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ABSTRACT
FPGA-based system-on-chip (SoC) devices for Internet of
Things (IoT) applications require hardware-software (HW-
SW) partitioning techniques to optimize for performance un-
der stringent area and power constraints. To obtain an op-
timally partitioned design it is necessary to account for the
data communication cost between hardware and software.
However, the large design space during partitioning makes
it challenging to account for this cost while optimizing for
stringent constraints using an exhaustive approach. Hence,
we propose Wibheda+, a heuristic based framework for fine-
grained data dependency-aware multi-constrained HW-SW
partitioning that can be employed to partition designs for
FPGA-based SoCs used in IoT. Wibheda+, evaluated on 10
applications from the CHStone benchmark suite, has been
shown to find solutions with 99% accuracy within several
milliseconds compared to several minutes or hours taken in a
state-of-the-art and an exhaustive approach, respectively.

1. INTRODUCTION
Modern FPGAs are not only suited for accelerating crit-

ical parts of an application, but also for realizing an en-
tire System-on-Chip (SoC), constituting processors, pro-
grammable logic, memory subsystems, etc. Hence, while the
critical section of the application can still be accelerated on
the programmable logic, the rest of the application can be
executed on the accompanying on-chip processors [18]. An
efficiently partitioned design effectively combines the flexi-
bility of software with the performance acceleration and low
power/energy consumption of hardware [16]. Thus, efficient
partitioning of the application between the hardware and
software components is a crucial step in allowing designers
to exploit the benefits offered by both worlds.

However, partitioning a design into its hardware and soft-
ware components is one of the biggest challenges in ar-
chitecting an embedded system, as badly partitioned de-
signs can lead to inefficiencies due to data dependencies be-
tween components [14]. Partitioning decisions must typ-
ically be made early in the design of a product. How-
ever, the lack of proper analysis at this stage can result in
higher non-recurring engineering (NRE) costs and time-to-
market (TTM) delays, or even an inability to meet design
requirements [5]. Hence, it is important for the partitioning
methodology to analyze the applications at this early design
stage and accurately model the system while considering the
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plethora of different implementation possibilities [20].
The granularity at which to partition an application poses

yet another challenge for the designer during the partition-
ing step. Different approaches have been proposed to par-
tition an application at a coarse (functions [10]/loops [20])
or fine (basic blocks [15]) granularity. Compared to a fine-
grained approach, in a coarse-grained approach the design
space to select the best application code segments for ac-
celeration is significantly reduced [12]. On the other hand,
a fine-grained approach may yield higher return on invest-
ment (ROI) of the hardware area, since one could select
the most profitable code segments to be accelerated, in this
technique [14]. The higher ROI is significantly beneficial
in the domain of always-connected and low cost Internet of
Things (IoT) devices, which necessitates designs with ex-
tremely tight constraints in terms of size (area), power con-
sumption, costs, etc. This has resulted in FPGA vendors
such as Lattice Semiconductor and Intel offering low power,
small FPGAs specifically targeted for IoT [13] [2].

However, the larger design space in fine-grained ap-
proaches and the resulting increased data communication
between the many fine-grained accelerators and the remain-
ing software components, necessitates a partitioning tech-
nique that considers and accurately models the data commu-
nication costs during partitioning. Existing state-of-the-art
(SoA) work [15] proposes a fine-grained (basic block level)
hardware-software (HW-SW) partitioning methodology that
selects the most beneficial basic blocks for hardware acceler-
ation while taking into account data dependencies between
the basic blocks. However, this work does not consider the
area constraint directly during the selection process. In-
stead, it selects the most profitable basic blocks in an it-
erative fashion and obtains their area post-selection. Fig-
ure 1 shows the drawback of this approach for the DFADD
application from the CHStone benchmark suite. The hor-
izontal axis in this figure indicates the area constraints in
terms of look-up-tables (LUT). The vertical axis shows the
deviation of estimated execution cycles from an exhaustive
selection technique for the SoA [15] and proposed tech-
niques. In this example, execution cycles is the number of
clock cycles needed for execution of the entire application
that is partitioned between hardware and software. Here,
normalized values (vertical axis) greater than 1 indicate the
selection of sub optimal design points. Figure 1 shows that
there are large deviations in the estimated execution cycles
of the SoA at certain design points. At LUT constraints
1000, 1500, 2000 and 2500, the normalized values exceed 2,
depicting estimation errors exceeding 100%. As shown in
Fig. 1, the average error across the design space for DFADD
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Figure 1: Comparison of Estimated Performance - DFADD

using the SoA is 51.88% in comparison to 3.72% in the pro-
posed techniques. Thus, we identify the need to not only de-
velop rapid and reliable techniques for the fine-grained single
constrained HW-SW partitioning problem but also propose
techniques to accommodate multiple design constraints such
as LUT, digital signal processing (DSP) block, flip-flop (FF)
and power.

Hence, in this paper, we propose Wibheda+, a framework
for rapid data dependency-, area- and power constraint-
aware fine-grained (basic block level) HW-SW partitioning
that can be applied to applications of varying size and com-
plexity. Major contributions of this work are (a) method-
ology to analyze data communication cost between basic
blocks and memory components; (b) rapid technique to
model the HW-SW partitioning problem to an Oregon Trail
inspired knapsack problem using the proposed system level
model; (c) scalable integer linear programming (ILP) based
heuristic formulation to select the most profitable partition
considering (i) data communication cost of basic blocks and
memory components, (ii) area constraints in terms of LUT,
DSP, FF and (iii) power constraints. Wibheda+, compared
against the SoA, not only achieves better accuracy but also
advances the SoA by incorporating multiple design con-
straints without compromising the runtime.

2. RELATED WORK
The problem of finding the optimal partition under a given

constraint, e.g. area, is NP-complete [3]. Thus, any exact
formulation will lead to an exponential increase in runtime
with increase in design space. Therefore, many heuristics
have been proposed in order to find near optimal solutions
while reducing runtime [20] [15]. Also, approaches to com-
bine multiple heuristics have been reported [10]. However,
the solution quality of these approaches is highly dependent
on the initial solution seed [20].

The accuracy of a partitioning decision is significantly de-
pendent on the data communication model. As a result of
partitioning, data manipulated by hardware has to be up-
dated in the appropriate memory location so that software
uses the updated data value and vice versa. This results in
an overhead for the partitioning step. Thus, it is important
that a partitioning algorithm facilitates accurate modeling
of data communication. However, the current state of prac-
tice offers only limited accuracy at modeling time [20].

Also, the granularity of the partitioning algorithm is a vi-
tal factor in obtaining an optimal partition [17]. Thus, auto-
matic partitioning strategies using hardware accelerators at
different granularities and runtime systems to incorporate
different fine/coarse-grained accelerators into an extensible
processor according to application requirements have been
proposed [12] [15].

Fine-granularity HW-SW partitioning is significantly ben-
eficial in the domain of IoT devices due to the stringent
area/power requirements. As a result, applications of FPGA
based HW-SW partitioned systems in IoT is becoming in-
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Figure 2: Wibheda+

creasingly popular [9]. Chen et al. identify that the long
and iterative design cycles which is a bottleneck to meet
stringent TTM requirements is one of the key challenges
in development of IoT SoC devices due to the lack of suit-
able automation tools [8]. Further, the authors continue to
highlight the importance of developing fast and accurate es-
timation models that can incorporate area, performance and
power goals for HW-SW partitioning in IoT.

To this end, Zuo et al. [20] present an automated
power/area-aware HW-SW partitioning framework. How-
ever, due to the coarse granularity of the partitioning step
the usefulness of the system for low power/area requirements
is limited. Moreover, the methodology is heavily reliant on
manual intervention and also requires a significant amount
of FPGA platform specific data to be provided by the user.
On the contrary, Prakash et al. [15] propose a rapid method-
ology for memory-aware HW-SW partitioning at basic block
level. However, authors only consider the number of basic
blocks as the design constraint that results in large errors
for an area-constrained design. Thus, we identify the need
for rapid and reliable methodologies for data dependency-
aware multi-constrained HW-SW partitioning which can be
applied to designs of varying size and complexity.

3. METHODOLOGY
In this section, we discuss the system level model and

details of the Wibheda+ framework shown in Fig. 2.

3.1 System Level Model
Figure 3 shows the proposed system level model for appli-

cation characterization, comprising of c computation units
and m memory blocks denoted by {∆ = C1, C2, C3, · · · , Cc}
and {Γ = M1,M2,M3, · · · ,Mm} respectively, intercon-
nected via a data communication network. Here, Ci repre-
sents computation unit i and Mj represents memory block
j. The set of all computation units is denoted by ∆, and
the set of all memory blocks by Γ .

In this work, an application is represented using the pro-
posed model where basic blocks are mapped to computation
units and statically assigned variables to memories. Further,
each computation unit is characterized by a set of features,
defined by (i) Software Time (ST): Given that the full appli-
cation is executed in the processor space (SW), the execution
time of a computation unit; (ii) Hardware Time (HT): Sim-
ilar to ST, provided that the full application is executed in
the FPGA space (HW), the execution time of a computation
unit (iii) Area (L,D,F): resource consumption of a compu-
tation unit in terms of LUT, DSP, FF in HW ; (iv) Power
(P): dynamic power consumption of a computation unit in
HW; and (v) Frequency (α): number of times a computa-
tion unit is executed during application execution. Thus,
each computation unit (Ci) is represented by a tuple as in
Eq. (1). Further, each computation unit Ci accesses the
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memory blocks Mj for data communication. Thus, Mij rep-
resents the number of accesses to memory block Mj from
computation unit Ci during application execution.

Ci = {STi, HTi, Li, Di, Fi, Pi, αi} (1)

3.2 HW-SW Partitioning Framework
Wibheda+ consists of two phases, application characteri-

zation and design partitioning. During the application char-
acterization phase, the input C application is mapped to the
system level model presented in subsection 3.1. At the same
time, all features of computation units (Ci) and memory
accesses (Mij) are obtained using modified LLVM [1] and
LegUp [7] tool-chains. In the design partitioning phase, the
system level model and design constraints are provided to
the HW-SW partitioning engine that models the problem as
an Oregon Trail inspired knapsack problem. Next, the prob-
lem is formulated into an ILP-based heuristic and solved us-
ing an ILP solver. Finally, we perform a post optimization
process of the solution to further enhance accuracy.

3.2.1 Application Characterization
The C application is first profiled using LLVM profiler to

obtain the most frequently executed basic blocks, henceforth
referred to as ‘hot blocks’. These hot blocks are considered
as computation units while each assignment in the LLVM
profile is considered as a memory block. Even though, the
user has the flexibility to select the number of computation
units for analysis, we select 25 hot blocks since the applica-
tion spends most of its time in executing these basic blocks.
However, the methods proposed in this work are indepen-
dent of the number of selected computation units.
3.2.1.1 Feature Extraction.

The LLVM profile is used to extract features of compu-
tation units. We use an estimation based methodology [18]
to extract the ST, while HT, area and power extraction is
done using the LegUp tool. However, it should be noted
that currently, LegUp only provides data at function level
granularity. As a result, we modify LegUp to obtain data at
a basic block level granularity.

3.2.1.2 Dependency Analysis.
Data flow information between computation units and

memory blocks are extracted using a control data flow graph.
The process of obtaining the data dependency cost between
a single computation unit and a memory block is as follows.
Let duk be data produced by instruction ik in Cu. Also,
assume that duk is consumed by β instructions of Cv, where
u 6= v. Thus, we define the data dependency cost of Cv,
when accessing duk as β. Since, the execution frequency of
Cv is known to be αv (refer Section 3.1), the total data de-
pendency cost is (β ∗ αv). This procedure is repeated for
all nodes of the control flow graph using an LLVM analysis
pass. Based on the data obtained from this pass, we develop
a data flow graph (DFG) with nodes and edges representing
computation units and dependency costs respectively. How-
ever, there can be multiple edges between two nodes of the
DFG as two computation units may share multiple data be-
tween each other. Thus, each edge in the DFG is mapped
to the corresponding Mij values explained in Section 3.1.

3.2.2 Design Partitioning

After obtaining the system level model, the partitioning
algorithm strives to find the optimal set of computation
units for hardware acceleration to minimize the overall ap-
plication execution time within the design constraints (area
and/or power). Formally, the problem is defined as “given
a finite set of computation units and the data transfer costs
between computation units and memory blocks, find the op-
timal set of units and memories to be implemented as hard-
ware accelerators such that the application execution time is
minimized within area and/or power constraints”.

3.2.2.1 Architecture Model.
In this work, we perform our analysis based on the ar-

chitecture model described in [14] and summarized below:

(i)Placement of memory blocks: When a computation unit
is implemented in hardware, all memory blocks accessed by
the computation unit are also placed alongside in the FPGA
BRAMs as un-cached local memories. This is shown in Eq.
(2), where Ci = HW means that computation unit i is
implemented in hardware. This assumption is required to
exploit potential benefits of hardware acceleration [4].
(ii)Data communication penalty (Ω): A data communica-
tion overhead is incurred by computation units implemented
in software while accessing data stored in un-cached local
memories (δ). In contrast, when computation units and
memory blocks are both in software the access time will be
the cache access time (γ). Thus, there will be a data com-
munication penalty as shown in Eq. (3). Further, the data
communication penalty effectively encapsulates the speeds
of communication interfaces. On the other hand, based on
assumption (i), the penalty incurred by computation units
in hardware to access the un-cached local memories is en-
capsulated in the HT, obtained during feature extraction.
(iii)Static data allocation: The model assumes that all data
will be initialized prior to the execution of the application.
Thus, applications with dynamic data input are not consid-
ered in Wibheda+.
(iv)Atomicity of computation units: Since basic blocks are
mapped as computation units, it is guaranteed that the con-
trol flow of the application will not deviate from a compu-
tation unit to another while the former computation unit is
executed. However, data flow requires a computation unit
to access the memories.
(v)Resource sharing: It is assumed that none of the compu-
tation units share hardware resources in terms of LUT, DSP
and FF. As shown in [19], this assumption is based on the
fact that resource sharing negates the objective (minimizing
execution time) of HW-SW partitioning.

Ci = HW ⇒Mj = HW ⇐⇒ Mij > 0,

∀Ci ∈ ∆, ∀Mj ∈ Γ
(2)

Ω =

{
δ, if Mij > 0; ∀Ci = SW, ∀Mj = HW

γ, if Mij > 0; ∀Ci = SW, ∀Mj = SW
(3)

Oregon Trail inspired Knapsack Model. Based on the
architecture model and assumptions, it is evident that even
though certain computation units might be profitable candi-
dates for hardware acceleration, due to data dependencies,
they might have a negative impact on the overall execu-
tion time of the application. This effect is analogous to the
0-1 Oregon Trail knapsack problem presented in [6].
This problem discusses filling a knapsack with a set of items
where the value of an item of type x depends on the pres-
ence of another item of type y in the knapsack. Inspired by



this similarity, the proposed HW-SW partitioning problem
is mapped such that, in the partitioned design space, the ex-
ecution time of a computation unit placed in SW (TCi,SW ),
depends on itself (Ci) and the penalty incurred due to pres-
ence of other computation units placed in HW (∆\Ci) that
have overlapping data dependencies with Ci. The proposed
model is shown in Eq. (4), which shows that the execution
time of a computation unit in SW is a function (fi) of itself
(Ci) and other computation units in HW (∆\Ci). However,
based on assumption (i), the execution time of a compu-
tation unit placed in HW (TCi,HW ) is not affected by this
model and is still equal to HTi. This is shown in Eq. (5).

TCi,SW = fi(Ci,∆\Ci) (4)

TCi,HW = HTi (5)

3.2.2.2 ILP-based Heuristic Formulation.
The next step in the framework is to propose a runtime

efficient algorithm to solve the problem while providing near
optimal results. It has been shown that ILP-based formu-
lations can optimally solve the HW-SW partitioning prob-
lem [3]. However, the time complexity of ILP-based exact
solutions is exponential, which in-turn reduces their useful-
ness for larger design spaces. To alleviate this problem, we
propose an ILP-based heuristic formulation as explained in
detail in the subsequent sections. The input to the ILP con-
sists of the set of computation units (∆), set of memory
blocks (Γ ) and their dependencies (Mij). The design con-
straints are provided in terms of the LUT (ζ), DSP (ξ), FF
(λ) and power (ρ) budgets, where ζ, ξ, λ, ρ ∈ Z+. Next, we
define a binary decision variable xi, as shown in Eq. (6),
for each Ci which indicates whether the computation unit is
placed in hardware (xi = 1) or software (xi = 0).

xi =

{
1, if Ci = HW,

0, otherwise.
∀i = 1, 2, 3, · · · , c (6)

The objective of the partitioning problem is to minimize
application execution time. While the execution time of a
computation unit placed in HW is directly obtained through
feature extraction (refer Section 3.2.1.1), its execution time
during SW execution is modeled in Eq. (4). Since, this SW
execution time depends on whether other computation units
are implemented in HW or SW, an exact ILP formulation
models all possible design points in the full design space (2n

combinations for n computation units), which in turn leads
to the exponential increase in runtime of the partitioning
algorithm. To alleviate this combinatorial explosion, in the
proposed heuristic, the total data communication penalty of
a computation unit in SW, is assumed to be the summation
of individual communication penalties of computation units
in HW on the SW computation unit in consideration. This
limits the search space to all possible combinations of only
two computation units (for n computation units n ∗ (n− 1)
combinations). Therefore, we effectively reduce the time
complexity of the problem to O(n2).

We explain this assumption using an example of 5 compu-
tation units. Consider finding the execution time of the ap-
plication when computation units 1 and 3 are implemented
in hardware. Equation (7) shows the total execution time
(Tex) of the application and Eq. (8), the individual execu-
tion time of the computation units. Here, the execution time
of computation units in hardware and software are modelled
as in Eq. (5) and Eq. (4) respectively. Next, in Eq. (9) we
apply the proposed algorithm, where the total data commu-
nication penalty of computation units 1 and 3, on compu-

tation unit 2 (similarly for 4 & 5) is assumed to be equal to
the sum of individual data communication penalties.

Tex =

5∑
1

TCi (7)

TC1 = HT1, TC3 = HT3, TC2 = f2(C2,∆\C2),

TC4 = f4(C4,∆\C4), TC5 = f5(C5,∆\C5)
(8)

f2(C2,∆\C2) = ST2 + f2(C2, C1) + f2(C2, C3) (9)

Thus, based on the proposed algorithm, we generalize the
execution time model for Cn in Eq. (10). Here, the three
terms refer to Hardware Time, Software Time and data com-
munication penalty of Cn due to computation units which
are placed in hardware. In Eq. (10), the “∧” in the last
term of the data communication penalty refers to the log-
ical AND operator and implies, if Mnj > 0 and Mij > 0,
then Mnj is considered in the summation. The impact of
the terms of Eq. (10) for the two cases of Cn in hardware
(xn = 1) and software (xn = 0) are shown in Eq. (11) and
Eq. (12) respectively.

fn(Cn,∆\Cn) = (HTn ∗ xn)︸ ︷︷ ︸
Hardware Time

+ (STn ∗ (1− xn))︸ ︷︷ ︸
Software Time

+

(Ω ∗ (1− xn) ∗ (
∑

Ci∈∆\Ci

xi ∗
∑
Mj∈Γ

(Mnj ∧Mij) ∗Mnj))

︸ ︷︷ ︸
Data Communication Penalty

(10)

fn(Cn,∆\Cn) = HTn + 0 + 0 (11)

fn(Cn,∆\Cn) = 0 + STn+

Ω ∗ (
∑

Ci∈∆\Ci

xi ∗
∑
Mj∈Γ

(Mnj ∧Mij) ∗Mnj) (12)

Thus, the objective can be expressed as Eq. (13). Substi-
tuting Eq. (10), we derive the final objective function in Eq.
(14). Equation (15) - (18) represent the design constraints.

minimize
∑
Ci∈∆

TCi (13)

Objective function:

minimize

 ∑
Cn∈∆

(HTn ∗ xn) +
∑
Cn∈∆

(STn ∗ (1− xn))+

∑
Cn∈∆

Ω ∗ (1− xn) ∗ (
∑

Ci∈∆\Ci

xi ∗
∑
Mj∈Γ

(Mnj ∧Mij) ∗Mnj)


where i, n = 1, 2, 3, · · · , c; j = 1, 2, 3, · · · ,m (14)

Subject to:

LUT Constraints:
∑
Ci∈∆

xi ∗ Li ≤ ζ ∀Ci ∈ ∆ (15)

DSP Constraints:
∑
Ci∈∆

xi ∗Di ≤ ξ ∀Ci ∈ ∆ (16)

FF Constraints:
∑
Ci∈∆

xi ∗ Fi ≤ λ ∀Ci ∈ ∆ (17)

Power Constraints:
∑
Ci∈∆

xi ∗ Pi ≤ ρ ∀Ci ∈ ∆ (18)

As a result of the heuristic formulation, the execution time
obtained (Tex) from solving Eq. (14) contains an additional
penalty component due to the summation of individual data
communication costs. Thus, we perform a post optimiza-
tion process on the obtained solution. The post optimiza-
tion is carried out using Algorithm 1 to calculate the post
optimization penalty (Topt). Initially, in Algorithm 1, for



Algorithm 1 Post Optimization Algorithm

Input: computation units (∆), memory blocks(Γ ), place-
ment vector (xi)

Output: post optimization penalty Topt
1: for i ∈ ∆ do
2: for n = i+ 1 ∈ ∆ do
3: if xi & xn then
4: for j ∈ Γ do
5: if Mij ∧Mnj then
6: for v ∈ ∆ do
7: if (1− xv) ∧Mvj then
8: penalty = penalty +Mvj

9: done
10: done
11: Topt = Ω ∗ penalty;
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Figure 4: Criteria 1: Runtime Comparison
all combinations of two computation units in hardware we
identify the overlapping memory accesses and populate the
overlapping memory access vector (lines 1 - 5). Next, for
each computation unit in software, we compare the overlap-
ping memory access vector with the memory access pattern
of the computation unit and if an overlap is identified the
corresponding memory access value (Mvj) is added to the
penalty. This process is repeated for all the computation
units in software (lines 6 - 8). Finally, Topt is calculated as
in line 11 and the final execution time (Tf ) using Eq. (19).

Tf = Tex − Topt (19)

4. RESULTS AND DISCUSSION
Altera Cyclone V FPGA is used as the target device for

feature extraction using LegUp. All experiments were car-
ried out on a virtual machine running Ubuntu on an Intel
Xeon E5-1650V2 CPU host at 3.5 GHz with 8 GB RAM. To
test the scalability and accuracy of Wibheda+, we have used
10 benchmarks from the CHStone benchmark suite [11].
As mentioned in Section 3.2.1, we considered the 25 most
frequently executed computation units of each benchmark.
Evaluation of Wibheda+ is done under three criteria.

Criteria 1: The runtime of Wibheda+ and the SoA [15]
is shown in Fig. 4, where the horizontal axis represents the
benchmarks while the vertical axes on left and right repre-
sent the log10 value of runtime and the number of memory
blocks respectively. Here, we use logarithmic values for clar-
ity. As observed, the runtime of Wibheda+ is in the order of
milliseconds while that of the SoA is in the order of min-
utes. Also, the speedup obtained by Wibheda+ with respect
to an exhaustive approach for each benchmark is indicated
as numbers above the bar in Fig. 4. Here, we see the sig-
nificant speedup with increasing number of memory blocks
due to the reduction in time complexity, from exponential
in the exhaustive approach to quadratic in Wibheda+.

Criteria 2: Criteria 2 compares the performance of Wib-
heda+ and the SoA [15] in terms of the accuracy of results
under stringent area constraints (LUT). Figure 5 shows the
results for 9 applications while Fig. 1 in Section 1 shows the
same for the DFADD application. Here, the horizontal axis

indicates the area constraint in terms of LUT, distributed
across the design space in each application while the vertical
axis shows the deviation of estimated execution cycles from
an exhaustive selection technique. Also, the legend indicates
the average error across the design space. As can be seen in
Fig. 5, Wibheda+ shows insignificant errors in most cases
with a maximum error of only 13% at an area constraint of
1000 in Fig. 5i. However, the SoA work shows significant
errors at multiple constraints in most applications with the
maximum error exceeding 100% as can be seen in Fig. 1.

The SoA considers number of basic blocks as its design
constraint. Typically, area constraints are provided as LUT,
FF, etc., which are the actual resources available on an
FPGA. Even though basic blocks can be expressed in FPGA
resources, the resource consumption of different basic blocks
typically vary significantly across an application as the sizes
of basic blocks are not equal. Thus, representation of FPGA
resources using a metric such as basic blocks can result in
notable loop holes in obtaining optimal design points under
resource constraints. This results in the selection of sub-
optimal design points, which can have large deviations from
the optimal design point. Averaging across all applications
Wibheda+ shows an average estimation error of only 1.17%
in comparison to the SoA work which has an error of 16.76%.
Thus, the accuracy of estimation under such stringent LUT
constraints reflect the suitability of Wibheda+ across the
full design space of an application.

Criteria 3: Wibheda+, not only improves the accuracy
of a LUT constrained design but also advances the SoA by
incorporating multiple design constraints. Thus, criteria 3
performs a holistic system evaluation of a SoC design under
different LUT, DSP, FF and power constraints using con-
straints representing latest FPGA devices, Lattice iCE40
Ultra, ECP2/M and Intel Cyclone 10 LP series targeted for
IoT applications. The design constraints used in the exper-
iments are shown in Table 1. However, we evaluate results
only against an exhaustive approach, due to the inability of
the SoA to consider multiple design constraints.

The performance achieved by accelerators recommended
by Wibheda+ is nearly identical to ones from the exhaus-
tive approach for most of the benchmarks in all experiments.
The DFMUL application exhibits slightly lower performance
in experiments 1 and 2. The accelerators selected by Wib-
heda+ in this case are moderately different than the ones se-
lected by the exhaustive approach due to the overestimation
of the communication penalty as discussed in Eq. (7) - (9),
where the ILP is formulated assuming the overall penalty
to be equal to the sum of individual penalties. Thus, when
multiple computation units access the same memory block
Wibheda+ erroneously incurs an additional penalty result-
ing in an error. However, the accelerators recommended by
Wibheda+ for this application still achieves over 97% of the
performance achieved by the exhaustive approach, but in a
fraction of time. Overall, the average difference in perfor-
mance across the 3 experiments is only 0.16%. This affirms
the suitability of the fine-grained acceleration achieved by
Wibheda+ in system level design targeted for IoT devices
with multiple, severely strict design constraints.

5. CONCLUSION
In this paper, we proposed Wibheda+, a framework for

rapid fine-grained data dependency-, area- and power- con-
straint aware HW-SW partitioning. The proposed tech-
niques achieve average estimation errors of only 1% across
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(c) BLOWFISH
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(d) DFMUL
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(e) DFSIN
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(f) GSM
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(g) JPEG
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Figure 5: Criteria 2: Comparison of Estimated Performance

Table 1: Criteria 3: Constraints for System Evaluation

Experiment
Constraint

No.
LUT (ζ) DSP (ξ) FF (λ)

Power (ρ)
(mW)

1 1000 4 1000 50
2 5000 8 5000 500
3 10000 40 10000 3000

various applications from the CHStone benchmark suite. It
has also been shown to be extremely fast with runtime in
the order of milliseconds as opposed to minutes/hours taken
by an SoA/exhaustive approach for the same applications.
In future, we plan to consider coarse-grained acceleration to
further improve the application runtime, while still consid-
ering the various constraints used in this work.
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