordingly. As shown in the figure, task
A has higher priority than task B. Thus, assuming the prior-
ity management system is not compromised, task A is first dis-
patched to the processor followed by task B, and both tasks

are able to meet their deadlines. Note that not all component
and resource states are shown in the figure; only those that are
relevant for the attack under consideration are shown.

Considering the above example and the ASD from Figure 2,

we try to identify some vulnerabilities in the system which a

potential attacker can target to force the system to miss dead-

lines. We show, in particular, one example of a response at-

tack and a state attack. In the above example, task A requested

highest priority (1). The priority value is retrieved by a call to

a predefined memory location. An attack to this system can be

realized by disturbing the priority load instruction. There are

numerous methods which an attacker could use to achieve this.

Some common methods are overriding the memory bus [28], or

forcing memory address change [25], or flipping bits in mem-

ory location [27]. While the former two are examples of re-

sponse attacks, the latter is an example of state attack. Note

that the attack reported in [27] only requires user-level privi-

leges in the OS to affect the memory locations. Depending on

the technique and expertise at hand, the precision of the attack

will be different however, all of these methods can disturb the

priority load instruction. In the present case, if the priority of

task A is lowered from 1 to 3, it will be executed after task B,

leading to a deadline miss as shown in Figure 3(a).

Continuing towards identifying other vulnerabilities from

the ASD, one can also spot a potential state attack. If the return
signal after completion of task A is delayed by the processor (a

state attack), the scheduler will not free the processor leading

to a delay in the execution of subsequent tasks, resulting in a

deadline miss. This can be achieved by manipulating the clock

input via electromagnetic (EM) injection [29]. An EM injec-

tion can stall the oscillator or also temporarily modify clock

paths. The attack scenario is illustrated in Figure 3(b).

D. New Attack Propositions

In this section we illustrate a few non-trivial attacks targeting

both integrity as well as availability using a typical real-time

system comprising different applications. One of the applica-

tions implements a critical functionality, whereas the other im-

plements a less-critical functionality. We further assume that

the less-critical application is relatively easy to compromise

compared to the critical application, due to reduced rigor in

its verification process.

D.1 Representative Real-Time CPS

The system shown in Figure 4 comprises two tasks belonging

to different applications and executing functions with varying

criticalities. It also comprises two kernel components (sched-

uler and resource-sharing protocol) and four resources (timer,

two cores on a multiprocessor platform, and memory hierar-

chy). Memory hierarchy can be viewed as an abstraction for

all the hardware resources involved in a memory transaction;

namely caches, cache and memory controllers and the main

memory itself. On a multiprocessor platform, it is important to

note that these hardware resources in the memory hierarchy are

shared among the two cores, so that only one core may access

each such resource at a single time instant.

3S-3

209

����

���	
 �������� ������������	� ������

��������
� ��������������
�

�����������

�����	
�

�����	
�

��������� �������	��	����

��	��	����

�	��������

�

�	��������

�

�����

�����

�

��

�

����	
����

����	
����

�	��������

�	��������

(a)

�	��

����� ��������� �������������� ������

��������� �������	��	����

��	��	����

�����	
�

�����	
�

��������� �������	��	����

��	��	����

�	��������

�

�����

�

��

�

�	��������

����	
����
�	��������

�

�����

����	
����

�	��������

(b)

Fig. 3. Examples of response attack (a) and state attack (b) on the priority

management system

Upon release of a task, the scheduler uses the timer to mon-

itor the budget allocation for that task. Once the allocated bud-

get is consumed, the timer is triggered and the task is either

terminated (if it has completed) or an exception handler may

be invoked otherwise. The scheduler then dispatches the tasks

to the two cores depending on its scheduling policy and priority

assignment.

While executing on the processor, the tasks request for ac-

cess to data in memory in parallel; this means the two memory

requests are pending in the various hardware resources of the

memory hierarchy at the same time. In particular, it is possible

that the request from the critical task may be delayed due to the

pending request from the less-critical task.

A little while later, both the tasks request for access to the

same shared resource (e.g., I/O controller) almost at the same

time instant. Based on the protocol and relative task priori-

ties, the less-critical task is given first access to the shared re-

source. It is important to note that while this task is accessing

the shared resource, the critical task is blocked because it is

waiting to get access to the same resource.

&� �

�'�&����
��(

�
��� ����)��'

���*'+
���'�'��+

��((��'�&����
��(�
���
� �*'��

'����(��
�
(�&��)��&���

�������

�������

'����(����

(�&��)��&�
�

'����)���'

�(,�&���
�

�(,�&�����
�

�)���'���

�)���'�
�

����' �*'��

��(�����'���
�'*&*�*�
��
 �!"�

�-,�'��
�

�-,�'����

'����)���'

�

'�.)�(&��!"

'�.)�(&��!"

�'��&���

'�&)'�

�

�'��&�
�

'�&)'�
&�'����&�

&�'����&�

�(,�&���
�(,�&���

'�&)'�

'�&)'�

Fig. 4. A representative real-time system comprising two applications

Example 2. As a representative example, we can consider the
critical application Adaptive Cruise Control (ACC) and the
relatively less-critical application Intelligent Speed Advisory
(ISA) in automotive CPS. ACC receives position and velocity
inputs from the lead as well as controlled vehicle, and deter-
mines a safe acceleration/braking value to be sent to the ac-
tuators. ISA only receives position and velocity input from
the controlled vehicle, and issues speed warning messages to
prevent over-speeding. In the system shown in Figure 4, the
critical task belongs to ACC, the less-critical task belongs to
ISA and the resource-sharing protocol manages access to the
Controller Area Network (CAN) device. Initially, both these
tasks read inputs from independent buffers in memory. Once
the output is determined, they seek access to the CAN device
via the protocol. Actuation commands are then issued by the
tasks once they have access to the CAN device.

D.2 Attack Scenarios

A possible attack exploiting the physical layer is shown in Fig-

ure 6. This attack shows how a real-time system can be forced

to miss a deadline of a critical task by exploiting a less critical

task. It targets physical layer by gaining access to physical pa-

rameters like power supply or clock. Note that access to phys-

ical parameters does not mean physical access to the system.

In various systems, these parameters can be accessed remotely,

originally to allow better and enhanced control.

If the power line or clock to a processor is disturbed, it will

have a direct impact on the execution of the task as demon-

strated with physical access to the system [25]. Correspond-

ing OS-level techniques are discussed here [26]. A straightfor-

ward scenario is to drive a processor at lower frequency/voltage

through a malware, which will increase the signal delays, lead-

ing to increased execution time. Since a system on chip isolates

power and clock lines for various components, it is possible to

affect only a single core of a multi-core processor while hav-

ing no impact on other components. This is illustrated by an

abstract system in Figure 5.

Following Figure 4, once scheduled, tasks A and B are dis-

patched to different cores for execution and the processor ex-

ecution is independent. However, during the execution, the

3S-3

210

����� �����

���	� ���	�

�
������

���

���

���� ����

����

����

����

������������

Fig. 5. Multi-core system with separated power lines

tasks need access to shared resources. We demonstrate an ac-

tive attack on this system by lowering the power supply (under-

powering) to the processor core executing task B. If the voltage

is not lowered drastically, the core can still operate but will be

slower, resulting in higher execution time. This can be realized

in Figure 5 by lowering V DD2. The execution time of task

B is increased as shown by the shaded box in Figure 6. This

delay is not accounted as worst-case execution time estimates

are done at nominal operating conditions. The impact of the

increased execution time is as follows. At some point of time,

both tasks A and B need access to a shared resource, in this

case the I/O device. Since task B already has a handle on the

device, task A must wait for the resource. Since the execution

time of task B has increased, the I/O device will be available to

task A after an unaccounted delay. This delay will force task

A to miss its deadline. A smart attack can adjust the delay in

a way that task B still makes the deadline while compromising

task A, and thus avoiding health checks.

&���

�'�&����
��(�

�
��� �����)��'

���*'+
���'�'��+

��((��'�&����
��(��
���
� �*'��

'����(��
�
(�& !)�"�&���

������#�

������#�

'����(����

(�& !)�"�&�
�

'��� !)$$�'

��(,�&���
�

��(,�&�����
�

!)$$�'���

!)$$�'�
�

����' �*'��

��(�����'�#"
�'*&*�*�
��
 �!"�

�-,�'���
�

�-,�'�����

'��� !)$$�'

�

'�.)�(& �!"

'�.)�(& �!"

"'�#&���

'�&)'#

�

"'�#&�
�

'�&)'#
&�'��#�&��

&�'��#�&��

��(,�&����
��(,�&����

'�&)'#

'�&)'#

Fig. 6. Example state attack by under-powering task B’s execution

An integrity attack on the task budget enforcement mech-

anism is shown in Figure 7. The scheduler assigns a dedi-

cated budget to each task based on its state parameters. In

the proposed attack, the budget assignment of task B (ISA)

is altered to a lower value through a response attack on the

“set budget(B)” instruction. Since the budget expires before

the task execution has terminated, an exception handler (E) is

launched. Due to the exception, task B occupies the I/O device

longer, because the device is only released after the exception

is processed. This delay leads to a deadline miss. This attack

can be realized by techniques like in [27, 25, 28]; the active

manipulation can alter the assigned budget value.

%!"�

�������	

���
���� ������	��

�����/
��������/

������������	

����
���� �����

��	������
�������������

����	���

����	���

��	�������

������������

������� ��

���!������

���!�������
�

�� �����

�� ����

���� ����"

#��$��������
%������	
��&�'(�

�)!������

�)!�������

������� ��

�

��*������'(

��*������'(

��������

������

�

�������

������
����������

����������

���!������
���!������

������

������

+�)��!����

Fig. 7. Example response attack targeting task B’s budget enforcement

Unlike previous examples, a deadline attack can also be per-

formed using purely software techniques. An example of such

an attack on availability is shown in Figure 8. It is a state at-

tack realized by malicious memory access by the less-critical

task B infected with a malware. This malware triggers unac-

counted memory accesses for the task and occupies the shared

resources in the memory hierarchy. The critical task A is con-

sequently delayed and would have to wait for a longer time to

get memory access. However, since this additional memory

occupation is unaccounted, it would not be considered when

determining the worst-case execution time of task A, leading

to a deadline miss.

&�'�

��������
	�
��
����� ��������

�����0
��������0

��

���������
	�
��
���� �����

�����
����

������������

��������

��������

�����
����

������������

������� ��

��
!�������

���
!�������
�

�� �����

�� �����

	���� ����"

#�
$�������
%�������
���&�'(�

�)!�������

������� ��

�

�

��*��
���'(

��������

������

�

����������

��
!������
��
!������

������

+ ,�������

,���

,���

,���

Fig. 8. Example state attack targeting memory through a malware in Task B

These examples illustrate that ASD offers an intuitive ap-

proach at the early design phase for security analysis. This can

be aided with an automated tool-flow to identify all the poten-

tial attack sequences and vulnerable components.

3S-3

211

IV. RELATED WORK

Addressing security issues in the context of real-time CPS is

now gaining relevance in the research community. There have

been several studies in the recent past [11, 10, 5, 6, 2, 3, 4, 19,

20, 22, 17], all of which focussed on issues related to confiden-
tiality. They either developed countermeasures while ensuring

satisfaction of timing requirements or reduced the impact of

countermeasures on resource utilization through modifications

in the design.

Compromised Confidentiality. Völp et al. [10] consid-

ered the problem of information leakage in the form of state-

dependent access times for shared resources such as disks.

They proposed techniques to reduce variability in the access

times for such resources through modifications in the resource-

sharing protocols, while still preserving the required worst-case

waiting time bounds to guarantee application deadlines. Pelli-

zoni et al. [6, 2] considered the problem of information leak-

age through shared hardware resources such as caches, mem-

ory controllers and I/O interfaces. They focused on a generic

vendor-driven security model in which real-time applications

developed by different vendors had constraints on information

sharing represented in the form of an asymmetric binary rela-

tionship. Considering a simple countermeasure in the form of

state clean-up (e.g., cache flushing, delay in I/O interface, etc.),

these studies presented techniques to analyse the impact on

schedulability of the real-time applications due to these coun-

termeasures. They also proposed design methodologies for al-

locating priorities to the real-time applications so as to mini-

mize this impact on schedulability, while still preventing infor-

mation leakage.

Side Channel Attacks and Schedule Randomization. The

other group of studies focus on side-channel attacks (e.g., dif-

ferential power analysis), and present countermeasures to re-

duce the predictability of the system schedule [11, 3, 4, 5]. The

objective there is to sufficiently randomize the schedule so that

side-channel attacks on specific applications become difficult,

while at the same time ensuring that all application deadlines

are met. These studies quantify the robustness of a schedule

to such attacks using metrics that measure predictability of the

schedule. They also design runtime scheduling techniques that

meet application deadlines and at the same time increase ro-

bustness based on these metrics. These methodologies basi-

cally deploy a shuffling countermeasure to reduce leakage [23].

This would lead to reduction in correlation between sensitive

data and leakage by a factor of
√
n, where n is the shuffling

order or number of different shuffled task schedules possible.

Note that this lowered correlation does not necessarily prevent

an attack, but only increases the complexity by a polynomial

order. Thus, the practical viability of these approaches re-

mains questionable. There are also some related studies that

utilize the inherent predictability of real-time systems to detect

anomalous behaviors (e.g., see [7, 8, 9]).

Countermeasures. There have also been studies on the

design of resource-efficient cryptographic techniques for se-

cure communication in real-time systems [19, 20, 22, 17].

While [19, 22] proposed software-based techniques with guar-

antees on the satisfaction of task deadlines, the work in [20]

proposed a hardware/software co-design approach to minimize

the impact on hardware resources. Wen et al. [17] considered

fault injection attacks on such cryptographic algorithms, and

evaluated different fault detection schemes for Advanced En-

cryption Standards (AES) in terms of their timing overheads.

Moro et al. [18] have evaluated software-based countermea-

sures to attacks on a real-time operating system using an elec-

tromagnetic fault injection technique. Specifically, they con-

sider instruction skip attack on an instruction that changes the

execution mode from privileged to non-privileged and load in-

struction corruption attack on instructions that load the task pri-

orities. Their focus was on evaluating the ability of the coun-

termeasures to prevent faults, but not on the impact these faults

have on system timing requirements.

Specifically within the context of real-time CPS, the works

done so far concentrated on particular attack scenarios and

countermeasures. Clearly, there is a pressing need of research

attention towards detecting real-time system security vulnera-

bilities in the early design phase. This is the key idea presented

in this work.

V. CONCLUSION AND ROAD MAP

Real-time cyber-physical systems govern a large part of our

everyday lives, ranging from (semi-)autonomous vehicles to

robotics and avionics. Security considerations are taking a

prime spot in the design and execution of real-time CPS. Given

the variety of the application scenarios and attack models, it

is becoming an increasingly harder job to address the security

concerns. In this paper, we described a generic real-time CPS

structure and subsequently, introduced the concept of Attack

Sequence Diagrams (ASDs). ASD provides a high-level and

yet, accurate description of potential attack surfaces, which we

show by mapping existing attacks as well as uncovering new

attack possibilities.

This work can be extended in many important directions, as

described in the following.

• From the formal ASD notation, it is straightforward to de-

rive a graph-based representation with the dependencies

between tasks, components and schedules. This can be

subjected to automated analysis for discovering potential

new attacks, relative vulnerability of the components as

well as low-overhead countermeasures.

• The new attack propositions pointed out in this paper can

be demonstrated with practical systems.

• While we discussed the attack sequences, the initiation of

an attack is not described in much detail. Various attack-

ing techniques, ranging from malware to Trojan hardware

can be integrated to this flow to provide a more rigorous

analysis of the attack complexity. Even, hybrid and dis-

tributed attack sequences can be developed on that basis.

• Our current study focussed on violation of availability and

integrity as long as it violates the task deadline. However,

a well-achieved schedule of events may still be danger-

ous if the computed values are erroneous. This direction

of research is already well-studied in the context of fault-

tolerant computing. It remains an interesting proposition

3S-3

212

on how to combine ASD with attacks, which intend to

corrupt the computation.

REFERENCES

[1] C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner. Toward a

secure system engineering methodology. In Proceedings of the

1998 workshop on New security paradigms (NSPW ’98). pp. 2–

10, 1998.

[2] R. Pellizzoni, N. Paryab, M. K. Yoon, S. Bak, S. Mohan and R. B.

Bobba. A Generalized Model for Preventing Information Leakage

in Hard Real-Time Systems. In Proceedings of the IEEE Real-

Time and Embedded Technology and Applications Symposium

(RTAS), pp. 271–282, 2015.

[3] M. K. Yoon, S. Mohan, C. Y. Chen and L. Sha. TaskShuffler: A

Schedule Randomization Protocol for Obfuscation against Tim-

ing Inference Attacks in Real-Time Systems. In Proceedings of

the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pp. 1–12, 2016.

[4] K. Jiang, P. Eles, Z. Peng, S. Chattopadhyay and L. Batina.

SPARTA: A scheduling policy for thwarting differential power

analysis attacks. In Proceedings of the Asia and South Pacific De-

sign Automation Conference (ASP-DAC), pp. 667–672, 2016.

[5] K. Jiang, L. Batina, P. Eles and Z. Peng. Robustness Analysis of

Real-Time Scheduling Against Differential Power Analysis At-

tacks. In Proceedings of the IEEE Computer Society Annual Sym-

posium on VLSI, pp. 450–455, 2014.

[6] S. Mohan, M. K. Yoon, R. Pellizzoni and R. Bobba. Real-Time

Systems Security through Scheduler Constraints. In Proceedings

of the Euromicro Conference on Real-Time Systems (ECRTS),

pp. 129–140, 2014.

[7] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo.

S3A: Secure system simplex architecture for enhanced security

and robustness of cyber-physical systems. In Proceedings of the

ACM Conference on High Confidence Networked Systems, 2013.

[8] M.-K. Yoon, S. Mohan, J. Choi, and L. Sha. Memory Heat

Map: Anomaly Detection in Real-Time Embedded Systems us-

ing Memory Behavior. In Proceedings of the ACM/EDAC/IEEE

Design Automation Conference (DAC), 2015.

[9] M. M. Z. Zadeh, M. Salem, N. Kumar, G. Cutulenco, and S. Fis-

chmeister. SiPTA: Signal Processing for Trace-based Anomaly

Detection. In Proceedings of the International Conference on Em-

bedded Software (EMSOFT), 2014.

[10] M. Völp, B. Engel, C., J. Hamann, and H. Härtig. On Confiden-

tiality Preserving Real-Time Locking Protocols. In Proceedings

of the IEEE Real-Time Embedded Technology and Applications

Symposium (RTAS), 2013.

[11] M. Völp, C., J. Hamann, and H. Härtig. Avoiding Timing Chan-

nels in Fixed-Priority Schedulers. In Proceedings of the ACM

Symposium on Information, Computer and Communication Se-

curity, pp. 44–55, 2008.

[12] J.-B. Itier. A380 Integrated Modular Avionics. Available at

http://www.artist-embedded.org/docs/Events/2007/IMA/Slides

/ARTIST2 IMA Itier.pdf.

[13] AUTOSAR consortium. Automotive Open System Architecture.

Available at https://www.autosar.org.

[14] RTCA. DO-178C (Software Considerations in Air-

borne Systems and Equipment Certification). Available at

http://www.rtca.org/store product.asp?prodid=803.

[15] J. Alves-Foss. Multiple Independent Levels of Security. In

Springer Encyclopaedia of Cryptography and Security, pp. 815–

818, 2011.

[16] J. Windsor. Time and Space Partitioning in Spacecraft Avionics.

In Proceedings of the IEEE International Conference on Space

Mission Challenges for Information Technology, pp.13–20, 2009.

[17] L. Wen, W. Jiang, K. Jiang, X. Zhang, X. Pan and K. Zhou. De-

tecting Fault Injection Attacks on Embedded Real-Time Applica-

tions: A System-Level Perspective. In Proceedings of the IEEE

High Performance Computing and Communications (HPCC),

2015.

[18] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, and E. En-

crenaz. Experimental Evaluation of Two Software Countermea-

sures Against Fault Attacks. In Proceedings of the IEEE Confer-

ence on Hardware-Oriented Security and Trust (HOST), pp. 112–

117, 2014.

[19] K. Jiang, P. Eles and Z. Peng. Optimization of Message En-

cryption for Distributed Embedded Systems with Real-Time Con-

straints. In Proceedings of the IEEE Symposium on Design and

Diagnostics of Electronic Circuits and Systems, pp. 243–248,

2011.

[20] K. Jiang, P. Eles and Z. Peng. Co-design Techniques for Dis-

tributed Real-Time Embedded Systems with Communication Se-

curity Constraints. In Proceedings of the Design Automation and

Test in Europe (DATE), pp. 947–952, 2012.

[21] S. Peisert, J. Margulies, D. M. Nicol, H. Khurana and C. Sawall.

Designed-in Security for Cyber-Physical Systems, IEEE Security

& Privacy, vol. 12, no. , pp. 9–12, Sept.-Oct. 2014.

[22] C. W. Lin, Q. Zhu and A. Sangiovanni-Vincentelli. Security-

Aware Modelling and Efficient Mapping for CAN-Based Real-

Time Distributed Automotive Systems. In IEEE Embedded Sys-

tems Letters, vol. 7, no. 1, pp. 11–14, 2015.

[23] N. Veyrat-Charvillon, M. Medwed, S. Kerckhof and F-X. Stan-

daert. Shuffling against side-channel attacks: A comprehensive

study with cautionary note. In International Conference on the

Theory and Application of Cryptology and Information Security,

pp. 740–757, Springer, 2012.

[24] E. Latronico and P. Koopman. Representing Embedded System

Sequence Diagrams as a Formal Language. In Proceedings of

the International Conference on The Unified Modeling Language,

Modeling Languages, Concepts, and Tools (UML), pp. 302–316,

2001.

[25] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli, and

G. Pelosi. Low voltage fault attacks to AES and RSA on general

purpose processors, Cryptology ePrint Archive, Report 2010/130,

2010.

[26] IBM Blueprints. Using the Linux CPUFreq Sub-

system for Energy Management. Available at

https://www.ibm.com/support/knowledgecenter/linuxonibm

/liaai.cpufreq/liaai-cpufreq pdf.pdf.

[27] S. Bhattacharya and D. Mukhopadhyay. Curious case of

Rowhammer: Flipping Secret Exponent Bits using Timing Anal-

ysis, Cryptology ePrint Archive, Report 2016/618.

[28] S. Skorobogatov. Flash memory ’bumping’ attacks. In Proceed-

ings of the 12th international conference on Cryptographic hard-

ware and embedded systems (CHES), pp. 158–172, 2010.

[29] N. Miura, Z. Najm, W. He, S. Bhasin, X.-T. Ngo, M. Nagata, and

J.-L. Danger. Pll to the Rescue: A Novel EM Fault Countermea-

sure. In Proceedings of the ACM Design Automation Conference

(DAC), 2016.

3S-3

213

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

