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Abstract—A novel real-time distributed market framework
at the distribution grid level is proposed in this work. The
framework coordinates information in a hierarchical manner,
while aiming to achieve consensus by sharing physically coupled
information among multiple regional operators. In principle,
each region maximizes its individual social-welfare problem,
which is the local (regional) version of the overall social-
welfare maximization of the distribution grid. The individual
problem incorporates the coupled physical information from its
neighboring regions. The consensus among all regions is then
enforced through the proposed Consensus-Alternating direction
method of multipliers Structured Trust-region (CAST) algorithm.
Upon achieving convergence, the distribution locational marginal
price (DLMP) is recovered for each region, which is novel
in a sense that on one hand it is computed in a distributed
manner, i.e. with preserving local information, and on another
hand it accurately represents loss allocation from its neighboring
regions. The proposed methodologies are tested on an IEEE 33-
bus distribution grid and on a 144-bus network with 5 regions.

Index Terms—Real-time market, alternating direction method
of multipliers (ADMM), distributed generator (DG), DLMP,
multi-regional operation

I. INTRODUCTION

In view of renewable integration and market liberalization
at the distribution grid level, there is an increasing interest
in proposing decentralized grid operation [1]. However, the
proposed small-scale renewable generations are operated in
distribution grids, necessitating new control technologies along
with market frameworks for their cost-effective integration. In
this paper, we focus on one of these market frameworks, as
distribution grids cannot be simply integrated in the current
transmission level markets [2]. Fundamentally, this difference
originates from the fact that distribution grids have i) higher
nonlinearities in their power flow, and ii) larger node numbers
compared to transmission grids.

Compared to the centralized system, decentralized grid
operation has been shown to be advantageous in terms of
computation efficiency, modularity, scalability, and privacy [1].
Moreover, emerging technologies like microgrids (MGs) and
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virtual power plants (VPPs) provide opportunities for decen-
tralized/distributed frameworks for operating the clustering
of geographically-closed distributed generators (DGs), energy
storage units and small residential loads. An important part
of these frameworks is also a proposal to promote decentral-
ized/distributed energy trading [3]. Due to the geographical
restrictions/regulations of energy resources, decentralized en-
ergy markets need to be accompanied by regional Distribution
System Operator (DSOs), independent entities, with the task of
operating their local regions in a safe and secure manner and
monitoring their power flows from the neighboring regions.
Note that the notion of assigning the DSO to coordinate
its available flexibility resources aligns with the efforts of
promoting the DSO to adopt a more active role in the future
distribution grids [4]. There has not been a great amount
of work done on addressing the issues related to such a
decentralized system with multi-regional DSOs, which is the
proposed framework of this paper.

In line with the above argument, the majority of the litera-
ture naturally assigns the DSO to operate the distribution grid
market and maximize social welfare (see e.g., [2], [5]–[8]).
The state-of-art work in distribution locational marginal price
(DLMP) mainly focuses on the computation, composition and
interpretation of DLMP [2]. References [8], [9] provide
a DLMP model obtained from a linearized optimal power
flow (OPF) with features such as congestion management
and a multi-period energy-dispatch model for a day-ahead
market. However, power flow linearization in [8], [9] inflicts
an error in calculating DLMPs, removed in [7] by using a
trust-region algorithm. Moreover, it is shown that the trust-
region based methodology yields a tractable solution along
with DLMP decomposition into loss, congestion and voltage
components. Alternative DLMP models are proposed in [3],
[10], [11] using convexified load-flow models which suffer
from the drawbacks of lack of straight-forward interpretation
as discussed in [2], [7]. More specifically, the DLMP decom-
position based on the formulation of the relaxation of AC
optimal power flow (ACOPF) results in a recursive formula
that potentially leads to incorrect interpretations of marginal
change in distribution grids [2], [7]. With regard to distributed
price calculations, a price-based control framework named as
a DLMP framework has been proposed earlier in [12]–[14].
The subgradient algorithm is adopted to achieve a distributed
implementation to protect the information privacy of market
participants in [12], [13], though with a direct-current power-
flow model inflicting a large error in low voltage networks.
The work in [14] uses a distributed online pricing scheme
using the primal-dual method, where the prices are devised
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as the online incentive control signal. To our knowledge, the
authors in [14] (i) used a static linear approximation of power
flow and (ii) organized the framework in terms of only an
operator and end consumers. Both considerations come with
drawbacks. Drawback (i) is related to the fact that static
linear approximations inflict errors as compared to the actual
power flow [7]–[9]. Drawback (ii) arises from the fact that no
coordination is provided when the grid is operated by multi-
region DSOs, which only have access to local information
and physically connected neighbors. Reference [11] proposed
a three-level hierarchical market framework consisting of a
transmission system operator (TSO), DSOs and local aggre-
gators without the coordination of operators in the distribution
grid being handled. An earlier work [3] shed light on this issue
and discussed the implementation of distributed DLMP using
convexified load flow models. However, all these works [3],
[11], [14] do not address the effect on the price due to
physically connected neighboring regions, i.e. the effect of
coupled losses, which is one of the main goals of this paper.

We propose a distributed DLMP implementation in distribu-
tion grids, which provides a framework for multi-regional real-
time markets in distribution grids. We adopt a similar regional
concept from the transmission grid level [15]–[17] and apply
it to the distribution grids. The proposed framework is novel
in the sense that it allows the parallelization of clearing the
distribution grid market while preserving solution accuracy
and privacy. The key contributions of this paper are outlined
below:
� The essential ingredient to achieve an accurate DLMP

calculation is to solve the ACOPF. Among all the existing
techniques dealing with the nonlinearity and nonconvex-
ity (e.g. linearized or convexified power flow), nonlin-
ear programming techniques like the trust region (TR)
algorithm turn out to deliver an accurate interpretation
of DLMP, along with decomposition in its respective
losses, congestion and voltage control [7]. With the
progress in distributed optimization solvers, in particular
alternating direction method of multipliers (ADMM) [18],
[19], we are able to combine the nonlinear programming
technique and alternating direction method of multipliers
(ADMM) in solving the ACOPF problems. The proposed
framework comes with a parallel regulation and computa-
tion architecture to overcome the computational burdens
caused by the large node number in distribution grids.
� Furthermore, the proposed consensus-ADMM structured

TR (CAST) algorithm possesses many other favored fea-
tures, like a tractable solution and formulation to enable
online implementation. That is to say that at each TR
iteration, a feasible power flow solution as well as price
signals can be recovered in each independent region. In
light of this, the proposed CAST algorithm can be used
to drill down to seconds scale (see Table IV) and to
generate real-time incentive signals and interact with the
controllable devices continuously.
� The DLMP calculation has been fully distributed into

each region while only limited information exchange is
required. We derive the multi-regional injection sensitiv-
ity to describe the influence between regions to achieve
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Fig. 1. The range of dispatchable qg in dependence of pg and the nominal
power sdg,nom for photovoltaic generators [21]. The nominal apparent power
sdg,nom is preset to a value which is larger than the maximally admissible
value of the active power pg,max to obtain a time-invariant set for the reactive
power (as approximation), i.e. qg �

p
(sdg,nom)2 � (pg,max)2 := �sdg,nom.

the distributed DLMP computation. The derived sensi-
tivity only reveals physical information on the coupled
buses between regions, therefore, the regional operation
autonomy is preserved. The hierarchical information flow
is further defined with respect to the communication
network requirements.

Notations: R and C denote the set of real and complex
numbers. Scalars are small letters, i.e. x. Vectors and matrices
are in bold letters, i.e. x;X. Entries of a matrix X are specified
by Xi;j . Entries of vector x are specified by xi whereas the
regional version of x is given as xi. Conjugates of a complex
scalar, vector or matrix are denoted by x;x;X. The obtained
optimal solutions are denoted as x�;x�. For complex scalars,
vectors or matrices, <();=() are used to extract the real and
imaginary part. The transpose of a vector or matrix is denoted
by ()| and diag(x) constructs a diagonal matrix with entries
of x.

II. PROBLEM SETUP

A. Grid Model

We consider a balanced distribution grid. The root bus with
index 0 is modeled as a slack node that refers to the power
supply point (PSP) connected to the transmission grid. The
rest of the nodes are modeled as PQ buses contained in the
set L := f1; 2; :::; ng and for all grid nodes we obtain the set
N := L[f0g. For all grid nodes, we have complex injections
and voltage as s := p+ jq and u := v �ej� all with size Cn+1,
where vectors associated to PQ buses are given as sL;uL 2
Cn and the individual node i 2 N defines si := pi + jqi
and ui = vie

j�i . Note that active and reactive power for the
entire grid consists of p = (p0;p

|
L)|, q = (q0;q

|
L)|. The grid

is modeled using the admittance matrix Y 2 C(n+1)�(n+1),
giving us the following nodal injections to be satisfied [20]:

s = p + jq = diag(u)Y u: (1)

In the context of a deregulated real-time distribution level
market, we consider DGs (e.g. PV or wind turbine systems)
with a full-scale grid-side inverter which, within the DG’s
power rating, which allows the reactive power to be controlled
independently from the active power [22, ch. 3]. Furthermore,
energy storage systems (ESS) are assumed to be part of the DG
system to buffer the renewable energy output and help the DG
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operators to follow the power generation trajectory [23]1. The
DG reactive power output is limited by a ratio � to its nominal
apparent power denoted as sdg,nom of the DG system (i.e.,
the reactive output is constrained by [��sdg,nom; �sdg,nom]). We
illustrate the dispatchable reactive power for a typical DG in
Fig. 1. The reactive power capability of a DG unit (e.g. photo-
voltaic generators) is in general limited by its nominal apparent
power capability sdg,nom and the instantaneous time-varying
active power pg (i.e. qg �

p
(sdg,nom)2 � (pg)2), which makes

the reactive power injection time-varying and complicates the
optimization problem. To tackle this, the nominal apparent
power capability sdg,nom of the inverter is advocated to be
larger than the maximal active power pg,max, such that enough
freedom can be provided for reactive power dispatch in most
cases [21], [24]. A reasonable value for oversizing the inverter
is e.g. sdg,nom = 1:1pg,max such that qg � 0:45pg,max [21].
With a time-invariant approximation, the feasible region of
the dispatchable reactive power qg is obtained as a constrained
area regardless of the active power injections of the DG unit.
Let psl, qsl 2 Rn denote the static load in the grid, then active
and reactive nodal injection at PQ buses considering the load
and generation are: pL = pg�psl and qL = qg�qsl. Hence,
for pg 2 Rn;qg 2 Rn, being the active and reactive power
output vectors of all grid-side inverters of DGs2, we obtain
their box constraints as: [p;p]; [q;q]. The total system active
ploss and reactive power qloss losses can be written as [7]:

ploss + jqloss = u|Y u (2)

B. Central Optimization Problem

All market participants are assumed to be economically
rational and hence seek the maximization of their individual
economic surplus. The power delivered to the distribution
grid is either through its PSPs or distributed energy resources
(DERs), giving the total cost of energy procurement as:

w(pg;qg) = b|(p0; (p
g)|)| + d|(q0; (q

g)|)| (3)

where b = (b0;b
|
L

)| and d = (d0;d
|
L

)| are the locational
price vectors (both in Rn+1) for active/reactive power procure-
ment, respectively. In particular, c0 and d0 are the locational
marginal prices at PSP obtained from the wholesale market. To
this end, the overall constrained social-welfare maximization
problem for the whole grid is given by

max. f(pg;qg) := �
�
b|

L
psl + d|

L
qsl + w(pg;qg)

�
(4a)

s.t. p0 + 1|
npg � 1|

npsl = ploss : �pl (4b)

q0 + 1|
nqg � 1|

nqsl = qloss : �ql (4c)
p � pg � p : �p;�p (4d)

q � qg � q : �q;�q (4e)

v � v � v : �v;�v (4f)

1This is not a common assumption in literature. Indeed, many proposals
are based on the energy storage system to deal with the stochastic nature of
renewable generations.

2For notational brevity, the dimension of the vectors pg and qg equals the
number of PQ buses.

where, under the assumption of no extra utility exists in
satisfying the static load, the maximum social welfare in
(4a) is written as the minimum cost of purchasing energy
or producing energy [7]. Note that in the literature, social
welfare is commonly formulated as the utility benefits minus
the generation costs of the supplier [25]. To this end, the
benefits for the non-dispatchable static load is obtained as
the negative benefits. Constraint (4b)/(4c) is the active/reactive
power balance equations. Constraints (4d) to (4f) are box con-
straints for power dispatches and voltage magnitude limitation.
Note that constraints (4b) and (4c) contain the power flow
equation implicitly.

In order to obtain the DLMP from the overall problem 4,
consider the following Lagrangian function:

L =f(pg;qg) + �pl(p0 + 1|
npg � 1|

npsl � ploss) + �p(pg � p)

+ �ql(q0 + 1|
nqg � 1|

nqsl � qloss) + �p(pg � p)

+ (�q)|(qg � q) + (�q)|(qg � q) + (�v)|(v � v)

+ (�v)|(v � v): (5)

For the solution of (4), we obtain DLMPs using the first-order
derivative of the Lagrangian function for nodal active/reactive
power �p;�q 2 Rn as the sum of three components [7]:

�p = �p,e + �p,l + �p,v; (6)

where (i) �p,e := b01n is the energy component, (ii)
�p,l := �((mpl,p

L )|b0 + (mql,p
L )|d0) is the loss component

with mpl,p
L ;mql,p

L 2 R1�n as the loss sensitivity coefficient (see
Appendix A for derivation) and, (iii) �p,v := (Mvp

L )|(�v��v)
is the voltage support component with Mvp

L 2 Rn�n as the
voltage sensitivity with respect to active power. DLMPs for
reactive power can be derived in a similar way.

Remark II.1 (DLMP with renewables). Suppose that a
mechanism exists to monetize services from renewables. For
example using aggregated voltage support from a group of
inverters’ reactive powers [22, ch. 3]. Then, similar to generic
DGs, this mechanism can be simply treated as marginal cost
bids and included in the objective function (4a). However,
as renewables are usually associated with zero (short-term)
marginal cost, so that they can be utilized to their full avail-
ability, we simply represent them as constant PQ generation
injection, as mentioned in Section II-A.

Remark II.2 (DLMP under uncertainties). The proposed
DLMP framework of (4) is deterministic, i.e., it does not
contain any uncertainties in its injections (loads/generations).
For calculating DLMPs, our previous work [12] discusses
methods to cast these uncertainties in a deterministic form.
As dealing with uncertainties is not the focus of this paper,
it is not considered here. However, formulation compatibility
of the proposed framework to include such formulations is
discussed in detail in Section IV-B4.

C. Problem Statement

In order to consider the proposed market framework
of Fig. 2, we now envision the distribution grid to be operated
by multiple regional DSOs. The goal of this framework is
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Fig. 2. Proposed market framework and information flow diagram.

then to coordinate the DSOs such that they maximize the
overall social welfare of the distribution grid while maximizing
their individual surplus. Moreover, each regional DSO must be
independent in making its decision and only share physically
connected bus power flow information with the neighboring
region’s DSO. Similar to the overall problem 4, DERs (such
as DGs, ESSs) are assumed to be price takers and receive
rewards from the associated regional DSO for power genera-
tions. However, in order to achieve the proposed distributed
framework of Fig. 2 along with the price structure of (6), two
research questions exist, which are answered in this proposed
work. Firstly, we solve the ACOPF problem imposed by (4)
in a distributed way, preserving private information of the
regional DSO. Secondly, we obtain DLMP for each region in
a distributed manner with the similar decomposition structure
of (6) and optimality of (4), as when solved centrally.

III. MARKET FRAMEWORK - CAST ALGORITHM

A. Network Partitioning Technique and Consensus Definition

The distribution network is partitioned into r regions where
the set of regions is denoted by R = f1; 2; :::; rg. Similarly,
the overall PQ bus set L gets partitioned into r subsets,
Li := f1i; 2i; :::; nig, where i 2 R. To enforce feasibility
with respect to the overall grid, each region i places a
reference bus (slack bus) at its physically connected neighbor.
Hence, we get Ni = Li [ f0g total nodes in the region.
With this, each region i can now be represented with its
local Yi 2 C(ni+1)�(ni+1) and individual objective func-
tion fi(p

g
Li
;qg
Li

), which are the respective local versions of
the overall objective function f(pg;qg) and system admittance
matrix Y.

The interconnection between regions is established by over-
lapping areas in which the power flow equations of each region
can be interlinked. If region i is a neighbor of region j, then
Ni \ Nj 6= ;;8i; j 2 R, such that Ni \ Nj gives a set of
coupled buses that interconnects region i and region j. The
set Cij := fci1 = cj1

; : : : ; cik = cjk
g denotes the set of k

coupled buses from regions i and j (where k < maxfni; njg).
In Fig. 3 (left), an example of a coupled bus of three regions
is illustrated. The bus c := c1 = c2 = c3 is part of region 1
(c1), region 2 (c2) and region 3 (c3). Hence, C12 = fc1 = c2g,
C13 = fc1 = c3g and C23 = fc2 = c3g.

Region 2

Region 1 Region 3

Region 1 Region 3

Region 2

Overlapping
Region 

Fig. 3. Network-partitioning technique and consensus definition for multiple
regions (dashed lines are the regions’ boundary).

In order to decouple the constraints for the optimization
problem in (4) and to solve it in a distributed way, the objective
and constraints are decoupled with the help of local copies of
the coupled buses created for each region. To do so, we define
the set of the local copies of the coupled buses in region i
as Ci := \rj=1Cij � Ni. For any local copy ci 2 Ci, the
number of connected neighboring regions is specified by nci

.
For example, in Fig. 3, three local copies of the coupled bus
c are created and denoted by c1, c2, c3 which gives C1 =
fc1; c2; c3g and nc1 = 3.

To enforce the agreement on the power flow on the coupled
buses among regions, the following consensus constraints are
introduced for region i 2 R as

vc1
= vc2

= ::: = vcnci

ci 2 Ci (7a)

�c1
= �c2

= ::: = �cnci

ci 2 Ci (7b)
nciX
i=1

pci = 0 ci 2 Ci (7c)

nciX
i=1

qci
= 0 ci 2 Ci: (7d)

B. Consensus Optimal Power Flow (Consensus OPF)

Along with the network partition, problem (4) is decom-
posed into regional subproblems. For a region i 2 R, the
following consensus optimization problem is defined

max. fi(p
g
Li
;qg
Li

) (8a)

s.t. p0;i + 1|
ni

pg
Li
� 1|

ni
psl
Li

= ploss
i : �pl

i (8b)

q0;i + 1|
ni

qg
Li
� 1|

ni
qsl
Li

= qloss
i : �ql

i (8c)

pLi
� pg

Li
� pLi

: �p
i
;�p

i (8d)

qLi
� qg

Li
� qLi

: �q
i
;�q

i (8e)

vLi
� vLi � vLi : �v

i
;�v

i (8f)

and (7a) to (7d),

where the constraints (8b) and (8c) are regional representation
of constraints (4b) and (4c). Consensus constraints (7a) to (7d)
ensure that the power flow still holds for the global optimiza-
tion problem and require each region to take into account
binding its power injection at coupled buses with respect to its
global values provided from other regions. In the next section,
we elaborate how to solve the consensus OPF and tackle the
power flow nonlinearity in the proposed CAST algorithm.
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C. Distributed Solver with CAST Algorithm

The proposed CAST algorithm possesses a ADMM struc-
ture with TR algorithm embedded at each ADMM iteration as
the local optimization solver. Note that each local optimization
solver handles a regional subproblem with nonlinear AC
power flow constraint (1) which is tackled by TR algorithm.
The fundamental idea of the trust region algorithm is to
create an approximate model (linear model) for the initial
operating point within a feasible region (trust region). Then the
minimization step helps to find the steepest descent direction
along the objective function within the trust region. In a new
iteration, the linearized model is then updated using the new
operating point found in the steepest descent direction. The
algorithm repeats the steps until no further improvement can
be found within the next minimization step. Note that the trust
region is adjusted from iteration to iteration, i.e., the trust
region will be enlarged if the approximate model represents
the original problem well and vice versa.

ADMM is a distributed solver mainly for convex opti-
mization problems [26]. In principle, ADMM relies on the
augmented Lagrangian to reduce the mismatch of the coupled
constraints (7a) to (7d) iteratively when each local optimiza-
tion solver solves the subproblem. ADMM has been proven
to work well for solving ACOPF as well as other nonlinear
problems despite nonconvexity [19]. Interested readers may
refer to [27] for alternative distributed ACOPF algorithms. In
this work, the proposed CAST algorithm can be considered
as a variant of the distributed ACOPF solver in [18], [19]
with the main distinction of being the use of a trust-region
method instead of an interior point method (IPM) as the
local minimization solver. This, however, does not change
the convergence guarantee nor the optimality conditions. The
convergence speed of the CAST algorithm is furthermore
improved by using the varying penalty (VP) method [26], [28]
i.e., during the ADMM parameter update stage, by utilizing
the primal/dual residual information that measures the local
and global minimization progress respectively, the penalty
factor will be changed accordingly at each iteration, and
hence convergence performance is improved. We provide the
validation of the VP method in the numerical experiment.

Consider the augmented Lagrangian of a region i 2 R as:

LADMM
i (~�Li

) =fi(~pg
Li
; ~qg
Li

) + �|
i (~�Ci

� ~�+
Ci

)

+
1

2
�i(~�Ci

� ~�+
Ci

)|(~�Ci
� ~�+

Ci
) (9)

with decision variables for node i defined by �i :=
[pi; qi; vi] 2 R3, Lagrange multiplier �i 2 R3nci and the
penalty factor �i 2 R. We consider injection and voltage
magnitudes as the coupling variables here, because angles
for each region are implicitly updated locally with respect
to the given coupled bus ci, serving as its slack bus (see
Sec. III-A on assumptions in network partitioning). Moreover,
~�+
Ci
2 R2nci denotes the global variable to be updated based

on the local optimization results at each ADMM iteration. The
nonlinearities in (8) are approximated by using (local) linear

estimates

~vLi
= v̂Li

+ Mvp
Li

�pLi
+ Mvq

Li
�qLi

+ mvv
Li

�v0;i (10a)
~�Li = �̂Li + M�p

Li
�pLi

+ M�q
Li

�qLi
+ m�v

Li
�v0;i (10b)

~p0;i = p̂0;i + mpp
Li

�pLi
+ mpq

Li
�qLi

+mpv�v0;i (10c)

~q0;i = q̂0;i + mqp
Li

�pLi
+ mqq

Li
�qLi

+mqv�v0;i (10d)

~v0;i = v̂0;i + �v0;i; (10e)

where a new operating point (~vLi
; ~�Li

; ~p0;i; ~q0;i; ~v0;i)
is approximated by the given (old) operating point
(v̂Li

; ŝ�Li
; p̂0;i; q̂0;i; v̂0;i) using the linearization coefficient

matrices or vectors denoted by Mvp
Li
;Mvq
Li
;M�p
Li
;M�q
Li
2

Rni�ni ;mpp
Li
;mpq
Li
;mqp
Li
;mqq
Li
2 R1�ni , mvv

Li
;m�v
Li
2 Rni�1,

mpv;mqv 2 R. The derivation of the coefficients are pro-
vided in Appendix A. As the linearization of distribution-grid
power flows is only accurate at the chosen operating point,
we incorporate a trust-region algorithm to tackle the related
nonlinearities [7]. Algorithm 1 explains the proposed CAST
algorithm, where all computations are performed locally, ex-
cept for step 2, which requires an update on the algorithm’s
global variables. The global variables update is followed by
the averaging step of using local optimization results of the
coupled variable. Interested readers may refer to [26, ch. 7] for
the derivation of averaging steps in the ADMM algorithm. This
update makes intuitive sense, i.e., upon convergence of CAST,
the consensus power flow constraints (7a) to (7d) will be
binding. Note that the parameter tuning steps for TR (step 1.4
- 1.5) and for ADMM (step 3.1 - 3.2) are carried out locally by
its regional DSO. However, there are other variants of ADMM
which require a central entity to update the information and
coordinate the parameter tuning (see e.g., [27], [28]).

Remark III.1 (Convergence of CAST algorithm). Under
the condition that the sequence of the penalties �i for all
i 2 R is bounded, the convergence of the CAST algorithm
can be proved using [18, Theorem 4]. In addition, upon the
convergence of the CAST algorithm, the triplets (�i; �i;�Li

)
converge to Karush-Kuhn-Tucker (KKT) stationary points [18,
Theorem 1] (i.e., local minimum for non-convex scenarios and
global minimum for convex scenarios). In practice, the first
two steps of CAST algorithm can take place in either order
without affecting the convergence. This kind of asynchronous
update has proved advantageous in dealing with communica-
tion delays and packet loss in recent expositions [30], [31].

Remark III.2 (Tractable solution and formulation to enable
the online implementation). The trust region ensures a feasible
load flow solution to be found at each ADMM iteration,
which provides a tractable OPF solution along with the price
signal in each region. This feature is favored by many online
applications and can be further exploited in the provision of
real-time control (see e.g., [32], [33]).

IV. MARKET FRAMEWORK - MULTI-REGIONAL DLMPS

In this section, we extend the central price decomposition
structure of (6) for physically coupled multi-regions. In doing
so, the proposed network reflects the effect of physically
coupled regions in their locally calculated price, while keeping
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Algorithm 1 CAST algorithm - parallelized in all regions
Input: �̂Li

(0) - initial feasible state variable, fi(�̂Li
(0)) - initial local

objective value
Parameters: � - termination tolerance, �i(k) - trust-region radius; �max -
maximal trust-region radius; �,�, 2 (0; 1) - trust-region constants; � ,� -
ADMM constants;

ADMM loop:
Step 1. (Local minimization with trust-region algorithm)

1.1 Choice of linearized model: to construct/update the sensitivity matrix
for linearized power flow model at operational point (ûLi

(k); ŝ0(k)),
i.e., (10a) to (10d).

1.2 Trust region minimization with LADMM
i as in (9):

~��Li
(k + 1) := arg min

~�Li

LADMM
i (11a)

s.t. (8d) to (8f) and (10a) to (10d) (11b)
jj~�Li

(k + 1)� �̂Li
(k)jj < �i (11c)

1.3 Feasible power flow projection: the next operational point �̂Li
(k +

1) is obtained by projecting the optimization results ~��Li
(k + 1) to

the feasible power flow solution, e.g. by using a Newton–Raphson
algorithm [29].

1.4 With the previous operational point �̂Li
(k), the approximate point

~�Li
(k + 1) and the current operational point �̂Li

(k + 1), the
following ratio is computed:

�i(k + 1) =
LADMM

i (�̂Li
(k + 1))� LADMM

i (�̂Li
(k))

LADMM
i (~��Li

(k + 1))� LADMM
i (�̂Li

(k))
(12)

which represents the ratio between actual objective reduction and
predicted reduction.

1.5 Trust region radii evaluation and update:

�i(k + 1) =

8><>:
�i(k) �i(k + 1) � �
minf�max; 2�i(k)g �i(k + 1) � (1� �)

�i(k) otherwise

1.6 Trust region solution evaluation:
If �i(k + 1) > �, solution of �̂Li

(k + 1) is accepted, otherwise
rejected and �̂Li

(k + 1) = �̂Li
(k) is set.

1.7 Termination criteria check of trust region: jj~�Li
(k+ 1)� �̂Li

(k+
1)jj < �.

Step 2. (Global variable update)
For the coupled buses ci 2 Ci, we have

~�+
ci

(k + 1) =

nciX
i=1

~��ci
(k + 1); (13)

where the global variables are updated using the average value of
the local optimization results. The step requires information exchange
between regions, i.e., passing the local optimization results ~��ci

(k+1)
to connected regions.

Step 3. (ADMM parameter update)
3.1 Primal and dual residual update:

For each region i 2 R, the squared primal residual ri 2 R and dual
residual si 2 R are updated as follows

r2
i (k + 1) = k~��Ci

(k + 1)� ~�+
Ci

(k + 1)k2
2 (14)

s2
i (k + 1) = k~�+

Ci
(k + 1)� ~�+

Ci
(k)k2

2: (15)

3.2 Penalty factor update:

�i(k + 1) =

8><>:
�i(k) � (1 + �) ri(k + 1) > �si(k + 1)

�i(k) � (1 + �)�1 ri(k + 1) < �si(k + 1)

�i(k) otherwise;

where �i 2 R is the penalty factor associated to each region i 2 R
which is changed at each iteration depending on the local and global
consensus progress measured by primal and dual residuals.

3.3 Lagrangian multiplier update step:

�i(k + 1) = �i(k) + �i

�
�̂Ci

(k + 1)� ~�+
Ci

(k + 1)
�
: (16)

the desired DLMP decomposition in its respective energy, loss
and voltage components.

PSP

Region 2Region 1

PSP

Fig. 4. Three-bus example.

1) Three-bus network example: First, consider centralized
active power DLMPs (6) for the exemplary 3-bus system given
in Fig. 4, with non-binding voltages

b1 = b0 �
@ploss

@p1
b0 �

@qloss

@p1
d0 and (17)

b2 = b0 �
@ploss

@p2
b0 �

@qloss

@p2
d0: (18)

Note that the following two reasons prevent the adoption of
the aforementioned price structure: (i) With the partitioning,
note that b0, originally the marginal price at the slack bus,
is now local to region 1. Moreover, region 2 has a new
root-bus, i.e., bus c2. Hence, the formulation needs to be
adjusted to account for these structural changes. (ii) Each
region only computes local losses through local linearized
terms mpl,p

L1
;mql,p
L1
;mpl,p
L2
;mql,p
L2

. However, the losses in the each
region are coupled to its neighboring region’s injection through
the local copies pc1

; pc2
. Hence, if not accounted, this effect

might introduce errors in the local loss calculations and its
representation in DLMPs. We introduce the distributed DLMP
scheme as follows to address these issues. With regard to
classification of parent and children region in the distributed
DLMP scheme, the following explanation holds. Starting from
the region connected to PSP, the regions can be arranged
in a sequential order. The region which has a connected
downstream region serves as the parent region with its down-
stream region as the children region. Moreover, the children
region might serve as a parent region for its further connected
neighbors (children). With this, in Fig. 3, region 1 is the parent
and region 2 is the children region.

A. Distributed DLMP Scheme

Distributed DLMP scheme
1.1 For any children region, the root-node price is obtained

as the cleared DLMP at the respective parent region’s
connected node

1.2 For any parent region i, the active power regional DLMPs
�p
i are given as:

�p
i = �p,e

i + �p,l
i + �p,v

i + �p;ADMM
i (19)

with �p;ADMM
i = �(

@pCi

@pLi

;
@qCi

@pLi

;
@vCi

@pLi

)�|
i and �p,e

i ;�
p,l
i ,

�p,v
i are formulated in the same way as in Section II-B.

The proposed distributed DLMP scheme adapts to the
structural changes resulted from network partitioning and the
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derivation is provided as follows. The Lagrangian function
associated to sub-optimization problem in region i is given as

Li = fi + (�p
i )

|(pCi
� p+

Ci
) + (�q

i )
|(qCi

� q+
Ci

)

+ (�v
i )

|(vCi
� v+

Ci
) +

1

2
�i(~pCi

� ~p+
Ci

)|(~pCi
� ~p+

Ci
)

+
1

2
�i(~qCi

� ~q+
Ci

)|(~qCi
� ~q+

Ci
) +

1

2
�i(~vCi

� ~v+
Ci

)|(~vCi
� ~v+

Ci
)

+ �pl
i (�p0;i � 1|

ni
pg
Li

+ 1|
ni

psl
Li

+ ploss
i )

+ �ql
i (�q0;i � 1|

ni
qg
Li

+ 1|
ni

qsl
Li

+ qloss
i )

+ (�p
i )

|(pg
Li
� pLi

)� (�p
i
)|(pg

Li
� pLi

)

+ (�q
i )

|(qg
Li
� qLi

)� (�q
i
)|(qg

Li
� qLi

)

+ (�v
i )

|(vLi � vLi)� (�v
i
)|(vLi � vLi

); (20)

where the Lagrangian multiplier �i = [�p
i ;�

q
i ;�

v
i ] consisting

of three parts for coupled active power and reactive power.
Where b�Li

;d�Li
represent the regional DLMPs for active

power and reactive power respectively, the KKT conditions
comprise of first-order optimality conditions:

b�Li
+ �pl

i (mpl,p
Li

)| + �ql
i (mql,p

Li
)| + (�p

i )
| @pCi

@pLi

+ (�q
i )

| @qCi

@pLi

+ (�v
i )

| @vCi

@pLi

+ �i(pCi
� p+

Ci
)
@pCi

@pLi

+ �i(qCi
� q+

Ci
)
@qCi

@pLi

+ �pl
i + (Mvp

Li
)|(��v

i
+ �v

i ) = 0 (21)

b0;i + �pl
i = 0 (22)

d�Li
+ �pl

i (mpl,q
Li

)| + �ql
i (mql,q

Li
)| + (�p

i )
| @pCi

@qLi

+ (�q
i )

| @qCi

@qLi

+ (�v
i )

| @vCi

@qLi

+ �i(pCi
� p+

Ci
)
@pCi

@qLi

+ �i(qCi
� q+

Ci
)
@qCi

@qLi

+ �pl
i + (Mvq

Li
)|(��v

i
+ �v

i ) = 0 (23)

d0;i + �ql
i = 0 (24)

together with complementary slackness and positive duals.
Based upon the convergence of CAST, we have pCi

�p+
Ci

= 0

and qCi
� q+

Ci
= 0 . By substituting (22) and (24) into (21)

and (23), resp., we obtain the DLMPs for active power b�Li

as in the distributed DLMP scheme, i.e.

b�Li
= b0;i � b0;i(m

pl,p
Li

)| � d0;i(m
ql,p
Li

)| + (Mvp
Li

)|(�v
i
� �v

i )

� (�p
i )

| @pCi

@pLi

� (�q
i )

| @qCi

@pLi

� (�v
i )

| @vCi

@pLi

: (25)

Remark IV.1 (Cross-region injection sensitivity). Note that
the sensitivities

@pCi

@pLi

and
@qCi

@pLi

represent the effect on the
coupled injection change pCi

;qCi
, due to the local power in-

jection change pLi
;qLi

. This couples the effect of neighboring
regions into local DLMP calculations. Hence, we term this as
cross-region injection sensitivities. In region i, for a coupled
bus ci 2 Ci connected to nci

neighboring regions, the cross-
region injection sensitivity can be calculated as

@pci

@pLi

:=
@pci

@vci

@vci

@pLi

=
� nciX
k 6=i

@pck

@vck

� @vci

@pLi

: (26)

Some observations regarding the above definition of @pci

@pLi

Local Minimization

Converged

CAST Loop

Distributed DLMP Scheme

Global Variable Update

ADMM Parameter Update

SendReceive

Regional DLMP calculation

Regional DSO 

Fig. 5. Flowchart of the information exchange between regional DSOs.

follow. In (26): (i) only voltage magnitudes are considered, as
the angle differences across distribution lines are considerably
smaller [2]; (ii) we incorporate information from both local
@vci

@pLi

and neighboring regions @pck

@vck
; and (iii) the local sensi-

tivities @vci

@pLi

are obtained from Mvp
Li

, whereas the neighboring

information @pck

@vck
is obtained in a similar way to the explicit

power flow linearization.

B. Practical Implications

1) Inter-regional Information Flow: Building on the
promise of smart grids, the proposed market framework
requires a two-way communication network for all market
participants. However, the type of information to be exchanged
within a framework varies. For any regional DSO, Fig. 5
provides an overview of the information to be shared by a
regional DSO. The communication traffic in the distributed
DLMP scheme is comparably smaller than in the CAST
loop since it merely requires one-time communication of
passing the cleared price and cross-region injection sensitivity
between regional DSOs. Note that all information except
on its physically coupled buses is kept local by a regional
DSO. This means that a regional DSO only needs to share
information with its physically connected neighboring regional
DSOs. The information needed to be revealed by any re-
gional DSO includes physical parameters of active/reactive
injections and a root-node price for its children regional DSO
(only if it serves as a parent regional DSO, see Sec. IV-A
for more information). This proposed information exchange
framework of a regional DSO resembles a power system where
multiple Regional Transmission Operator (RTOs) exist [16],
[17]. Hence, the proposed framework of this paper has a high
practical realization. Especially, considering that the proposed
DLMP is based on a global power balance formulation (8b)
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and (8c), used for clearing LMPs at the wholesale market [3],
[16].

2) Regional Real-time Market Organization: From Fig. 5,
with the knowledge of its regional grid, the regional DSO
can proceed to calculate DLMPs in a distributed manner. This
DLMP calculation can be organized in a local market to be
cleared as:

1) DGs submit their instantaneous bids, energy requirements
as well as the dispatch capabilities to their respective
regional DSO;

2) The regional DSO forecasts its underlying grid demand
and obtains market clearing price for the root node either
from wholesale market or from other regional DSOs
through CAST algorithm;

3) The regional DSO clears regional DLMPs to be passed
on to local DGs.

Note that the proposed market organization enables the in-
dividual market participants to make bids merely based on
the local available information. Current RTO driven wholesale
markets [16], [17] follow a similar information flow procedure
as proposed for the above described intra-regional DSO. This
shows the compatibility of the proposed method with the
existing real-world electricity markets.

3) Optimality and Autonomy: Combining the above men-
tioned conservative inter/intra-regional information revealing
properties with Remark III.1, it can also be concluded that
the regional optimization steps corroborate to reach consensus,
i.e., in the given feasible space, there is global convergence. On
the assumption of overall social welfare maximizing DSOs and
rational individual utility maximizing DGs, this convergence
has also been shown to achieve the market equilibrium [7].
Hence, the proposed method achieves the overall market
equilibrium of the system, while promoting the autonomy of
each region.

4) Formulation Compatibility: Using linearized power flow
formulations, related works exist in the form of i) proposing
day-ahead markets with uncertain inter-temporal flexible loads
[12] and ii) fairness-based pricing to improve the participa-
tion of market entities in DLMP programs [34], [35]. Since
linearized AC power flow formulation is also deployed in the
proposed CAST algorithm, these methods can be incorporated
into the proposed CAST algorithm. Note that, in [12], [34],
[35], network sensitivities are estimated based on DC power
flow. Consequently, the resultant constraints for calculating
DLMPs in [12], [34], [35] are exactly similar to (10). However,
as compared to DC power flow, the AC power flow adopted
in this paper is much more accurate in representing grid
conditions [20] and consequently in calculating DLMPs [7].
Moreover, of relevance for the DLMP calculation, network
sensitivities using linearized AC power flows for unbalanced
grids have also been provided in [36]. These sensitivities
for unbalanced grids can also be investigated further to be
included in the proposed framework.

V. SIMULATION RESULTS

We test the proposed CAST algorithm on an IEEE 33-bus
system [37] with three regions as illustrated in Fig. 6 (see

Scenario 1 & 2) and on a 144-bus network (see Scenario 3).
Each region includes a DG operating locally. The test network
has a total fixed load of 3.66 MW and 2.28 Mvar. In order to
demonstrate the efficiency of the proposed method, we provide
comparison against IPM of MATPOWER [38] for two realistic
scenarios. For scenarios 1 and 2: the energy price at the PSP
is kept at 30 $=MWh and 3 $=Mvarh whereas for all DGs
as 20 $=MWh and 3 $=Mvarh; voltage constraints are kept
as [0:95; 1:05]; and the ADMM and trust-region parameters
are set as: � = 0:1, � = 0:9,  = 0:5, � = 0:1, � = 10,
�i(0) = 7 � 102; �i(0) = 7; i 2 R. For scenario 3, the TR
parameters are kept the same while the ADMM parameters are
set as: � = 0:1, � = 10, �i(0) = 1:2�105; �i(0) = 0:5; i 2 R.
The simulations are performed on a personal computer with
Intel i5 2.4Ghz and 8 GB RAM.

PSP    1       2        3            4         5         6        26       27

DG1

   19       20       21       22 

   23       24       25 

Region 1

28      29        30       31          32    33

DG3

Region 2

7         8         9         10       11       12       13       14       15       16       17       18

DG2 Region 3

Coupled bus

PSP    1       2        3            4         5         6        26       27

DG1

   19       20       21       22 

   23       24       25 

28      29        30       31          32    33

DG3

7         8         9         10       11       12       13       14       15       16       17       18

DG2

Fig. 6. 33-bus system with three regions.

A. Scenario 1 (IEEE 33-bus network)
Scenario 1 considers three DGs with identical 500 kW

and �100 kvar capacity, i.e., with modest renewable energy
penetration. The convergence of the CAST algorithm with the
optimal solution is illustrated in Fig. 7 with respect to total
cost, primal gap and active/reactive power dispatch. The primal
gap is defined as the sum of primal residuals in eq. (14) which
is a measure of disagreement on the power flow parameters of
the coupled buses. In order to demonstrate the VP method
in the improvement of the convergence performance, we
compared the situation including/excluding the varying penalty
update in closing the primal gap for all three scenarios. Note
that the proposed CAST algorithm achieves the exact optimal
solution as the central ACOPF (MATPOWER).

The DLMP results can be found in Fig. 8 and Table I. Since
the energy supply from DGs is cheaper than the PSP, all DGs
are fully dispatched (see Table II). Meanwhile, no overvoltages
are caused by DGs because of the modest penetration level,
keeping voltage support part of DLMP �p,v at 0. Hence,
the only contribution to the overall price calculation comes
from the loss component of DLMPs, penalizing nodes based
on their contribution to the overall losses in the distribution
grid. Regarding the coupled loss component �p,ADMM, its
value is comparatively small in contrast to local region losses
�p,l. This shows that the effect of neighboring regions in
contributing to local losses is not as great. Similar to the
dispatch values, the multi-regional DLMPs are also found to
be similar to the central ACOPF solution (MATPOWER).

B. Scenario 2 (IEEE 33-bus network)
In scenario 2, a high renewables-penetration level is con-

sidered by assuming 3� 3 MW DG with the nominal power
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Fig. 7. Scenario 1: Convergence of CAST.
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Fig. 8. Scenario 1: DLMP with ACOPF as benchmark.

Table I
ACTIVE POWER DLMPS FOR BOTH SCENARIOS

i �p,e �p,l �p,v �p,ADMM �p (CAST) �p(ACOPF)
3

case 1
30 0.35 0 2.8e-3 30.39 30.39

15 31.02 -0.07 0 - 30.95 30.95
32 31.02 0.35 0 - 31.36 31.36
3

case 2
24.21 -0.064 -4.15 1.2e-3 20.00 20.00

15 20.27 -0.11 -0.159 - 20.00 20.00
32 20.27 -0.062 -0.238 - 20.00 20.00

Table II
POWER DISPATCH COMPARISON OF CAST AND ACOPF

Node P dispatch [MW] Q dispatch [Mvar] Total cost [$]
CAST ACOPF CAST ACOPF CAST ACOPF

PSP

case 1

2.23 2.23 2.03 2.03

103.44 103.44DG1 0.5 0.5 0.1 0.1
DG2 0.6 0.6 0.3 0.3
DG3 0.45 0.45 0.25 0.25
PSP

case 2

0 0 0.95 0.95

77.302 77.302DG1 2.34 2.34 -0.02 -0.03
DG2 0.66 0.65 0.41 0.42
DG3 0.69 0.69 0.94 0.94

factor of 0.9. As a consequence, local voltages at DG buses
become binding. First, we present the convergence of CAST
in Fig. 9 and dispatch values in Table II. One can also
observe that VP method has improved the convergence in both
scenarios despite the same initial parameters. Binding voltage
constraints in different regions generate more oscillations to
obtain consensus among the coupled buses. The CAST settles
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Fig. 9. Scenario 2: Convergence of CAST.

0 5 10 15 20 25 30 35
node

15

20

25

D
LM

P 
- P

ACOPF CAST region 1 CAST region 2 CAST region 3

0 5 10 15 20 25 30 35
node

0

2

4

D
LM

P 
- Q

Fig. 10. Scenario 2: DLMP with ACOPF as benchmark.

down at a total cost of $ 77.302 which is identical to the
optimal value obtained from ACOPF.

In terms of DLMP, as compared to scenario 1, the voltage
support part �v is relatively high compared to other compo-
nents of the DLMP that in turn reduces the DLMP at DG
nodes. This penalizes DGs and reduces the local generations
while maintaining the local voltage under the upper bound.
Note that as nodes 15 and 32 are completely supplied by their
local DGs, their cleared price �p is equal to the marginal cost
of supplying power from their respective DGs, which has been
set at 20 $/MWh. The dispatch results are given in Fig. 10,
where it can be seen that the proposed distributed method
achieves a similar quality to the central solution.

C. Scenario 3 (144-bus Network)

Table III
SCENARIO 3: DG COST AND CONSTRAINTS

Price vector DG0(PSP) DG1 DG2 DG3 DG4 DG5 DG6

P [$/MWh] 20 10 10 10 7 10 10
Q [$/Mvarh] 3 2 3 2 2.9 1.9 3.1

P Max [MWh] - 1.5 1.5 1.9 1.2 2.3 1.5
Q Max [Mvarh] - +/-0.3 +/-0.3 +/-0.4 +/-0.6 +/-0.7 +/-0.9

In Scenario 3, we extend the test case to a larger network
with 144 buses [39] . The scenario considers 5 regions with 7
DGs in total such that R = f1; 2; :::; 5g. The network partition
is illustrated in Fig. 11. The price vectors for the power
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Fig. 11. 144-bus test case with 5 regions [39].

procurement from PSP and DGs are presented in Table III. The
base load of the test scenario is 11.9 MW and 7.36 Mvar. The
convergence of the CAST algorithm to the optimal solution
is illustrated in Fig. 13 with respect to total cost, primal
gap and active/reactive power dispatch. It can be seen that
CAST has converged towards the same optimal solution as in
ACOPF. Moreover, due to the earlier settlement for the optimal
solution, one can also conclude the convergence performance
is improved by VP method as well.

The test scenario considers a modest DG penetration degree,
i.e., the PSP remains the primary source for the energy supply.
The DLMP results for the 144-bus network can be found
in Fig. 12. Since the PSP serves as the primary source for
the energy supply, the DLMP is dominated by the root-node
price accordingly. In general, one can observe the marginal
price downstream of Region 1 is the highest due to the higher
losses. On the other hand, the distributed DLMP scheme has
achieved the same price accuracy as the centralized ACOPF
solution, despite multiple regions and highly coupled loss
terms between the regions.

D. Computation Comparison

In terms of the computation efficiency and results inter-
pretability of the proposed method, we present the compu-
tational comparison of the local optimizer using TR, IPM
and semi-definite-programing (SDP) relaxation methods in
Table IV. The TR optimizer is implemented with YALMIP
[40] and Gurobi [41]. The IPM and SDP are implemented
with the MATPOWER interior point solver and SeDuMi [42],

Table IV
COMPUTATION COMPARISON

TR IPM SDP relaxation

Global solution X X X

Computation time (144-bus network) 2.9 s 1.3 s 12.3 s
Implicit calculation of DLMP X � �
Tractable formulation X � �

respectively. Note that all three solvers produce the same
global solution. IPM requires less computational time than
needed in TR, whereas the computational burden for SDP
is the heaviest. We also notice that the computation time
of TR is implementation-dependent, i.e., YALMIP consumes
substantially more time in creating the model than the solver
time with Gurobi. Furthermore, the DLMPs can be calculated
during each iteration for the TR method, whereas it can only
be recovered after finding the optimal solution for the SDP-
based ACOPF and IPM-ACOPF. In this respect, a tractable
formulation (i.e. a feasible power flow solution and the de-
composable price signals at each iteration) can also only be
provided by TR.

Since in the field deployment of CAST, each regional DSO
solves the local problem in parallel, without extending the
discussion of the inclusion of communication network, the
overall solving time can be estimated by multiplying the
iteration number by the local solver time. Recent works have
reported a reasonable speedup of ADMM-based algorithm in
a local simulation when a parallel computing technique is
adopted [43].

VI. CONCLUSION AND OUTLOOK

Making full use of decentralized production, as well as
flexible demand, requires a redesign of the power system.
DLMPs are a major step in this direction. Nevertheless,
it will be also of prime importance to combine different
regions and to find a) efficient organization structures and b)
efficient algorithms in order to calculate the exchange power
between regions based on correct price signals. In this work,
a novel decentralized market framework at a distribution grid
level is proposed. The main ingredients of the framework
are: (i) Consensus-Alternating direction method of multipliers
Structured Trust-region (CAST) solution algorithm to capture
the nonconvex AC power flow in a fully distributed way and
(ii) a multi-regional DLMP decomposable pricing scheme.
To demonstrate the efficiency of the proposed method, three
simulation scenarios are investigated on benchmark systems,
and comparisons are made to the MATPOWER state-of-the-art
solver. Having proposed an efficient algorithm for decomposed
pricing schemes, the reorganization of the existing power
system in order to achieve both planning and operational
efficiency still remains an open question and needs to be
addressed in future works. Other extensions of this work may
include extending the proposed method to include multi-period
and multi-phase modeling.
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Fig. 13. Scenario 3: Convergence of CAST.

APPENDIX

A. Explicit Linearization of Power Flow in Distribution Grid

This section presents the explicit power flow linearization
for the slack bus, PQ buses and the power loss. As required
in the optimization problem, all linearized terms are parame-
terized in pL and qL.

1) PQ Buses: For a given operational point (v̂L; �̂L), the
linear estimate (~vL; ~�L) is given as [44]�

~vL
~�L

�
=

�
v̂L
�̂L

�
+

"
Mvp
L Mvq

L

M�p
L M�q

L

# �
�pL
�qL

�
+

�
mvv
L

m�v
L

�
�v0;

(27)

where �pL := ~pL � p̂L, �qL := ~qL � q̂L are the ac-
tive/reactive power injection variations, respectively. Sensitiv-
ity matrices Mvp

L ;M
vq
L ;M

�p
L ;M

�q
L translate the impact of PQ

injections pL and qL to the voltage and angle variations and
are given analytically in [44, Proposition 1]. The sensitivity
vectors mvv

L ;m
�v
L translate the impact of the slack bus voltage

to the voltage and angles at PQ buses. Interested readers may
refer [45] for the derivations.

2) Slack Bus: For the slack (root) bus, voltage v0 and angle
�0 are fixed. Therefore, the power flow linearization is given
with respect to the nodal injections and voltage at the slack
bus as�

~p0

~q0

�
=

�
p̂0

q̂0

�
+

�
mpp
L mpq

L
mqp
L mqq

L

� �
�pL

�qL

�
+

�
mpv

mqv

�
�v0; (28)

where mpp
L 2 R1�n given as

mpp
L = (�<(v0Y 0;1) cos(�1) + =(v0Y 0;1) sin(�1))Mvp

L e1

+ (<(v0Y 0;1) sin(�1)�=(v0Y 0;1) cos(�1))v1M�p
L e1 (29)

and ei 2 Rn is i-th entry equal to 1 and rest of the entries
equal to 0. The derivation is provided as follows. In Fig. 14,

PSP

Region 2Region 1

PSP

Fig. 14. Power flow linearization at slack bus.

the nodal injection at the slack bus is equal to the branch flow
(i.e. s0 = s01), giving the following sensitivity

@p0

@pL
=
@<(s01)

@pL
=
@<(u0(u0 � u1)Y 0;1)

@pL
: (30)

Now, by substituting ui = vie
j�i into (30) and extracting the

real part, we get mpp
L . Vectors mpq

L , mqp
L , mqq

L 2 R1�n can be
obtained in a similar way.

The sensitivity of slack bus injections with respect to slack
bus voltage mpv;mqv are derived as follows. From the power
balance equation, we have

@s0

@v0
+
@sL
@v0

=
@sloss

@v0
: (31)

With the PQ nodal injections remain unchanged, i.e., @sL
@v0

= 0
we have

@s0

@v0
=
@sloss

@v0
: (32)

Recalling the loss representation in (2) we obtain

@s0

@v0
=
@(u|Y u)

@v0
=
@u|

@v0
Y u + u|Y

@u

@v0

= (
@v

@v0
ej� + ju�

@�

@v0
)|Y u (33)

+ u|Y(
@v

@v0
e�j� � ju�

@�

@v0
): (34)

Note that @v
@v0

, @�
@v0

is the voltage and angle sensitivity with
respect to v0, i.e., mvv

L ;m
�v
L . Hence the slack-bus injection
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with respect to slack-bus voltage is given as

[mpv;mqv] = [<(
@s0

@v0
);=(

@s0

@v0
)]: (35)

3) Losses: For loss linearization ~ploss and ~qloss, we use�
~ploss

~qloss

�
=

�
p̂loss

q̂loss

�
+

"
mpl,p
L mpl,q

L

mql,p
L mql,q

L

# �
�pL

�qL

�
; (36)

where the analytical representations mpl,p
L ;mpl,q

L ;mql,p
L ;mql,q

L
are given in [7].
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