
RAPPER: Ransomware Prevention via Performance Counters
Manaar Alam

Indian Institute of Technology Kharagpur
alam.manaar@iitkgp.ac.in

Sarani Bhattacharya
Indian Institute of Technology Kharagpur
sarani.bhattacharya@cse.iitkgp.ernet.in

Debdeep Mukhopadhyay
Indian Institute of Technology Kharagpur

debdeep@cse.iitkgp.ernet.in

Anupam Chattopadhyay
Nanyang Technological University Singapore

anupam@ntu.edu.sg

ABSTRACT
Ransomware can produce direct and controllable economic loss,
which makes it one of the most prominent threats in cyber security.
As per the latest statistics, more than half of malwares reported in
Q1 of 2017 are ransomware and there is a potent threat of a novice
cybercriminals accessing rasomware-as-a-service. The concept of
public-key based data kidnapping and subsequent extortion was
introduced in 1996. Since then, variants of ransomware emerged
with different cryptosystems and larger key sizes though, the un-
derlying techniques remained same. Though there are works in
literature which proposes a generic framework to detect the crypto
ransomwares, we present a two step unsupervised detection tool
which when suspects a process activity to be malicious, issues an
alarm for further analysis to be carried in the second step and de-
tects it with minimal traces. The two step detection framework-
RAPPER uses Artificial Neural Network and Fast Fourier Transfor-
mation to develop a highly accurate, fast and reliable solution to
ransomware detection using minimal trace points.

KEYWORDS
Ransomware, Hardware Performance Counters, Time-Series, Fast
Fourier Transformation, Autoencoder, Long-Short-Term-Memory
ACM Reference Format:
Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Anupam
Chattopadhyay. 2018. RAPPER: Ransomware Prevention via Performance
Counters. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
If your organization has not been hit by ransomware yet, there are
chances that it will soon be. The number of medium to large-scale
business falling prey to ransom payment and extortion of their
private databases have increased manifold. These malicious exe-
cutables infect the victim machine and demands a ransom amount
after encrypting the files and documents of the machine. In May
2017, WannaCry ransomware has affected approx. 200000 business
across 150 countries. Identification, blocking of these ransomwares
at the earliest along with recovering the contents of the already
encrypted files is already an open challenge.

Hardware Performance Counters (HPCs) were first introduced
for checking the static and dynamic integrity of programs, for
the purpose of detecting any malicious modifications to them as
discussed in [8].While in [2] performance counters are used to build
a malware detector in hardware. Detecting malware which modifies
the kernel control flow has been targeted in [10, 11]. The paper
uses performance counters to monitor the system calls to detect

the vulnerability. However, detection of ransomwares through the
HPCs, to the best of our knowledge, has not been attempted so
far. Though the underlying technique is similar [9], ransomware
detection requires far more accuracy and faster response time to
limit the damage.

A range of ransomwares were studied in [5], which identified 15
different ransomware families. It is suggested that despite advanc-
ing encryption systems, the prominent ransomwares leave a trait
in the access of IO and file-systems. Accordingly, Kharraz etal . [4]
proposed a technique of correlating high file system activity with
the intrusion of ransomware, which, however, is susceptible to
false positives and also can be defeated with a slow encryption pro-
cess. Moreover, the technique requires modification in OS kernel,
which may not be practical in many real scenarios. In a recent work,
Kiraz etal . presented a technique, where large integer multiplica-
tion blocks are identified within an execution [6]. Since public-key
cryptosystems rely on large integer multiplications, it can detect
the threat at an early stage. Similar approaches, for detection of
symmetric-key cryptographic primitives via data flow graph iso-
morphism [7] or by identifying characteristics of a cipher in a
binary code [3], are also presented. In this paper, neither we target
a specific family of ransomwares nor the properties corresponding
to a particular cipher implementation. Instead we develop a generic
anomaly based approach based on the HPC statistics.

Motivation and Contribution
The primary contributions of this paper are listed below:

• The main objective of RAPPER is to learn the behavior of the system
under observation with performance event statistics obtained from
HPCs. Unlike other works in literature, which save the templates
of malicious processes and matches it on its occurrence, here we
allow our tool to learn the normal operating behavior of the system.
The time-series data as observed from a selected cluster of HPC
events is fed to an Artificial Neural Network to learn the specific
characteristics of the data.

• Any deviation from this normal behavior as learned by the Autoen-
coder is considered as a suspect to RAPPER. Thus we observe that
the performance statistics of the system in presence of ransomware
are significantly dissimilar from the normal system behavior because
of repeated encryption process.

• In the course of our study, we identified a benign benchmark ap-
plication which can raise a false alarm. This is typically a benign
process, but because of its high computational overhead the system
behavior differ significantly from its normal behavior thus raising a
false alarm.

• Thus in the final step, we transform the time series to frequency
domain using Fast Fourier Transformation (FFT) and understand
the repeatability of data with help of a second autoencoder.

ar
X

iv
:1

80
2.

03
90

9v
1 

 [
cs

.C
R

] 
 1

2 
Fe

b 
20

18

https://doi.org/10.1145/nnnnnnn.nnnnnnn


RAPPER is a lightweight tool, which neither requires any root priv-
ilege, nor requires any hardware and kernel modification, thereby
making it practical to use in almost every environment.

2 ANOMALY DETECTION BY ANALYSING
THE SYSTEM BEHAVIOR

In this section, we first analyze the normal behavior of a system
by monitoring some appropriately selected hardware performance
counters in parallel. We then present a notion of anomalous activity
in the system and demonstrate a detailed methodology for detecting
those anomalies by using an Autoencoder.

2.1 Observing the system behavior using HPCs
The Hardware Performance Counters (HPCs) are a set of special
purpose registers built into modern processors to dynamically ob-
serve the hardware related activities in a computer system. There
are some recent works [10] which use these HPCs to detect mali-
cious programs targeted for a particular system. The HPCs can be
monitored dynamically with a user privilege using the well-known
perf tool, available in Linux kernels 2.6.31+. One interesting prop-
erty of the perf tool is that a user can observe the performance
counters associated with a system with some time interval, thereby
giving the benefit of observing the system behavior continuously
in a succession of time. The command to monitor a particular HPC
event in such way is as follows:

perf stat -e <event_name> -I <time_interval> <executable_name>

Since our objective is to detect the presence of ransomware,
which mainly contains an encryption program, typically involv-
ing both symmetric and asymmetric key encryptions, we selected
the hardware events which are more likely to change because of
the encryptions. The hardware events selected for our study are
instruction, cache-references, cache-misses, branches, and
branch-misses. The events are self-explanatory by their names.
Generally the symmetric encryption affects the cache based events
while the asymmetric encryptions affect the instruction and branch-
ing events.

To represent the prototype of a typical system behavior, we
designed a watchdog program, and collected the perf stat values
with 10ms time interval for that executable. The effects of all the
other processes including the ransomware running in the system
will have an impact on the performance counters. We collected
these values at the different point of time in the target system and
created a dataset of regular observation. We articulate that any
behavior which is not close to this dataset is an unusual activity,
but may not be a malicious one.

We show the effect of a Ransomware Program (for example,
a WannaCry) on the HPCs in Figure 1. The blue lines in Figure
represent the effect of normal system programs on the watchdog
executable for different HPCs, whereas the orange lines show the
effect of WannaCry ransomware.

An important point to be observed from Figure 1(b) is that for a
particular time interval the behavior of WannaCry does not change
much from the typical system behavior, for example around time in-
terval of 100 the effect of WannaCry on the hardware event branch
misses is same as normal system behavior. So, instead of consider-
ing individual points for decision making, we select a window of

observations considering each of the five events collectively. Thus,
we transform the problem into anomaly detection in multivariate
time-series data.

2.2 Learning a Time-Series data using an
Autoencoder

To present a generalized ransomware detection strategy we do not
model the behavior of the ransomwares as there can be potential
new ransomware whose behavior is unknown and cannot be mod-
eled. Instead, we model the normal system behavior, as we can
get a majority of such instances. Another advantage of detecting
anomalies by modeling normal behavior is that we do not need the
necessity of labeled dataset as any activity with unusual behavior
crossing a certain threshold can be detected as an anomaly. Thus,
we propose an unsupervised approach to detect these anomalies.
The HPC event counts observed over the watchdog application
can be considered as the time-series data which is system depen-
dent. An LSTM (Long-Short-Term-Memory) based autoencoder
can efficiently implement the unsupervised anomaly detection for
time-series, which we discuss below.

Autoencoder is an Artificial Neural Network used for efficient
coding of the input space by unsupervised learning. The primary
goal of an autoencoder is to induce a representation for a set of
data by learning an approximate identity function, i.e., if the input
data is X, the goal of the autoencoder is to learn the function f ,
given by - f : X → X

An autoencoder always consists of two mapping, encoding and
decoding, which are given as ϕ andψ respectively.

ϕ : X → F , ψ : F → X

where F is a vector referring to the decisive intermediate repre-
sentation learned by the autoencoder, which is used to regenerate
the original input data. The error incurred by the autoencoder to
regenerate the input from vector F is termed as Reconstruction
Error, which is given as below:

L = ∥X − (ψ ◦ ϕ)X∥2 (1)

The learning goal of the autoencoder is to minimize these recon-
struction cost for all the input samples, i.e., to find the mappings ϕ
andψ such that L is minimum.

argmin
ϕ,ψ

L = argmin
ϕ,ψ

∥X − (ψ ◦ ϕ)X∥2 (2)

In our case, the input X is a multivariate time-series sequence, and
the objective is to learn the structure of the sequence. LSTM net-
works, belonging to a class of Recurrent Neural Network Model,
are typically used for modeling sequence data, which efficiently
handles the dependencies within the sequence. Hence, we use the
LSTM based autoencoder for our detection purpose. The anomaly
detector model first takes a multivariate input sequence (X), gener-
ates an intermediate feature vector (F ) related to the sequence, and
then reconstructs the same sequence from the intermediate feature
vector. The autoencoder is trained using all the input sequences by
following the objective function mentioned in Equation (2).

The training dataset is constructed from the observed data for
normal system behavior by taking a window of 100 trace points (i.e.,
a window trace points collected over 1 second, since each interval

2



(a) # Branch Instructions (b) # Branch Mispredictions observed (c) # Cache Misses encountered

(d) # Cache References observed (e) # Instructions observed
Figure 1: Variation of Performance Event Counters from HPCs in presence of Wannacry Ransomware

data is collected after 10ms). Without loss of generality, we have
chosen 100 trace points for our experiments. We shift the window
by one time-interval (i.e., 10ms) repeatedly to consider consecutive
100 sample point for learning. Once the learning of intermediate
vector F is completed, for an anomalous sequence, the autoencoder
makes an attempt to reconstruct the original input sequence. Thus,
the autoencoder maps it to the normal sequence, based on the
intermediate vector F . There is an inherent information loss in this
process and hence will incur a substantial reconstruction error.
Next, we quantify the amount of error to be incurred by a process
to be termed as an anomaly.

2.3 Determining Threshold for Decision
To quantify the threshold for detecting anomalous activities, we
calculate the reconstruction error distribution (R) for all the training
samples. According to the 3σ rule of thumb, all the values are
considered within three standard deviations of the mean. Hence,
we set the threshold for reconstruction error (Rt ) as below.

Rt = µR + 3 ∗ σR (3)

where µR and σR are the mean and standard deviation of distribu-
tion R. In our experimental setup Rt came out to be 0.114.

2.3.1 Anomalous Behaviors of Ransomwares. In our study, we
considered two ransomware programs - namely WannaCry and
Vipasana to show the impact of selecting the threshold Rt in de-
tecting them as anomalies. Figure 2 shows the sequence of re-
construction errors for both the ransomwares. The first point on
both the plot appears after observing the first window of 100 time-
interval (equivalently 1 second after the start of execution of the
ransomwares). The successive points come after each time-interval
of 10ms since we are sliding the window by one time-interval for
calculating the next reconstruction error. The blue line indicates the

(a) WannaCry (b) Vipasana
Figure 2: Sequence of Reconstruction Errors for Ransomware

reconstruction errors of each window whereas the red line signifies
the threshold Rt as calculated before.

We can observe from Figure 2(a), the execution of WannaCry
starts behaving like a regular program (since the reconstruction
error lies well below the threshold value), but the reconstruction
error shoots over the threshold at 245th observation. Thus, the
WannaCry is detected as anomaly (1000 + 244 ∗ 10) = 3440 ms or
3.44 seconds after the start of execution. Whereas, from Figure 2(b),
we can observe that the Vipasana is detected as an anomaly at the
first window itself, i.e., 1 second after the start of execution. In both
the cases there is an extra overhead of time due to the testing time
of Autoencoder, which we discuss in Section 4.3.

3 HOW GOOD IS RECONSTRUCTION ERROR
AS A DECIDER?

In the previous section, we suggest that a threshold as high as Rt
can be used to determine whether a particular application behavior
deviates from the normal system behavior significantly. In this
section, we explain why a single decision step is not enough to
claim that the anomaly observed is from a malicious process.

3



(a) # Branch Instructions (b) # Branch Mispredictions

(c) # cache misses (d) # Cache References

(e) # Instructions
Figure 3: Comparison of the Effects on Performance Event Coun-
ters from HPCs in presence of Wannacry Ransomware and SPEC
Benchmark Programs

3.1 Understanding the Ambiguity
In order to test the robustness of our detection scheme, we incor-
porate an analysis in presence of SPEC2006 server and multimedia
benchmarks. We consider the Gshare predictor implementation as
provided in (https : //www .jilp.orд/jwac − 2/cbp3_f ramework_
instructions .html) and observe the HPC sampling counts from a
background process exactly like our previous setting. Figure 3
presents the variation of different hardware events in presence
of both SPEC benchmarks and WannaCry ransomware. We can
observe that the execution behavior for both the programs are
significantly different from the normal observations. Thus, the
sequences of data for the SPEC programs may also create consid-
erable reconstruction errors. In Figure 4, it clearly shows that the
reconstruction error for the sequences in presence of the SPEC
benchmark programs is above the predetermined threshold at the
first window itself. Though the error is very close to the threshold,
this essentially raises an alarm to RAPPER that this benchmark pro-
gram is a potential malicious program which deviates in an extent
from the normal system behavior. But surely in this case, it is a false
alarm, since the benchmark is composed of server and multimedia
benchmarks and can be considered as the representative of the high
computational processes which may deviate highly to the normally
running processes in a system.

In the next subsection, we perform a transformation from the
time domain to the frequency domain to differentiate actual mali-
cious processes from false positives.

3.2 Introducing Fast Fourier Transformation
In the second phase of detection using RAPPER, we transform the
traces from the time domain to the frequency domain using the
Fast Fourier Transformation(FFT). FFT is the most efficient way to
implement the Discrete Fourier Transformation. The primary rea-
son to convert the analysis from the time domain to the frequency
domain is to understand the repetitive pattern of the traces. The
ransomware executable runs encryption repeatedly on multiple
files thus it repeats a same set of operations of opening a file, en-
crypting and closing the file followed by deleting it for multiple
files one after another. The transformation is illustrated in Figure 5,
which typically indicates that the amplitude for each frequency
bins are constantly higher for the ransomware in contrary to the
SPEC benchmark.

We have applied FFT on the time domain values for different
hardware events as mentioned in Section 2.1, to obtain the fre-
quency domain values. Figure 5 presents the FFT plots for the
normal system measurements in blue lines, along with the SPEC
Observations in green lines and WannaCry Ransomware in orange
lines for different hardware events. Figure 5 shows that for most
of the hardware events (apart from the cache misses), the FFT plot
behavior of the SPEC benchmark overlaps exactly with the FFT
of the normal system behavior. Also, it is quite clear from the Fig-
ure 5(a), Figure 5(b), Figure 5(d), and Figure 5(e) that the amplitude
of almost all the frequency bins are higher for WannaCry than the
SPEC observation, which is eminent as the WannaCry program
repeatedly encrypt multiple files.

The detection of these variations of amplitudes for different fre-
quency bins can again be considered as a time-series data, and an
LSTM based autoencoder, as discussed before, can be used to detect
the anomaly. The amplitudes for SPEC benchmark programs are
very close to that of regular observations for most of the hardware
events. Thus, modeling the FFT data for regular sequences using an
autoencoder will result in reconstruction errors close to the thresh-
old (say R ′

t ) for SPEC benchmarks, and the error will be much
higher in case of ransomwares because of the repeated encryptions.
We modeled an autoencoder as mentioned before and the calculated
the threshold R ′

t to be 0.033. Fig 6 presents the sequence of recon-
struction errors for both SPEC andWannaCry programs and we can
verify that the reconstruction errors of the SPEC programs always
lies below the threshold and thus discarded from false positives,
whereas the reconstruction error of the WannaCry program always
remains higher to the threshold.

4 ARCHITECTURE OF RAPPER
In this section, we present an overview of the architecture of pro-
posed detection methodology - RAPPER. The basic diagram of the

Figure 4: Sequence of Reconstruction Errors for SPEC Benchmark
Programs

4



(a) FFT of branch Instructions (b) FFT of branch mispredictions (c) FFT of cache misses

(d) FFT of Cache references (e) FFT of Instructions
Figure 5: Variation of Amplitude in frequency domain of the performance counters from HPCs in the presence of SPEC observation and
Wannacry Ransomware

(a) SPEC Benchmark (b) WannaCry
Figure 6: Sequence of Reconstruction Errors for SPEC Benchmark
(a) and WannaCry (b)

system is shown in Figure 7. All the experimentation for this study
have been performed in a sandbox environment, such that the
ransomwares do not affect the actual filesystem.

The architecture contains four modules (Watchdog Program,
Autoencoder_1, FFT Converter, and Autoencoder_2). The detection
methodology works in two phases, namely Offline Phase and Online
Phase. The functioning of each of the module in both the phases
are decribed below:

4.1 Offline Phase
In the offline phase, the detection methodology is trained with
the normal behavior of the sandbox environment, such that any
unusual activity of a ransomware is properly detected in real-time
scenario. The functioning of each of the modules in this phase are
described below.

(1) Watchdog Program: Monitors the HPCs of the Sandbox Environment
continuously and forwards a window of data (calculated as described
before) to the Autoencoder_1 and the FFT Converter in parallel.

(2) Autoencoder_1: Collects all the data forwarded by the watchdog pro-
gram and an autoencoder is trained with the dataset as mentioned
in Section 2.2.

(3) FFT Converter: Converts the Fast Fourier Transformation of each
window forwarded by the watchdog program and passes the results
to the Autoencoder_2.

(4) Autoencoder_2: Collects all the data passed by the FFT Converter
and trains another autoencoder based on the FFT dataset.

4.2 Online Phase
In the online phase, the detection module is deployed in the sand-
box system for real-time monitoring to detect ransomwares. The
functioning of each modules in this phase are discussed below.

(1) Watchdog Program: Monitors the sandbox system as performed in
training phase, and forwards the data to the Autoencoder_1 module.
In this phase, watchdog program does not forward data to the FFT
converter. This helps us to monitor the system with lower computa-
tional cost.

(2) Autoencoder_1: Receives sequence window at each time interval
from the watchdog program and calculates the reconstruction error
of the sequence. If the error is higher than the predefined threshold
Rt , it sends a signal to the watchdog program to transmit the same
window to the FFT Converter.

(3) FFT Converter: Receives a sequence window from the watchdog
module, converts the data into frequency domain, and forwards the
transformed data to the Autoencoder_2 as done in training phase,
but with a condition imposed by the Autoencoder_1 module.

(4) Autoencoder_2: Calculates the reconstruction error of the received
FFT data, and based on the predefined threshold, R′

t , sends a warn-
ing whether the sequence belongs to a ransomware or not.

4.3 Evaluating the performance of RAPPER
We performed all the experiments in a sandbox system having
specification Intel Core i3 M350 running Ubuntu 16.04 with
4.10.0-38-generic kernel.We used popular open source python based
neural network library Keras [1] for the implementation of both
the autoencoder. The architecture used to model the autoencoders
are mentioned in Table 1. The Dropout Layer is added to regularize
the neural network and prevent from overfitting (Dropout is a

5



Figure 7: Detection Methodology of RAPPER

(a) (b)

Figure 8: Distribution of reconstruction errors for (a) Au-
toencoder_1 (b) Autoencoder_2

technique where a set of randomly selected neurons are ignored
during training).

The distribution of reconstruction errors for regular observations
produced by both the autoencoders are shown in Figure 8. The
thresholds thus calculated using Equation 3 are 0.114 and 0.033
respectively.

The FFT converter usually takes 0.0003 milliseconds to con-
vert a sequence within a window into frequency domain. The
model building times for Autoencoder_1 and Autoencoder_2 are
on average 10 and 14 minutes respectively. Testing time to cal-
culate whether a single window is an anomaly or not is 1.321
milliseconds for Autoencoder_1 and 1.699 milliseconds for Autoen-
coder_2 respectively. As shown in the Architecture of RAPPER in
Figure 7, the testing of a regular observation only passes through
the Autoencoder_1, thereby taking only 1.699 milliseconds, and
an anomalous observation passes through all the three modules:
Autoencoder_1, FFT Converter, and Autoencoder_2, thereby tak-
ing 1.321 + 0.0003 + 1.699 = 3.0203 milliseconds to be detected.
However, in both the cases, the detection time is less that the sam-
pling interval, which is 10 milliseconds. Hence, the detection is
performed seamlessly, without the need of any storage buffer, as a
new window of data will be created after 10 milliseconds.

Without loss of generality, we measured the performance of
RAPPER on most recent WannaCry ransomware. As shown in Sec-
tion 2.3, the WannaCry is detected as an anomaly at the 245th
window and instantly detected as ransomware at the same time
because it’s reconstruction error is always higher than the thresh-
old of Autoencoder_2. Hence, the total time taken to detect Wan-
naCry is equal to (Time taken to generate the first window) + 244

Table 1: Model Architecture for Autoencoders

Layer
Number

Layer
Type

Input
Shape

Output
Shape

Autoencoder_1
1 LSTM (None, 100, 5) (None, 100, 32)
2 Dropout (None, 100, 32) (None, 100, 32)
3 LSTM (None, 100, 32) (None, 100, 5)

Autoencoder_2
1 LSTM (None, 100, 5) (None, 100, 64)
2 Dropout (None, 100, 64) (None, 100, 64)
3 LSTM (None, 100, 64) (None, 100, 5)

* (time interval for each sample) + (Autoencoder_1 testing time) +
(Time for single FFT Conversion) + (Autoencoder_2 testing time)
= 1000 + 244 ∗ 10 + 1.321 + 0.0003 + 1.699 millisecond = 3443.0203
milliseconds. Thus, WannaCry is detected by RAPPER in approxi-
mately 3.443 seconds. As a sample run with RAPPER, out of 10000
files of approximately 21 bytes each, when the detection stops the
execution, 68 files are encrypted. It maybe noted that, the size of a
typical file is much larger than 21 bytes, and hence, a lesser number
of files will be encrypted.

5 FILE RECOVERY AND CONCLUSIONS
RAPPER is thus capable of detecting the presence of ransomwares
fast, as we show for the case of WannaCry within a time of ap-
proximately 4 sec from its launch. Depending on the latency, the
malware can encrypt few files (say n). We conclude with a sug-
gested approach on data retrieval. A practical solution would be to
take backups of the n-recently opened files. After the lapse of the
time quantum required to encrypt these files, we delete the copies
if no ransomware alarm is raised by RAPPER. This minimizes the
storage necessary for the backup files. To further ensure that the
backup files are not encrypted we perform locking operation, like
in linux using mlock.

In this paper, thus we explored the effect of ransomware on
normal system behaviors. We take the aid of the Artificial Neural
Network to detect the presence of ransomwares using a two-step
detection framework. The entire detection procedure does not need
any template of the malicious process beforehand. Instead it thrives
on an anomaly detection procedure to detect the infectious ran-
somwares in as less as 4 seconds with almost zero false positives,
using a frequency analysis.

We also explored the opportunity of applying side channel tech-
niques to recover the secret key used to encrypt the files from the
perf statistics. Wlog. we found for ransomwares like WannaCry,
each file is encrypted using AES-128 CBC (Cipher Block Chaining)
with a randomly generated distinct key. These keys are in turn
encrypted using an infection specific RSA public key and stored in
the memory. It would be indeed a challenging exercise to recover
the AES key by targeting the AES CBC operation. However, we
leave that as a future scope of work.

REFERENCES
[1] 2015. Keras: The Python Deep Learning library. (March 2015). https://keras.io/
[2] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,

Simha Sethumadhavan, and Salvatore Stolfo. 2013. On the feasibility of online
malware detection with performance counters. In ACM SIGARCH Computer
Architecture News, Vol. 41. ACM, 559–570.

[3] Felix Gröbert, CarstenWillems, and Thorsten Holz. 2011. Automated Identification
of Cryptographic Primitives in Binary Programs. Springer Berlin Heidelberg, Berlin,
Heidelberg, 41–60. DOI:http://dx.doi.org/10.1007/978-3-642-23644-0_3

6

https://keras.io/
http://dx.doi.org/10.1007/978-3-642-23644-0_3


[4] Amin Kharraz, Sajjad Arshad, Collin Mulliner, William Robertson, and En-
gin Kirda. 2016. UNVEIL: A Large-Scale, Automated Approach to Detect-
ing Ransomware. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 757–772. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/kharaz

[5] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware
attacks. In DIMVA 2015, 12th Conference on Detection of Intrusions and Malware
& Vulnerability Assessment, July 9-10, 2015, Milan, Italy. Milan, ITALY. DOI:
http://dx.doi.org/10.1007/978-3-319-20550-2_1

[6] Mehmet Sabir Kiraz, Ziya Alper Genç, and Erdinç Öztürk. 2017. Detecting Large
Integer Arithmetic for Defense Against Crypto Ransomware. Cryptology ePrint
Archive, Report 2017/558. (2017). http://eprint.iacr.org/2017/558.

[7] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. 2015. Automated
Identification of Cryptographic Primitives in Binary Code with Data Flow Graph
Isomorphism. In Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security (ASIA CCS ’15). ACM, New York, NY, USA,
203–214. DOI:http://dx.doi.org/10.1145/2714576.2714639

[8] Corey Malone, Mohamed Zahran, and Ramesh Karri. 2011. Are hardware per-
formance counters a cost effective way for integrity checking of programs. In
Proceedings of the sixth ACMworkshop on Scalable trusted computing. ACM, 71–76.

[9] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2014. Unsuper-
vised Anomaly-Based Malware Detection Using Hardware Features. In Research
in Attacks, Intrusions and Defenses - 17th International Symposium, RAID 2014,
Gothenburg, Sweden, September 17-19, 2014. Proceedings (Lecture Notes in Computer
Science), Angelos Stavrou, Herbert Bos, and Georgios Portokalidis (Eds.), Vol.
8688. Springer, 109–129. DOI:http://dx.doi.org/10.1007/978-3-319-11379-1_6

[10] Xueyang Wang and Ramesh Karri. 2013. NumChecker: detecting kernel control-
flow modifying rootkits by using hardware performance counters. In DAC. ACM,
79.

[11] XueyangWang and Ramesh Karri. 2016. Reusing hardware performance counters
to detect and identify kernel control-flow modifying rootkits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35, 3 (2016), 485–498.

7

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
http://dx.doi.org/10.1007/978-3-319-20550-2_1
http://eprint.iacr.org/2017/558
http://dx.doi.org/10.1145/2714576.2714639
http://dx.doi.org/10.1007/978-3-319-11379-1_6

	Abstract
	1 Introduction
	2 Anomaly Detection by Analysing the System Behavior
	2.1 Observing the system behavior using HPCs
	2.2 Learning a Time-Series data using an Autoencoder
	2.3 Determining Threshold for Decision

	3 How good is Reconstruction error as a decider?
	3.1 Understanding the Ambiguity
	3.2 Introducing Fast Fourier Transformation

	4 Architecture of RAPPER
	4.1 Offline Phase
	4.2 Online Phase
	4.3 Evaluating the performance of RAPPER

	5 File Recovery and Conclusions
	References

