
Lightweight ASIC Implementation of AEGIS-128

Anubhab Baksi, Vikramkumar Pudi, Swagata Mandal, Anupam Chattopadhyay
School of Computer Science and Engineering, Nanyang Technological University, Singapore

anubhab001@e.ntu.edu.sg, pudi@ntu.edu.sg, swagata.mandal@ntu.edu.sg, anupam@ntu.edu.sg

Abstract—In this paper, we study the problem of implementing
the AEAD scheme, AEGIS-128, which is a finalist in the recently
concluded competition, CAESAR. In order to achieve lightweight
(least area) implementation, we first look into one round of AES
encryption, which is a building block in this cipher. In this regard,
we make use of the state-of-the-art implementation of AES in
ASIC. We benchmark one round AES encryption (which is done
for the first time) and later use it with AEGIS-128 to improve
the optimized implementation reported (Inscrypt’14). Synthesis
results show that our design requires 9.6% less area and reduces
the power consumption by 95.3% (operating frequency is also
reduced). Further, this concept can readily be applied to a variety
of other ciphers.

Index Terms— ASIC, optimization, encryption, authentication

I. INTRODUCTION

Authenticated Encryption with Associated Data (AEAD) is a

relatively recent concept in symmetric key cryptography where

a cipher aims at providing confidentiality as well as authenticity.

Given a message (referred to as, plaintext) and associated

data; such a scheme encrypts the plaintext (confidentiality)

and generates a tag depending on both the plaintext and the

associated data (authentication). The sender (Alice) generates

the ciphertext and the tag and sends them along with the

associated data through an insecure channel (where the attacker,

Eve, is active) to the recipient (Bob). Upon receiving the

ciphertext and tag, bob generates the plaintext and the tag.

If both the tags match, then the received ciphertext (hence

the plaintext retrieved is original) and the associated data are

considered not disturbed by Eve. Otherwise, Bob learns there

is a disturbance caused by Eve; generates an invalid signal

and discards the entire data received. For the transmission

of plaintext, both confidentiality and authenticity is required;

whereas only authenticity is required for the associated data.

This is practical in scenarios like Internet packets, where the

header is not confidential (acts as associated data) but the body

is confidential (acts as plaintext).

To promote the research in this direction, a competition,

named CAESAR1 announces its finalists from 57 AEAD

proposals. The cipher, AEGIS (currently version 1.1) [9] is

among the 7 finalists (it is selected for high-performance

applications). This cipher is based on the stream cipher design

paradigm (XORing the plaintext with a pseudo-random string

generated) to get the ciphertext, then the plaintext is fed into

We thank the anonymous reviewers for their useful feedback. The first author
likes to acknowledge the kind support of Prakash Dey (CU, India); Sachin
Kumar, Sonu Jha, Arko Dutt, Mustafa Khairallah (NTU, Singapore).
1https://competitions.cr.yp.to/index.html

the state. Besides, it uses one round of AES-128 encryption

(see description in Section II-B) for its state update operation.

This cipher gains popularity among researchers. Apart from

being an academic interest (e.g., TIAOXIN, another CAESAR

candidate [7] is inspired by it); it is also being used in practical

applications (e.g., in a vehicular communication [8]).

In various cryptographic operations, it is often required

to have an optimized hardware (ASIC/FPGA) or software

(microcontroller/microcontroller) implementation. The reason

is, tightly contained devices (such as sensors) are generally

required to be equipped with cryptographic primitives. Hence

a major flow of cryptographic research focuses on optimized

design for a specific cipher. In this paper, we propose an ASIC

implementation of AEGIS-128 (one recommended version)

which consume least area compared to the other implementation

reported. For the sake of simplicity, we henceforth refer to

AEGIS-128 as AEGIS, unless otherwise mentioned. Our

implementation can handle both the encryption & tag generation

and decryption & verification modes. We mention that, our

design strategy is equally applicable to other variants of AEGIS.

The ASIC flow has already been explored in the literature

[3]. The smallest area implementation they are able to achieve

is ≈ 18720 GE (Optimization AO1 in Section 3.2; sometimes

referred to as A01) for 65 nm technology with and power

consumption 21.58 mW and clock frequency 1410 MHz.

However, as we point out later on, there are scopes to

improve this implementation. Also, unlike our case, they do

not implement decryption & verification circuit. Nonetheless,

we reduce area requirement by 9.6% compared to [3].

One key idea of our improved implementation is, utilize the

“Atomic AES v2.0” developed by Banik et al. [2] (a follow-up

work of [1]), which is the state-of-the-art lowest area imple-

mentation of AES-128 in ASIC. While the implementation of

[2] is for original AES-128 (both encryption & decryption),

we only need one round of AES-128 encryption for AEGIS
implementation. Hence, we amend the design so as to meet

our (reduced) requirement. As for the FPGA, only benchmark

of AEGIS is reported so far [8], to the best of our knowledge.

Another benchmarking for AEGIS-128L, a larger version, is

reported by ATHENA2.

Our Contributions

Our contributions in this paper are twofold. First, we

benchmark one round AES-128 encryption (optimized area)

for ASIC. This is a building block in quite a few ciphers, such

2https://cryptography.gmu.edu/athena/index.php?id=CAESAR source codes

251

2018 IEEE Computer Society Annual Symposium on VLSI

2159-3477/18/$31.00 ©2018 IEEE
DOI 10.1109/ISVLSI.2018.00054

as, AEGIS [9] or DEOXYS [6] (both are finalists in CAESAR).

To the best of our knowledge, despite of its frequent usage,

it has never been benchmarked under any hardware platform.

Our results are shown in Section IV-A.

Second, we apply this area optimized one round AES-128
encryption to the AEAD cipher AEGIS. This helps us to reduce

the ASIC area and power consumption significantly. Compared

to the design in [3], ours requires less area (9.6%) and very

less power (95.3%), however the operating frequency in our

case is also reduced.

Paper Organization

The rest of the paper is organized as follows. Section

II describes all the components of the AEGIS cipher. In

Section III, we describe the ideas used in the previous works

(one on AEGIS ASIC implementation, another on AES-128
encryption). Following these, we present how we implement

our concept on improved ASIC version of AEGIS. The results

we obtain are presented in Section IV. Finally, Section V

concludes the paper, citing interesting future works.

II. DESCRIPTION OF AEGIS

A. Overview

Before proceeding further, here we present a quick overview

of the AEGIS. It has the following parameters: 128-bit key, K;

128-bit initialization vector, IV ; and 640-bit state. The state

size is reduced from AEGIS-128L (which has a state size of

1024-bit), and it is suitable for high performance applications.

The lengths of associated data, AD and the plaintext P (and

hence the length of the ciphertext, C) are to be less than

264-bits. The recommended length of the authentication tag

is 128-bit; although the design allows to generate tag of an

arbitrary length ≤ 128. In AEGIS, both |AD| and |PT | are

communicated to Bob.

B. One Round AES-128 Encryption

It is common to use one round of AES-1283 encryption

in AEAD design. In this part, we briefly describe the original

AES-128 encryption. The cipher takes 128-bit input (plaintext)

and 128-bit key, and generates 128-bit output (ciphertext).

The input is rearranged into a 4×4 matrix of bytes (referred

to as the ‘state’), which is normally accessed in the column-

major way. The key is XORed with the state. The key is also

passed to the ‘key scheduling’ algorithm, which generates 10
round keys – each round key is of 128-bits, and the process is

reversible (given any round key, it is possible to recover the

key).

The state undergoes 10 rounds of modifications. The first

9 rounds are identical, each consists of 4 steps in order:

‘SubBytes’, ‘ShiftRow’, ‘MixColumn’ and ‘AddRoundKey’.

The last (10th) round is little different, it only has SubBytes,

ShiftRow and AddRoundKey (misses MixColumn).

The AddRoundKey step XORs the corresponding round

key to the state. This step is performed at the very beginning

3https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

(before 1st round), where the key is XORed with the state (=
plaintext). The rest steps are described below.

• SubBytes. This step contains the only non-linear operation

in the cipher. Here, the input is converted with the help

of a look-up table (known as, ‘SBox’).

• ShiftRow. This step affects the state row-wise. Each row

of state is rotated by a fixed number of rotations.

• MixColumn. This step operates on the state column-wise.

Each column of the state is considered a 4-dimensional

vector, each element of which belongs to GF(28). A 4×
4 matrix, M (whose elements are also in GF(28)), is

multiplied to each column. The result thus obtained is

used to substitute the old contents of the column. This

process is repeated for all 4 columns.

The one round AES-128 encryption is a simplified version

of the original which can use any of the one round from 1
to 9. Here, the 128-bit plaintext, after arranging to a 4 × 4
matrix of bytes, undergoes SubBytes, followed by ShiftRow,

followed by MixColumn. Finally the key is XORed. Figure 1

shows one round AES-128 encryption. Henceforth, the first

three combined steps are denoted by the notation R(·); so,

R(p) = MixColumn(ShiftRow(SubBytes(p))).

Plaintext Key

SubBytes

ShiftRow

MixColumn

⊕

Ciphertext

FIG. 1: One round AES-128 encryption

C. AEGIS State Update

The state of AEGIS consists of five 16-byte (= 128-bit)

registers, denoted by S0, S1, S2, S3 and S4, totaling 640-bits.

Another 128-bit register M is also used.

Let us denote the jth register at ith round by Si,j , j =
0(1)4, and the content of the message register M as Mi. Then,

the StateUpdate128(Si,Mi) operation (which updates all 5

registers) is given as (recall definition of R from Section II-B):

Si+1,0 ← R(Si,4)⊕ Si,0 ⊕Mi;

Si+1,1 ← R(Si,0)⊕ Si,1;

Si+1,2 ← R(Si,1)⊕ Si,2;

Si+1,3 ← R(Si,2)⊕ Si,3;

Si+1,4 ← R(Si,3)⊕ Si,4.

Figure 2 shows the structure of AEGIS state update operation.

252

Si,0 Si,1 Si,2 Si,3 Si,4

Mi

⊕
R R R R R

⊕ ⊕ ⊕ ⊕ ⊕

Si+1,0 Si+1,1 Si+1,2 Si+1,3 Si+1,4

FIG. 2: AEGIS state update function (StateUpdate128(Si,Mi))

D. Initialization

During the initialization, the key (K) and initialization

vector (IV) are loaded in the state, then the state is up-

dated 10 rounds. The detailed procedure is as given be-

low. Here const0 and const1 are two pre-defined 128-bit

constants, const0 := 000101020305080d1522375990e97962

and const1 := db3d18556dc22ff12011314273b528dd.

1) Key, IV are loaded at first:

S−10,0 ← K ⊕ IV ;

S−10,1 ← const1;

S−10,2 ← const0;

S−10,3 ← K ⊕ const0;

S−10,4 ← K ⊕ const1.

2) For i = −5(1)− 1:

M2i ← K;

M2i+1 ← K ⊕ IV .

3) For i = −10(1)− 1:

Si+1 ← StateUpdate128(Si,Mi).

E. Associated Data Processing

After key and IV are loaded to the state, associated data

(AD) is loaded. If |AD| = 0, then this step is skipped. If |AD|
is not a multiple of 128, then zero’s are padded to AD to make

its length a multiple of 128.

For i = 0(1)u− 1, the state update is done as given below,

here u = �|AD|/128�. We denote the ith 128-bit block of AD

by ADi.

Si+1 ← StateUpdate128(Si, ADi).

F. Encryption

The encryption operation follows, where the plaintext P
is used to update state, and to produce the ciphertext C. If

|P | = 0, then this step is skipped. If |P | is not a multiple of

128, then zero’s are padded so that |P | becomes a multiple of

128.

For i = 0(1)v − 1, the state update is done as given below,

v = �|P |/128�. We use the notation, Pi (resp. Ci) to denote

the ith 128-bit block of the plaintext P (resp. ciphertext C).

Ci ← Pi ⊕ Su+i,1 ⊕ Su+i,4 ⊕ (Su+i,2 · Su+i,3);

Su+i+1 ← StateUpdate128(Su+i, Pi).

G. Finalization

After encryption, the authentication tag (T) is generated

with seven more StateUpdate128 operations.

Let, q = Su+v,3 ⊕ (|AD| || |P |), where both |AD| and |P |
are represented as 64-bit values. For i = u + v(1)u + v + 6,

the following state update is done:

Si+1 ← StateUpdate128(Su+i, q).

The authentication tag, T , is the first t-bits (0 < t ≤ 128,

recommended value of t is 128) of T ′ =
⊕4

i=0 Su+v+7,i

H. Decryption & Verification

For decryption, the procedure is similar. It first does the

initialization and processing of associated data steps. Next, the

ciphertext C is decrypted from the plaintext P . If |C| is not a

multiple of 128, then zero’s are padded to make it a multiple

of 128.

For i = 0(1)v− 1, the decryption and state update are done

as follows:

Pi ← Ci ⊕ Su+i,1 ⊕ Su+i,4 ⊕ (Su+i,2 · Su+i,3);

Su+i+1 ← StateUpdate128(Su+i, Pi).

The finalization step is same as its namesake in encryption.

If the tag verification fails, then the ciphertext and the newly

generated tags are not given as output.

III. OPTIMIZATION: MINIMIZING ASIC AREA

In this section, we elaborate our optimization concept that

we use here to minimize the ASIC area. First, we describe the

concept used in [3]; and then we explain how the ASIC area

is minimized in one round AES-128 encryption [2] (and [1]).

Later, we explain the design considerations we incorporated.

A. Basic Optimization on AEGIS

The design objectives in [3] are twofold — area and

throughput optimization. As throughput optimization is out

of scope for our work, we only focus at the area optimized

implementation. More specifically, we consider the smallest

area implementation (18.72 kGE), AO1 (or, A01), which also

consumes least power (21.58 mW).

The authors, at first, design a base implementation with an

ordinary version of AES-128 one round encryption. Following

this, they adopt the optimized SBox implementation from [5].

However, the SBox implementation in [5] deals with masking,

which is a countermeasure against side-channel attacks. This

countermeasure works by incorporating random values, which

are XORed or ANDed with the internal components. Naturally,

the area requirement for this implementation is considerably

higher than its non-masked counterpart, which is given in [4].

253

B. Optimization on AES-128 Encryption

The design of AES-128 in [2] is an improvement on top

of the design in [1]. Hence, for the sake of conciseness, we

only describe the basic design choices of Atomic AES 2.0

(encryption only) in a nutshell, as the detailed description can

be found in [2].

It uses 16 registers (arranged in a 4×4 matrix), each of size

8-bits to store intermediate states and round keys separately (32

registers in total). Few registers are implemented with ordinary

flip-flops, while the others are implemented with scan flip-flops.

Ordinary flip-flops allow data movement in horizontal direction

only, while scan flip-flops allow data to move both horizontally

and vertically. The plaintext and the key are loaded serially

in first 16 clock cycles. It produces the output after 246 clock

cycles.

C. Improved Optimization on AEGIS (Ours)

Our implementation of R incorporates designs ideas from

AES-128 implementation (Section III-B) with a few modifi-

cations. The main change from the aforementioned implemen-

tation is, we skip the key scheduling function and few other

components that are used only in decryption process. Also,

we need lesser rounds. This helps to reduce the area. Further,

we also skip the step where the key is XORed with the state

(before the 1st round operation).

Once the design of R is completed, we focus on the main

architecture of AEGIS cipher. Since we want to minimize area

requirement, we instantiate R only once, which means we

access it sequentially; rather than instantiating it five times

and access them parallelly. In this case, one astute observation

regarding the StateUpdate128 operation is that, backing-up

state registers (S0, . . . , S3) is required (S4 is not needed to

be backed-up). This is because, the update of one register

depends on old content of another register. For example, when

computing Si+1,1; Si,0 is needed (refer to Section II-C). Now,

Si,0 is replaced by Si+1,0 already; so Si,0 is to be backed-up in

another register. In the naive approach, four back-up registers

are required.

However, using an optimization, it is possible to reduce the

number of back-up registers down to two. With the five 128-

bit registers, S0, . . . , S4; 128-bit message register M ; consider

the 128-bit back-up registers B1 and B2. The subscript i
denotes the contents of S0, . . . , S4 at ith round. Here B1, B2

are updated five times within one StateUpdate128; we call

each update as a step; so Bi
j denotes the content of Bi at jth

step, i = 1, 2. The following sequence of operations show how

StateUpdate128 can be done:

B1
5i ← R(Si,4)⊕Mi;

B2
5i ← Si,0;

Si+1,0 ← B1
5i ⊕B2

5i;

B1
5i+1 ← R(Si+1,0 ⊕B1

5i);

B2
5i+1 ← Si,1;

Si+1,1 ← B1
5i+1 ⊕B2

5i+1;

B1
5i+2 ← R(Si+1,1 ⊕B1

5i+1);

B2
5i+2 ← Si,2;

Si+1,2 ← B1
5i+2 ⊕B2

5i+2;

B1
5i+3 ← R(Si+1,2 ⊕B1

5i+2);

B2
5i+3 ← Si,3;

Si+1,3 ← B1
5i+3 ⊕B2

5i+3;

B1
5i+4 ← R(Si+1,3 ⊕B1

5i+3);

B2
5i+4 ← Si,4;

Si+1,4 ← B1
5i+4 ⊕B2

5i+4.

IV. RESULTS

In this Section, we present synthesis results for AES-128
one round encryption and our AEGIS design. We use VHDL

for the coding part; and then Synopsys Design Compiler version

H-2013.03-SP1, using the 65 nm CMOS TSMC technology

library for the synthesis and evaluation. The area is reported

in terms of kilo Gate-Equivalent (kGE).

A. One Round AES-128 Encryption

As mentioned previously, we use AES-128 one round

encryption as a black-box, the top-level architecture of which

is shown in Figure 3. The usage of the input-output signals is

straightforward.

R

clock

reset

Plaintext

Key

Ciphertext

done

Ciphertext

done

FIG. 3: Top level design of AES-128 1 round encryption

Here we present the ASIC synthesis results for the compo-

nent R of AES-128 one round encryption. Our design requires

2.21 kGE for implementation, achieved maximum operational

frequency as 355 MHz, 0.45 mW power and takes 21 clock

cycles to generate the output. As a comparison, it requires

24.6% and 9% less area compared to Atomic AES and Atomic

AES v2.0, respectively.

B. AEGIS

1) Implementation Overview

Here we outline the basic design concept we use for AEGIS
core, which encompasses the key components. The top level

description is given in Figure 4. The use of the signals clock,

reset and start are straightforward. The mode input identifies the

mode of operation, i.e., it is low for encryption & tag generation;

and high for decryption & verification. The next six input lines,

S0 in, . . . , S4 in,M in receives inputs for the corresponding

128-bit registers bit-by-bit. The following three input lines

indicate which input is being fed to M : AD active, is high for

AD blocks; P active for plaintext blocks for encryption & tag

generation (ciphertext blocks for decryption & authentication)

and T active for |AD| || |PT | (it is high for the first round

254

when |AD| || |PT | is fed; refer to Section II-G for more

details) for the particular round. For example, if plaintext is

232-bits long, P active will be high for 232−7 = 225 rounds,

as each round processes 27 bits. As for the outputs, C out and

T out give the ciphertext (during encryption & tag generation)

or the plaintext (during decryption & verification) and tag bit-

by-bit; and the done signal is high twice to indicate whether

the generated ciphertext/plaintext and tag are valid, respectively.

Note that, this core has to be implemented within a wrapper.

This wrapper will control all the input signals (e.g., send

plaintext blocks as bit-by-bit); as well as manage the output

signals. In case of decryption & verification, this wrapper will

be responsible to check the tag is matched and do the follow-up

steps (see Section II-H).

Next, we describe the architecture in short. The basic

architecture is pictorially presented in Figure 5. The input

signal clock controls the signal round counter, which is used

to update other registers. The registers, S0, . . . , S4,M,B1, B2

are described earlier. The 128-bit register C is used to store the

encrypted ciphertext (during encryption & tag generation) or the

decrypted plaintext (during decryption & verification), which is

determined by the mode input. The 128-bit register T stores the

tag. As mentioned already, R denotes the one round AES-128
encryption. Our implementation takes 38 clock cycles to update

one register (which includes, operating on R and accessing

B1, B2), so the StateUpdate128 operation takes 38×5 = 190
clock cycles. The done control part controls when the output

signal done will be high or when it will be low.

One crucial component in the design is the 238-bit

round counter. This signal controls the inputs/outputs across

the circuit. For example, the 1-bit signals, S0 in, . . . , S4 in,
M in are demultiplexed to the corresponding 128-bit signals;

clock

reset

start

mode

S0 in

S1 in

S2 in

S3 in

S4 in

M in

AD active

P active

T active

C out

T out

done

AEGIS
Core

FIG. 4: Top level design of AEGIS core

and the 128-bit signals, C, T are multiplexed to 1-bit C out,
T out; respectively.

The rationale for keeping the length of round counter as

238 bits is explained below:

• 1-bit to indicate whether data are being loaded to the

registers or StateUpdate128 is in operation.

• 8-bits to keep track of current status of data loading/

StateUpdate128. Note that, to load 128-bit inputs, we

need 7-bits; but since StateUpdate128 takes 190 clock

cycles, we use 8-bits.

• 57-bits to keep track of round number during AD loading.

Since |AD| < 264, and 27 bits are loaded in one round,

we need at most 64− 7 = 57 bits as the counter.

• Similarly, 57-bits to keep track of round number during

P loading.

• 114-bits to store the round number when T in is high for

the last time, say, at wth round. We need this, as we now

have to run StateUpdate128 for six more rounds, i.e.,

till the (w + 6)th round.

• 1 more bit is needed so that the round counter can go six

more rounds.

2) Synthesis Results

In Table I, we present the ASIC synthesis results for AEGIS
and compared with the existing design in AEGIS [3]. The

AEGIS design requires only 16.92 kGEs for implementation

and achieved maximum operational frequency as 208 MHz as

given in Table I. Our AEGIS implementation requires 1.8 less

kGE compared to the design in [3] (which also uses 65 nm

technology), and also requires very less power compared to

the design (but the operating frequency is also significantly

reduced). In mathematical terms, our implementation requires

9.6% less area and reduces the power consumption by 95.3%
compared to the design AO1. The area reduction in our case

is achieved by optimizing poor design choices. We would like

to reiterate that, our implementation contains both encryption

& tag generation as well as decryption & verification circuits;

whereas [3] only contains encryption & tag generation circuit.

TABLE I: ASIC synthesis results for AEGIS

Design Area (kGE) Frequency (MHz) Power (mW)

AEGIS (Ours) 16.92 208 1.007

AEGIS (AO1, [3]) 18.72 1410 21.58

V. CONCLUSION

Our work in this paper deals with implementation of one

round AES-128 encryption (in ASIC, with minimum area),

and later apply this primitive to the AEAD cipher, AEGIS-128.

The former result is reported for the first time, whereas the

latter result is improved from a previous work. An interesting

follow-up work can be to see how this primitive can be applied

to other AEADs where AES-128 encryption is used as a

building block, such as TIAOXIN or DEOXYS. Besides, similar

optimization on variants of AEGIS (other than AEGIS-128;

such as AEGIS-128L) can also be performed.

255

Inputs Outputs

mode

M in M C C out

AD active

•

P active done
control

done

T active

clock round counter •

S0 in S0
R

S1 in S1

S2 in S2 B1

S3 in S3

S4 in S4 B2

T T out

•

•

•

•

••/
1

/
128

/
128

/
128

/
1

/
238

/
1

•

/
128 •

reset

/
1

/
128 •

•

/
1

/
128 •

•

•

/
1

/
128 •

/
1

/
128

•

•

•
•

•

•

•
•

•
•

/
128

/
1

•

•

•

•

•

• •

•

•

FIG. 5: Architecture of AEGIS core

REFERENCES

[1] Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-aes: A compact
implementation of the AES encryption/decryption core. In: Progress
in Cryptology - INDOCRYPT 2016 - 17th International Conference on
Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings.
(2016) 173–190

[2] Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-aes v2.0. Cryptology
ePrint Archive, Report 2016/1005 (2016) https://eprint.iacr.org/2016/1005.

[3] Bhattacharjee, D., Chattopadhyay, A.: Efficient hardware accelerator
for AEGIS-128 authenticated encryption. In: Information Security and
Cryptology - 10th International Conference, Inscrypt 2014, Beijing, China,
December 13-15, 2014, Revised Selected Papers. (2014) 385–402

[4] Canright, D.: A very compact s-box for aes. In Rao, J.R., Sunar, B., eds.:
Cryptographic Hardware and Embedded Systems – CHES 2005, Berlin,

Heidelberg, Springer Berlin Heidelberg (2005) 441–455
[5] Canright, D., Batina, L.: A very compact ”perfectly masked” s-

box for AES. In: Applied Cryptography and Network Security, 6th
International Conference, ACNS 2008, New York, NY, USA, June 3-6,
2008. Proceedings. (2008) 446–459

[6] Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. https:
//competitions.cr.yp.to/round3/deoxysv141.pdf Accessed: 2018-02-27.

[7] Nikolić, I.: Tiaoxin – 346 (v2.1). https://competitions.cr.yp.to/round3/
tiaoxinv21.pdf Accessed: 2018-02-27.

[8] Wang, Y., An, J., Ha, Y.: Unified data authenticated encryption for
vehicular communication. In: 2016 IEEE 59th International Midwest
Symposium on Circuits and Systems (MWSCAS). (Oct 2016) 1–4

[9] Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm
(v1.1). https://competitions.cr.yp.to/round3/aegisv11.pdf Accessed: 2018-
01-22.

256

