
FPGA Based Cyber Security Protocol for
Automated Traffic Monitoring Systems:

Proposal and Implementation
(Invited Paper)

Anupam Chattopadhyay, Vikramkumar Pudi, Anubhab Baksi and Thambipillai Srikanthan
School of Computer Science & Engineering, Nanyang Technological University, Singapore

Abstract—There is a rapidly growing interest in the field
of unmanned road vehicles across the world. To aid the traf-
fic management of such systems, there is an urgent need to
develop appropriate security protocols facilitating car-to-car
and car-to-traffic controller systems. Ensuring security requires
both confidentiality (will be understandable only to intended
recipients) as well as authenticity (message is not tampered
during communication), both of which are taken care of in an
Authenticated Encryption with Associated Data (AEAD) scheme.
In this paper, we propose a new AEAD-based protocol for secure
and authenticated transmission of videos to the base station
captured by traffic monitoring systems in real time. Our protocol
utilizes ACORN v2, a lightweight AEAD primitive. For the secret
key to be used in encryption-authentication, we use the concept
of Physically Unclonable Functions (PUFs). The entire protocol
is implemented and evaluated with an FPGA-based prototype,
using a 640×480 pixel camera with 30 frames per second. The
area required for the proposed protocol is 5% of the total FPGA
device (Xilinx Zynq-XC7Z020-1clg484).

I. INTRODUCTION

Automated cars and automated traffic monitoring systems

are of great interest nowadays. In this direction, one may

notice that, Tesla’s Model 3 car has 325k pre-orders, totaling

an amount of $14.5B in just one week after the announcement

for the car is made [1]. Another example would be, the US

government has already fixed vehicles based on the level of

human participation requirement in to five categories; ranging

from No-Automation (Level 0) to Full Self-Driving Automa-

tion (Level 4) [2]. Although such vehicles are expected to be

on road within a few years, there is a lack of standardized

cyber security protocols for communications among the cars,

the traffic monitoring systems and the base stations (which

analyze the data sent by the traffic monitoring systems). In

this work, we focus on the issue of wireless communication

of the Automated Traffic Monitoring Systems (ATMS) with

the base station, and propose a cyber security protocol.

The novelty of our protocol lies in the use of Physically

Unclonable Functions (PUFs) [3], [4]; as a mean to solve the

issue of secret key establishment. To the best of knowledge,

this is the first of this kind. The usual wireless communication

can be carried out with the help of standard protocols like

IEEE 802.11 [5]. Thus, we do not intent to develop a full-

fledged protocol like IEEE 802.11. Rather our protocol offers

flexibility in the sense that, it could be used on top of any

wireless communication protocol, like IEEE 802.11 or some

military protocol. Hence, we consider attacks like spoofing,

denial of service etc as out of scope for this work, which can

be taken care of by the actual communication protocol itself.

In the subsequent sections, we discuss the our proposed

protocol in details. Further, we demonstrate the practicality of

our protocol by implementing it on Xilinx FPGA board [6],

which is summarized in Section VI.

II. BACKGROUND

Self driving cars like Google driver-less car [7] commu-

nicate with ATMS for directions and guide lines; like speed

limit, school zones, road construction, traffic density etc. An

ATMS uses cameras for road traffic monitoring to observe

particulars and facilitates necessary traffic information to be

available in places like traffic signals, bus information display

etc; as shown in Fig. 1.

 Traffic
Camera

Traffic light
 Signals

 Automated Traffic
Monitoring Systems

Traffic Vehicles

Bus Information
 Display

Smart
Phone

Fig. 1. Functionality of Automated Traffic Monitoring Systems

Thus, the data from the ATMS’ need to be sent securely

to the base station such that any malicious person1 can not

send any wrong/misleading information about the real traffic.

1We call such a person an attacker from now on.

2016 IEEE Computer Society Annual Symposium on VLSI

978-1-4673-9039-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ISVLSI.2016.97

18

Here we argue that such communication is to be encrypted

to provide confidentiality as well as authentication to prevent

tampering. Encryption is needed to guarantee secrecy: Only

the intended recipient can understand it. This scheme works

as follows. There is a secret key, which is known to the sender

(ATMS) and the receiver (base station). The sender sends the

data after encrypting with this key, the receiver understands the

intended data by decrypting it with the same key. For anyone,

who has no knowledge of the key, the encrypted message will

look like a random stream. Further, suppose that the attacker

is able to alter the data being communicated. To resist such a

case, we would use authentication; i.e., we would generate a

tag (which is unique for each data) and append the tag with

the data. The base station would compute tag for the data, then

check if both the tags (generated and received) match.

ATMS’ typically operate in constrained resources and trans-

mit data over wireless networks. This means that, the modules

intended to provide security should be light-weight in hard-

ware. Further, it is recommended that the same secret key

should not more than once (for example, as discussed in [8]).

In [9], [10], [11], authors proposed methods for preserving

security in road traffic monitoring system, but they did not

address hardware/software complexity of implementing these

methods. Moreover, those methods store secret keys in the

device memory. This suggests that, an attacker is able to

extract secret keys from senor nodes, thereby causing a serious

security threat.

III. SCOPE OF OUR WORK

Our protocol deals with the situation when several ATMS’

are sending information to one base station. Each ATMS

captures real time video, (with a secret key) encrypts it, and

sends to the base station along with an authentication tag. The

base station, having known the secret key, decrypts the video

and checks if the tag is valid. Here we focus on the problem

of communicating the secret keys with the ATMS and the base

station. The base station contains necessary tools (human or

automated) to take appropriate decisions (e.g., license plate

recognition, crowd monitoring, vehicle collision detection,

traffic light monitoring, traffic queue estimation etc.), and is

assumed to be out of reach for the attacker.

Now, the first challenge here is to pre-distribution of the

keys. In this regard, we propose to use one inherent hardware

property, Physically Unclonable Function (PUF) [3], [4], of the

ATMS to be used as the key. In principle, PUF will receive

challenge as an input and generates corresponding output used

as a secret key. PUFs are easy to get for a given hardware,

and are difficult to replicate since it is generated by some

kind of noise at the time of manufacturing. However, for a

given chip, one can record all PUFs and store it. In our case,

we pre-compute and store these PUF information to the base

station before deployment of the ATMS’. Our proposed PUF

implementation requires less than 1 GB of memory for storing

pre-computing the outputs from PUF at base station. Using

todays current technology we can easily offer the memory

required for all ATMS’ sensors nodes for storing PUF outputs

at base station. Now, the ATMS’ use different PUFs as the

secret key for different communications; which is known to the

base station, as it already holds the record for all PUFs. Thus,

the problem of key establishment is resolved. Since PUFs are

inherent to the hardware, it can be used when constrained

hardwares are in use. In another direction, one may note that,

while we implement our protocol in Field Programmable Gate

Arrays (FPGA) the methods presented in [12] are not suitable

for FPGA implementation. Moreover, the use of reconfigurable

PUFs [13] makes it possible to get the secret key length of

desired size.

As we mentioned earlier, the communication from the

ATMS’ to the base station should be encrypted as well as tam-

pering proof. Now, Authenticated Encryption with Associated

Data (AEAD) schemes aim at providing both confidentiality

and authenticity together. Hence, we choose one light-weight

AEAD scheme, named ACORN v22 [14]. The secret key

for this AEAD is obtained from the PUF, thus the PUF is

fed to the AEAD circuit (which prevents the PUF being

exposed to prevent modeling attack [15]). One may argue

that, instead of a light-weight AEAD, some more popular

schemes like AES [16] or some other Public Key cyrptosystem

with authentication module. While such arguments are valid

indeed, we would like to emphasize on the point that, ACORN,

being a light-weight AEAD, consumes less area compared to

AES/Public Key Cryptosystem with authentication module.

For example, public key cryptosystems like Diffie-Hellman,

RSA etc in ATMS sensor nodes require exponential computa-

tion complexity [12]. This reduction of hardware is particularly

beneficial for tightly constrained devices like ATMS.

To summarize, our protocol uses PUFs for the key pre-

distribution between ATMS and the base station, which is

cheaper compared to conventional methods. This key is used

in a light-weight AEAD scheme for encryption and authen-

tication. Finally, these whole process works on top of a full-

fledged wireless communication like IEEE 802.11.

Now, we discuss some of the associated topics which are

out of scope of this work. We intentionally do this for the

time being, and hope to propose an extension of this work

that could address all these issues in near future.

Here are such a few exemplary cases. There is need for a

synchronization mechanism between the ATMS’ the base sta-

tion in case some data packet is lost. Also, the ATMS’ should

receive a handshaking from the base station. The time-stamp,

message counter should be associated with each data packet

the ATMS’ are sending. Moreover, as our implementation is

only for practical demonstration purpose, we use random bits

for IV and AD here, which needs to be standardized. Last,

but not the least, one should consider the cases for snooping

(data packets can be captured completely by the attacker, and

the base station receives no response from ATMS’) and the

denial of service.

2Henceforth, we use ‘ACORN’ and ‘ACORN v2’ interchangeably.

19

IV. PROPOSED CYBER SECURITY PROTOCOL

This section presents the proposed protocol for automated

traffic monitoring systems and its architecture. The architec-

ture of proposed protocol contains mainly key generation and

authenticated encryption modules. Special care is taken in

order to ensure a lightweight architecture realization.

A. Cyber Security Requirements

We briefly revisit the major security features required for

such a protocol.

• Security: The main requirement of any security protocol

is confidentiality of transmitted data and received data.

• Message Integrity: The data packets transmitted from

sensor nodes cannot be modified by a malicious attacker.

For this purpose, we use authentication tag of size 128-

bits and its generation depends on input data and secret

key.

• Secret Key Generation and Exchange: The generation

of encrypted data and authenticated tag depends mainly

on secret key. In our proposed security protocol we do

not transmit the secret key via any public-key protocol.

Rather, only the inputs (called, Challenge) to the PUF

are transmitted. At the sensor node we generate secret

key to avoid memory based attacks, whereas at the server

side we will store the secret key tables for corresponding

challenge.

• Efficiency: The available resources at ATMS traffic sen-

sor side are limited and most of the traffic monitoring

cameras are used for transmission of data. Because of

this we have to use lightweight and low cost modules.

B. Components in Our Protocol

Fig. 2 shows the architecture of our proposed protocol used

in ATMS. It consists of four components: Keygen, TagEncrypt,

TagDecrypt and Authenticate, which we explain shortly. PUFs

are used in the key generation (Keygen) module, authenticated

encryption and decryption (using ACORN) used as TagEn-

crypt and TagDecrypt modules and a simple comparison circuit

used as Authenticate module. A pictorial view is given in

Fig. 2.

• Keygen: Takes challenge Ch as input and generates

the secret key K. We denote this operation as K =
Keygen(Ch). This module is implemented using PUFs.

• TagEncrypt: Takes the secret key K, associated data AD,

initialization vector IV and plain-text PT as inputs and

generates cipher-text CT and authentication tag T (based

on the ACORN encryption module) as outputs.

• TagDecrypt: Receives the secret key K, associated data

AD, initialization vector IV and cipher-text CT as inputs

and generates plain-text PT and a new authenticated tag

T ′ (based on the ACORN decryption module) as outputs.

• Authenticate: Takes authenticated tags’ T and T ′ from

the TagEncrypt and TagDecrypt modules and returns a

validation signal V as output. If V = 1, then it means that

both the tags are equal, so received data is authenticated;

otherwise the received data is not authenticated, possibly

because an attacker was able to send a tampered/fake data

to the base station.

C. Authenticated Encryption Using ACORN v2

An AEAD scheme provides both authenticity and confiden-

tiality. Thus, it is a natural choice for our case. Here we take

ACORN, which is lightweight. It takes one secret key (denoted

by K henceforth; to be known only to sender and recipient),

Initialization Vector (IV), Plain-text (PT), Associated Data

(AD) as inputs and outputs one Cipher-text (CT) & a tag (T).

For the plain-text, we want the encryption, while we want the

authentication to be done on both associated data and plain-

text. Thus, the cipher-text (to be sent to the intended recipient)

depends on the plain-text: It is obtained by XORing one binary

stream (called, key-stream) with the plain-text; and the tag

depends on both the plain-text and AD.

The core of ACORN is a stream cipher having a state

register of 293 bits, which consists of six Linear Feedback

Shift Registers (LFSRs) of different size, and one four bit Non-

linear Feedback Shift Registers (NFSRs) which is updated

from a feedback (f) of the whole state. At each update (call

it StateUpdate), one input bit, m (through which K, IV,AD
and PT are inserted), is fed to the NFSR. Now, K (128-bit),

IV (128-bit), AD (up to 264-bits) and PT or CT (based on

encryption or decryption; up to 264-bits) are loaded with this

bit. The tag is of 128 bits, which is the recommended length

by the designer.

We exclude detailed description, interested readers may

find it in [14]. For the sake of completeness, we present

a compact description here. Each StateUpdate function, at

i-th round, performs three operations: Update each LFSRs,

compute feedback (fi) and key-stream bit (ksi), accept one

external bit (mi). Before processing AD, the cipher is updated

1536 rounds with key K and IV . Then, it updates the state

for 512 + length(AD) rounds while processing AD. While

processing PT or CT , the state is also updated in a similar

fashion.

The key-stream bits (to be XORed with PT to yield CT)

and the tag bits are both generated by ksi, but for separate

rounds, i.e., for separate values for i. From i = 2048 +
length(AD) to i = 2048 + length(AD) + length(PT), we get

the key-stream; and from i = 2943+length(AD)+length(PT)
to i = 3072 + length(AD) + length(PT) we get the tag. The

processing of CT along with T is very similar.

Denoting the j-th state bit at i-th round by Si,j for

j = 0, 1, . . . , 292; then, each StateUpdate is described by the

following operations:

Si,289 ← Si,289 ⊕ Si,235 ⊕ Si,230

Si,230 ← Si,230 ⊕ Si,196 ⊕ Si,193

Si,193 ← Si,193 ⊕ Si,160 ⊕ Si,154

Si,154 ← Si,154 ⊕ Si,111 ⊕ Si,107

Si,107 ← Si,107 ⊕ Si,66 ⊕ Si,61

Si,61 ← Si,61 ⊕ Si,23 ⊕ Si,0

Si+1,292 ← fi ⊕mi,

20

 Physically
Unclonable
 Function
 (PUF)

Video
Data

Atuhenticated
 Encryption
 Module
 (ACORN)

Atuhenticated
 Decryption
 Module
 (ACORN)

Decrypted
Video Data

Secret Key
 Storage
 Memory

Encrypted
Video Data

Verification
Circuit

Tag

ATMS

Keygen

TagEncrypt
TagDecrypt

Communication
Channel

Base Station

Authenticate

Fig. 2. Overview of the Proposed Protocol

289 292

⊕G

m

f

⊕
230 288

F

235

⊕
⊕

193 196

E

229

⊕
⊕

154 160

D

192

⊕

⊕
107 111

C

153

⊕
⊕

61 66

B

106

⊕
⊕

0 23

A

60

⊕

Fig. 3. Structure of ACORN: six LFSRs (A-F) and one NFSR (G)

ksi ←Si,12 ⊕ Si,154 ⊕ (Si,235 ∧ Si,61)⊕ (Si,235 ∧ Si,193)

⊕ (Si,61 ∧ Si,193),

fi ←Si,0 ⊕ (¬Si,107)⊕ (Si,244 ∧ Si,23)⊕ (Si,244 ∧ Si,160)

⊕ (Si,23 ∧ Si,160) ⊕ (Si,230 ∧ Si,111)⊕
((¬Si,230) ∧ Si,66)⊕ (cai ∧ Si,196)⊕ (cbi ∧ ksi).

Here the variables mi, cai, cbi are determined by some

simple rules, which can be found in [14, Chapter 1].

D. Physically Unclonable Functions for Key Generation

CounterCounter

CounterCounter

>?

N-Oscillators

Output

Input

Multiplexer

0 or 1

Fig. 4. Block Diagram of Ring Oscillator based PUF

In this work, we implemented Ring Oscillator Physically

Unclonable Function (RO-PUF), which has simpler archi-

tecture compared to the other PUFs described in [3]. Each

RO-PUF is made of two N -bit multiplexers, two counters,

one comparator and N -ring oscillators (ROs), as shown in

Fig. 4. Every ring oscillator in RO-PUFs contains odd number

of inverters connected in a loop. The output of each ring

oscillator depends upon the physical characteristics of inverter.

The characteristics of each inverter vary within and across a

chip due of manufacturing variations, based on which the ring

oscillator achieves a unique frequency.

In the RO-PUF, depending upon the multiplexer selection

logic, two ROs provides inputs to the counter. The counters

are compared in fixed intervals (called, the comparison time)

to generate the PUF output bit (called, Response). RO-PUF

produces single output bit at each comparison interval. We can

generate more PUF bits by comparing the counters at multiple

times with fixed comparison intervals. The output of the PUF

can be used as low cost authentication method for devices and

secret key generation [3], [4].

In our protocol we use PUF architecture presented in [17],

which uses 256 ring oscillators and it is implemented using

FPGA. The experimental results in [17] shows that, this PUF

will give the correct output response almost 95% of the time

and more than 40% of output bits are different for different

PUFs with the same inputs. By applying challenge Ch as

input to the PUF, we generate secret key K, bit by bit at

each comparison intervals.

V. SECURITY CLAIMS

Our protocol is secure against some common attack scenar-

ios, as described here.

• There could be some attacks in the wireless communica-

tion; like confidentiality, integrity and denial of service

(DoS) attacks [18]. In the confidentiality attack, the

attacker secretly attempts to get the information being

communicated, which we prevent by encrypting it. In

integrity attack, the attacker is able to alter the data from

the ATMS, including data deletion/addition, flipping bits,

or sending the same data multiple times (Replay attacks).

In such a case, the Tag would be a mismatch, and the base

station could easily identify such an incident. Also, as we

mentioned earlier, this protocol is not suitable to resist

DoS attack by itself, rather it is dependent on the actual

protocol (for wireless communication) for resolving such

an issue.

• Capturing one ATMS would only reveal the secret keys

associated with it, all the other ATMS’ will remain secure.

21

• It is known that, if PUF is exposed to the public directly,

then it would be subject to modeling attack [15]. How-

ever, our protocol does not expose PUF, rather it uses

PUF internally. Thus, this attack is not applicable for our

protocol.

VI. FPGA IMPLEMENTATION & RESULTS

In this section, we present the prototype of proposed

protocol for ATMS and its FPGA implementation results.

Here, we are using OV7670 camera as the traffic camera

under surveillance; one FPGA based board, Zedboard [6]

for implementation shown in Fig. 2 and LCD monitor for

displaying the outputs from the board. Fig. 5 shows the

FPGA
ZedBoard

OV7670
Camera
Module

Video Capture
 Module

 Cyber
Security
Protocol

LCD Monitor
Interface
Module

Original
Video

Encrypted
Video

Decrypted
Video

Fig. 5. Demonstration for the Proposed Protocol using FPGA

experimental setup of proposed protocol. For Keygen module

we use PUF construction explained in section IV-D. This

PUF takes a 16-bit challenge Ch to generate key K. For the

PUF implementation, we use 256 ring oscillators with seven

inverters, two 256 : 1 MUXes, two 32-bit counters and one

32-bit comparator. We use 0.01 ms as comparison interval for

taking each bit of secret key from the PUF.

The camera module captures real time video with a resolu-

tion of 640×480 at 30 frames per second. This video is fed

as the input to the TagEncrypt module. For TagEncrypt and

TagDecrypt modules we use ACORN (described in section

IV-C). In our protocol demonstration, we choose random bits

of size 128 and 256 for IV and AD respectively, as inputs

for ACORN. In our current setup we are using single LCD

monitor for displaying the original, encrypted and decrypted

video. The Fig. 5 shows the original, encrypted and decrypted

real time video displayed on LCD monitor.

A. Experimental Results

Fig. 6 shows the original, encrypted and decrypted images,

and its corresponding histograms. The plain image (middle

subfig.) is encrypted using ACORN with the secret key gen-

erated from PUF from the orginal image (left subfig.), the

decrypted image (right subfig.) is obtained from the encrypted

image with the same secret key. The corresponding histograms

are shown at the bottom of Fig. 6; one may notice that the

histogram for the encrypted image is uniformly distributed.

Original Image Encrypted Image Decrypted Image

(a) Original, Encrypted and Decrypted Images

Original Image

1600
1800

 200

 400

 0
100 250 300150 200 50

 600
 800
1000
1200
1400

Decrypted Image

1600
1800

 200

 400

 0
100 250 300150 200 50

 600
 800
1000
1200
1400

Encrypted Image

 50

 100

 0
100 250 300150 200 50

 150

 200

 250

 300

 350

(b) Histograms of Original, Encrypted and Decrypted Images

Fig. 6. Encrypted and Decrypted Images with its corresponding Histograms

Table I shows the resource consumption and speed of the

PUF, ACORN and prototype of proposed security protocol

design results using targeted Zedboard with Xilinx Zynq-

XC7Z020-1clg484 device. The area consumption of proposed

protocol is 5% of overall FPGA device. The area consumption

of PUF is more than ACORN, because we designed RO-

PUF using the method presented in [17], this design uses

256 ring oscillators. For low area RO-PUF we can reduce

the ring oscillators to 128 or 64, this saves area required for

RO-PUFs. Table II shows the performance comparisons of our

authenticated encryption(ACORN) FPGA results with existing

AES-GCM and AES-SHA256 results presented in [19]. From

Table II, we observe that ACORN module require less area

compared to the AES-GCM and AES-SHA256.

TABLE I
SYNTHESIS RESULTS OF PROPOSED DESIGNS ON ZEDBOARD

Module Slice LUTs Registers Frequency(MHz)
PUF 641 269 333.3
ACORN 146 109 271
Complete Protocol 2726 1517 222.2

TABLE II
FPGA PERFORMANCE COMPARISONS

Module Device Slice LUTs Frequency (MHz)
ACORN XC5VLX50T 377 238
AES-GCM [19] XC5VLX50T 2687 91.6
AES-SHA256 [19] XC5VLX50T 2730 100

Ideally, a good AEAD scheme should be such that, even if

a single bit of the secret key is flipped after the encryption,

then it would be neither possible to get the plain-text from

the cipher-text nor the tags are matched. We try to explore

22

the vulnerability of our implementation under such a scenario,

which is known as the Key Sensitivity Test. Since there is not

much scope to show outputs in details, we only show one

example with encryption and decryption only. Here, Fig. 7

shows the original, encrypted and pseudo-decrypted images,

and its corresponding histograms under key sensitivity test.

For the set-up, we generate the encrypted image from one

particular key, flip the MSB of it, and then try to decrypt with

this altered key. The output (pseudo-decrypted) image in Fig.

7 completely different from original image, the histogram of

the pseudo-decrypted image is uniformly distributed and it is

similar to the encrypted image. Similar we have conducted

experiments by flipping single bit of IV and AD, we have

obtained similar results as key sensitivity test, which we do

not include here.

Original Image Encrypted Image Pseudo-Decrypted Image

(a) Original, Encrypted and Pseudo-Decrypted Images under Key Sensitivity
Test

Original Image

1600
1800

 200

 400

 0
100 250 300150 200 50

 600
 800
1000
1200
1400

Encrypted Image

 50

 100

 0 100 250 300150 200 50

 150

 200

 250

 300

 350

Pseudo-Decrypted Image
100 250 300150 200 50

 50

 100

 0

 150

 200

 250

 300

(b) Histograms of Original, Encrypted and Pseudo-Decrypted Images under
Key Sensitivity Test

Fig. 7. Encrypted and Decrypted Images with its corresponding Histograms
under Key Sensitivity Test Results

VII. CONCLUSION

This work aims at developing a protocol for key establish-

ment, encryption and authentication between multiple ATMS’

and one base station. For this purpose, we use Physically

Unclonable Functions (PUFs); along with an Authenticated

Encryption with Associated Data (AEAD) scheme (in this

case, we choose ACORN v2 as the AEAD). To the best of our

knowledge, this is the first work in this field, which offers key

establishment to be done with low hardware overhead. Also,

as we discussed, it can resist a few common attack scenario.

Moreover, it allows flexibility to be used in association with

some standard wireless communication protocol (like IEEE

802.11).

We would like to mention that, we implement our pro-

posed protocol on a FPGA based Zedboard from Xilinx. Our

implementation occupies 5% of total area of FPGA device,

thereby keeping remaining area for other processing elements

(compression, detection etc.). We successfully processed (en-

crypted/decrypted and authenticated) real time videos captured

from camera with resolution of 640×480 pixels at 30 frames

per second.

REFERENCES

[1] Tesla’s model 3 now has 325k pre-orders – and $14.5b in potential
sales. http://www.computerworld.com/article/3053553/car-tech/
teslas-model-3-now-has-325k-pre-orders-and-145b-in-potential-sales.
html. Online; accessed 29-April-2016.

[2] U.s. department of transportation releases policy on automated vehicle
development. http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.
S.+Department+of+Transportation+Releases+Policy+on+Automated+
Vehicle+Development. Online; accessed 29-April-2016.

[3] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Design Automation
Conference, 2007. DAC ’07. 44th ACM/IEEE, 2007, pp. 9–14.

[4] A. Maiti, I. Kim, and P. Schaumont, “A robust physical unclonable
function with enhanced challenge-response set,” IEEE Transactions on
Information Forensics and Security, vol. 7, no. 1, pp. 333–345, 2012.

[5] “IEEE Standard for Wireless LAN and mdash, Medium Access
Control and Physical Layer Specification, P802.11,” Nov. 1997.

[6] (2012) Avnet-zedboard: A development board for xilinx zynq-7020.
[Online]. Available: http://zedboard.org/

[7] S. L. Poczter and L. M. Jankovic, “The google car: Driving toward a
better future?” Journal of Business Case Studies (Online), vol. 10,
no. 1, p. 7, 2014.

[8] Taking advantage of one-time pad key reuse?
http://crypto.stackexchange.com/questions/59/
taking-advantage-of-one-time-pad-key-reuse. Online; accessed
29-April-2016.

[9] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady, “Enhancing security
and privacy in traffic-monitoring systems,” IEEE Pervasive Computing,
vol. 5, no. 4, pp. 38–46, 2006.

[10] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor
networks,” Communications of the ACM, vol. 47, no. 6, pp. 53–57,
2004.

[11] A. J. Blumberg, L. S. Keeler, and A. Shelat, “Automated traffic
enforcement which respects” driver privacy”,” in Intelligent
Transportation Systems: Proceedings of IEEE, 2005, pp. 941–946.

[12] C. K. Li, G. Yang, D. S. Wong, X. Deng, and S. S. Chow, An efficient
signcryption scheme with key privacy. Springer, 2007, pp. 78–93.

[13] S. Katzenbeisser, Ü. Koçabas, V. van der Leest, A. Sadeghi, G. J.
Schrijen, and C. Wachsmann, “Recyclable pufs: logically
reconfigurable pufs,” J. Cryptographic Engineering, vol. 1, no. 3, pp.
177–186, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s13389-011-0016-9

[14] H. Wu. (2015) Acorn: A Lightweight Authenticated Cipher (v2).
CAESAR Competition. [Online]. Available:
https://competitions.cr.yp.to/round2/acornv2.pdf

[15] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010, 2010, pp. 237–249. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866335

[16] “Announcing the Advanced Encryption Standard (AES),” National
Institute of Standards and Technology, FIPS PUB 197, Nov. 2001.

[17] M. Patterson, J. Zambreno, C. Sabotta, S. Vyas, and A. Mills, “Ring
oscillator puf design and results.”

[18] Wireless hacking tools.
http://www.cse.wustl.edu/∼jain/cse571-07/ftp/wireless hacking/.
Online; accessed 29-April-2016.

[19] Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream encryption and
authentication with aes-gcm in dynamically reconfigurable systems,” in
International Conference on Field Programmable Logic and
Applications, Sept. 2008, pp. 23–28.

23

