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Abstract—With an increasing market share of electric vehicles 
(EVs) the question of additional electricity demand and its 
effects arises. In this context, smart charging of EVs is discussed. 
This paper investigates the optimization of charging strategies 
with cost as objective function. Thereby, battery constraints 
regarding the charging process are taken into account. The 
problem is formulated as a mixed integer linear programming 
problem. The model accesses detailed information on battery 
charging profiles, predefining charging energy amount as well 
as charging current and voltage. Beside the battery constraints, 
limitations by the EV drivers’ mobility demand as well as 
maximum power limitations of the investigated system are 
considered. Within the framework of a case study for Singapore, 
the model is applied to a sample of EVs and to the 
corresponding car parks, resulting in charging power profiles 
for different car park types. 

Index Terms—Electric vehicles, Load management, Optimal 
scheduling, Optimization, Singapore.  

I. INTRODUCTION 

The increasing market penetration of electric vehicles 
(EVs) stimulates the discussion about the effects of EVs on 
the transportation as well as on the power system. 
Accompanying the rise of EV market share in the individual 
transport, an adaption of the mobility behavior to the new 
circumstances, e.g., shorter range of EVs compared to 
conventional combustion engine vehicles, is most likely. The 
necessity to recharge the batteries of the EVs, dependent on 
the adapted EV mobility behavior, opens challenges as well as 
opportunities for the power system. The risk of additional load 
peaks, caused by uncontrolled charging of EVs, opposes the 
possibilities to take advantage of flexible charging processes. 
The control of power systems and integration of renewable 
energies can be simplified by flexible charging strategies [1]. 

At this point, intelligent charging strategies apply in order 
to achieve different objectives, e.g., cost minimization, grid 
load balancing or integration of renewable energies. This is 

accomplished either by shifting charging processes to most 
favorable times or by additionally feeding electricity back to 
stabilize the grid, as described in [2] and [3].  

The focus of this paper lies on the optimization of charging 
processes with the objective of charging with minimal cost. 
Different charging optimization models in order to support the 
power system were elaborated, e.g., in [1], [4], [5] or [6]. [1] is 
allocating the aggregated charging load of EVs in order to 
minimize total cost of electricity regarding the entire power 
system. [4] couples an agent-based transportation simulation 
with a power system model with the objective of a secure 
power system operation while considering a power constraint 
of EVs. Within the charging cost minimization in [5], a 
simplified charging profile of a battery with two phases – a 
higher and a lower power level – is taken into account.   

In contrast to the aforementioned models, the approach of 
this paper is to additionally take the constraints arising from 
the EV battery into account. Beside requirements of the EV 
drivers’ mobility demand as well as maximum power 
limitations of the investigated system, detailed information on 
EV specific charging profiles are included. Deriving from this 
battery data, charging energy amounts, charging current, and 
charging voltage are predefined. Considering these 
constraints, the charging optimization model minimizes the 
charging cost.  

As a case study, the charging optimization model is 
applied to EVs and car parks in Singapore. Therefore, a 
mobility model, reflecting driving and parking patterns of 
private vehicle drivers in Singapore, is used for simulation of 
EVs. For every half hour, when the Singaporean electricity 
price is fixed, the optimization model assigns a charging 
strategy to these EVs and draws a charging power profile for 
the car parks.  

Section II elaborates the charging optimization model, 
while in Section III the implementation of the case study is 
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described. Results thereof are analyzed and discussed in 
Section IV. Finally, Section V draws a conclusion and gives 
an outlook to future research.  

II. CHARGING OPTIMIZATION MODEL 

The charging optimization model aims at cost minimized 
charging strategies for EVs given the mobility behavior and 
demand of EVs over a certain time period. The problem 
statement is formulated as a mixed integer linear programming 
problem. Thereby, constraints to the charging strategies rising 
from the mobility demand, from the battery restrictions as well 
as from the power system are taken into consideration.  

A.  Mobility Demand 

The EVs considered in the charging optimization model 
demand certain amounts of energy after each trip, i.e., the 
energy consumed during their journey. It is assumed that a car 
is always charged to a state of charge (SOC) of 100 % if 
possible in order to minimize the risk of running out of 
battery, prevent range anxiety and ensure the following trip 
can be finished. The energy demand of each EV has to be met 
by the proposed charging strategy for the respective parking 
event of the EV. 

B. Battery Charging Profiles 

A typical charging profile of a lithium-ion cell, as it is 
currently used in batteries of many commercial EVs, can be 
divided into two phases. First, the cell is charged with constant 
current while the voltage is increasing during this charging 
phase. This is the fastest way to charge a lithium-ion cell. This 
phase ends with the voltage reaching a threshold value. 
Afterwards, the voltage is kept constant at this value and the 
current is decreasing. Further increase of the cell voltage 
would lead to irreversible cell damage [7]. 

Project-internally measured data on the charging profile of 
a Samsung INR 18650-15Q cell with a LiNi0.8Co0.15Al0.05O2-
based cathode and a graphite anode (NCA cell, [8]) is shown 
in Fig. 1. The cell with a capacity of 1.5 Ah is charged at a 
current of 0.75 A, i.e., at a C-rate of 0.5, until the voltage 
reaches 4.2 V. The typical power curve results as product of 
voltage and current. It is increasing to a peak during the 
constant current phase and decreasing during the constant 
voltage phase. Integration of the charging power over time 
yields the charging energy.  

Figure 1.  Charging profile at 0.5 C of 1.5 Ah NCA cell. 

In addition to the charging profile shown in Fig. 1, the 
qualitatively resembling charging profiles for C-rates of 0.2 
and 1.0 are integrated into the model calculations.  

In order to conclude from cells to batteries, the current 
respectively voltage profiles have to be multiplied by the 
number of cells connected in parallel respectively in series.     

C. Problem Formulation 

Corresponding to the previously explicated circumstances, 
a system of equations was developed to describe the mixed 
integer linear programming problem. 

Table I contains the indices, parameters, and variables of 
the system, where parameters are fixed values and variables 
are to be optimized. 

 OVERVIEW OF INDICES, PARAMETERS, AND VARIABLES. TABLE I. 

Indices t Time step 

 tch Charging time step 

 pcar 
Parking event, 2-dimensional,  
e.g., (1,2) for 2nd parking of 1st car 

Parameters Echarge(pcar,tch) 
Energy package per charging time 
step tch for each parking event pcar 

 parking(t,pcar) Binary, whether car is parking or not 

 durt 
Duration of time steps t and charging 
time steps tch 

 prel(t) Electricity price 

 Pmax Maximum power limit of the system 

 thelp(t) 
Value of time step t is assigned to 
auxiliary parameter thelp(t) 

Variables charging(t,pcar,tch) 
Binary, whether battery is charged or 
not 

 c Charging cost for all EVs 
 

The demanded energy over time for recharging the 
batteries to an SOC of 100 %, predefined by the charging 
profiles defined in Section II.B is divided into charging energy 
packages Echarge per charging time step tch for all parking 
events pcar. The binary parameter parking represents for every 
time step t whether a car is parking or not during its 
corresponding parking events pcar. Parameter durt reflects the 
duration of time steps t and charging time steps tch.  

The binary variable charging displays whether for parking 
event pcar during time step t, charging time step tch is executed 
or not. This variable is optimally allocated within the scope of 
the optimization problem, while the objective is to minimize 
cost c for charging the EVs as defined in (1).  

  ∑ ∑ (       (      )       

∑ (        (          )     

       (        ))      ( ))  

(1) 

Total cost c arises from summation over all time steps t 
and over all parking events pcar of energy charged to EVs 
multiplied by the electricity price prel of the respective time 
step t. The charging energy amounts depend on whether a 



 

vehicle is parking and charging during the respective time 
step, indicated by the binaries parking and charging. If both is 
true, the charging energy during time step t for the specific 
parking event pcar and the specific charging time step tch equals 
the required energy package Echarge, which is characterized by 
the charging profile of the EV’s battery. Otherwise no energy 
is charged at specific t, pcar and tch.  

The following constraining equation mirrors the mobility 
demand of the EVs. For each parking event pcar, the energy 
amounts charged to the respective EV are calculated 
analogous to (1). These amounts have to sum up to the energy 
amount required by the EV’s mobility demand, i.e., the energy 
consumption during the last trip in order to be recharged to an 
SOC of 100 %. 

∑ ∑ (       (      )          (          )      

       (        ))  ∑        (        )     
(2) 

The maximum power limit Pmax of the system which the 
total charging power must not exceed at all times is covered 
by the restriction in (3). For each time step t, the sum of the 
charging energy amounts has to be lower than the energy 
amount equivalent to the power Pmax during one time step.  

∑ (       (      )      

∑ (        (          )         (        ))   )  
           

(3) 

In order to cope with the typical charging profiles of 
batteries – as explained earlier – the charging energy is fixed 
and divided into predefined energy packages Echarge. These 
energy packages are adapted to the characteristics of each 
battery, e.g., cell type and circuitry, as well as of each parking 
event, e.g., duration and SOC at the beginning. Besides, 
further battery constraints have to be considered during the 
charging processes which are ensured by the following 
equations. Singleness of each charging energy package is 
ensured by (4) and non-simultaneity by (5). The correct 
chronological sequence of the charging energy packages 
according to the charging profiles is guaranteed by (6). Each 
occurrence of the binary variable charging as well as the 
subsequent occurrence are multiplied by the auxiliary time 
step parameter thelp to determine the temporal positions of the 
charging energy packages. These temporal positions are 
compared and the preceding energy package has to be 
executed earlier than the subsequent one.  

∑         (          )      (4) 

∑         (          )       (5) 

∑         (          )       ( )  
∑         (            )       ( )   

(6) 

III. CASE STUDY: OPTIMIZING ELECTRIC VEHICLE 

CHARGING IN A SINGAPOREAN CAR PARK 

The optimization model for charging strategies described 
in Section II is applied to a car park in Singapore used by a 
sample of 100 EVs. Supposing a big Singaporean car park 
with 1,000 parking spaces with 10 % of those equipped to 
charge electric vehicles would meet the charging demand of 
100 EVs. Furthermore, it is assumed that all 100 vehicles are 
parking in the same car parks throughout the modeling period 
of one day. Accordingly, three car parks are examined: one 
residential car park where the cars park mainly at night, one 
car park at work, and one car park where the EV drivers 
pursue leisure activities.   

A. Simulation of Driving and Parking Behavior 

The charging demands of the 100 EVs over one day derive 
from a mobility model, which simulates the itinerary and 
parking events of private vehicles in Singapore. It takes into 
account statistics and calculations on driven distances, average 
speed, working habits, employment situation, as well as 
duration of stay at car parks in Singapore. For each EV, the 
mobility model produces a sequence of driving and parking 
events including duration and length of trips, energy 
consumption during trips, parking duration as well as car park 
category, i.e., residential, work- or leisure-related. A more 
detailed description of the mobility model can be found in [1].  

As a result of the mobility simulation, the occupancy of 
the three examined car parks can be seen in Fig. 2. At the 
starting point of the simulation at 12:00 AM, all 100 EVs are 
parked at home. In the morning, EVs begin to drive to work. 
During the day, some EVs drive to a leisure place for lunch, 
after work, or in between. At the end of the day, all EVs drive 
back home. Even though the simulation time period is set to 
one day, the simulation does not stop after 24 hours but after 
one complete cycle through the EV drivers’ daily routine. This 
means, the simulation produces trips and parking events until 
the EV returns home in the evening respectively at night after 
working and/or leisure activities.  

Figure 2.  Occupancy by EVs of work-related (a), residential (b) and 
leisure-related (c) car park. 

While the capacity utilization of EV parking spaces is 
highest at residential car parks since all vehicles park there at 
night, the parking time at work is more distributed because of 
varying working hours. At leisure-related car parks, this effect 



 

 

is even bigger and additionally, the average parking duration 
is shorter. 

The binary parameter parking which reflects when which 
vehicle is parking and when not, derives from the occupancy 
of the three car parks. 

B. General Conditions 

It is assumed that each of the three car parks which the 100 
EVs visit along their daily routine is equipped with 100 
charging stations with 20 kW power. This results in a 
maximum power limit Pmax of 2,000 kW for each car park. 

The optimization model calculates with electricity price 
prel for each time step t. For this case study, the Uniform 
Singapore Energy Price (USEP) which changes every half 
hour is used. The USEP as well as the total electricity demand 
in Singapore is provided online as historical data and as 
forecast for 36 hours. The calculations are conducted with the 
electricity price data of a weekday in February 2013 [9]. 

The duration of time steps durt is set to 0.5 h since it is an 
optimization problem aiming minimization of charging cost 
for EVs and the electricity price is changing half-hourly. 

C. Derivation and Calculation of Charging Energy Demand 

The batteries of the EVs of the case study shall consist of 
the NCA cells described in Section II.B with the charging 
profile shown in Fig. 1. The cell and battery characteristics are 
displayed in Table II. Assuming a battery consisting of 3,600 
of these NCA cells, the battery obtains 60 Ah, 324 V and an 
energy content of 19.44 kWh. Tesla is using cells of the same 
cell chemistry in their EVs, however, with twice that capacity 
[10], [11]. But as we had detailed data sets available for the 
1.5 Ah cells, we used these for the case study.  

 BATTERY AND EV PROPERTIES. TABLE II. 

Cell typea Samsung INR18650-15Q cell 

Cell capacitya 1.5 Ah 

Average cell discharge voltagea 3.6 V 

Number of cells in battery 3,600 

Circuitry of cells 90 in series, 40 in parallel 

Battery capacity 60 Ah 

Average battery discharge voltage 324 V 

Energy content of battery 19.44 kWh 

a. [8]  
 

It is assumed that the 100 EVs start their first trip in the 
morning, fully charged with an SOC of 100 %. The EVs’ 
consumption during each trip is calculated assuming specific 
energy consumption in the range of 15 to 20 kWh / 100 km. 
According to this consumption, the SOC is reduced during a 
trip. The energy demand for the following parking event 
matches the consumption during the last trip. The current SOC 
at the beginning of the parking event is looked up in the 
charging profiles of Section II.B specifically for the EV. The 
charging time to an SOC of 100 % is calculated for C-rates of 
0.2, 0.5, and 1.0. The C-rate with charging time suitable to the 
parking duration is chosen and according to its charging 

profile, the parameter Echarge is filled with values for the 
different charging time steps. In case the parking duration is 
too short to charge to 100 % SOC even at a C-rate of 1.0, the 
battery is charged for the entire parking duration at 1.0 C and 
the missing charging energy is added to the subsequent 
parking event.    

The total energy demand for recharging 100 EVs can be 
calculated by integrating the charging power and corresponds 
to the area displayed in Fig. 3. If all EVs were charged with 
constant power as long as they are parking it would result in a 
power profile as shown in Fig. 3. The total charging energy 
correlates to 1,073 kWh and has to be optimally allocated by 
the charging optimization model. 

Figure 3.  Energy demand for charging EVs. 

   

IV. RESULTS AND DISCUSSION 

The optimization model is executed for each of the three 
car parks. The resulting charging strategies for cost minimized 
charging of 100 EVs yield the charging power profiles 
pictured in Fig. 4. 

Figure 4.  Charging power profiles for three car parks. 

The charging profiles must be examined together with the 
flexibility of the charging options, which can be derived from 
Fig. 5. It shows how many EVs are parking respectively 
charging at the particular car park. The larger the difference 
between the areas beneath the parking curve and the charging 
curve, the larger is the flexibility for optimizing the charging 
processes. Regarding the work-related car park, the charging 



 

 

power in the morning is high due to relatively low electricity 
price (see Fig. 6 (c)). In the afternoon, another peak can be 
identified because the EVs of people having lunch somewhere 
else need to be recharged before they leave in the evening and 
prices are still lower than in the evening. Such an obvious 
pattern cannot be recognized at the leisure car park. Since the 
average parking durations are shorter, charging options are not 
so flexible, as can be seen in Fig. 5 (c), and hence, the 
charging processes cannot be shifted very much. While the 
EVs return home in the evening to park there at night, they are 
charged mainly between 3:00 AM and 5:00 AM when 
electricity prices are lowest. This is possible because of the 
high flexibility for the allocation of the charging processes at 
residential car parks (see Fig. 5 (a)).  

Figure 5.  Parking and charging utilization for three car parks. 

Figure 6.  Charging power (a), grid load (b), and electricity price (c). 

Fig. 6 pictures the correlation between EV charging power, 
grid load, and electricity price in Singapore. The total charging 
power for 100 EVs over the modeling time period of one day 
is shown in Fig. 6 (a) with a maximum of 338 kW between 

3:00 AM and 5:00 AM. The maximum charging power for 
100 EVs is in the magnitude of merely 0.01 % of the grid load 
in Singapore (see Fig. 6 (b)). Nevertheless, it can be seen that 
the cost minimizing charging strategies produce a power 
profile favoring the grid load as peaks of the charging power 
profile coincide with times of low demand of the rest of the 
system in most of the times. Scaling up these results to 50,000 
EVs, which would account for 10% of all private vehicles in 
Singapore [12], the peak charging power would rise to 
approximately 150 MW equaling 3 to 4 % of the grid load. 

The charging cost for the 100 EVs, minimized by the 
charging optimization model, are listed in Table III. It has to 
be pointed out that the listed charging cost include only 
electricity cost for charging, but not cost for charging 
infrastructure. Charging at home is cheapest with an average 
cost per parking event of 0.42 S$. This can be inferred from 
the very low electricity price at night. Charging at work- and 
leisure-related car parks lies in the same price range but is 
more expensive than parking at residential car parks since it is 
charged mainly during the day.  

 CHARGING COST PER CAR PARK. TABLE III. 

Charging cost  
[S$]a 

100 EVs during  
one day 

Average per 
parking event 

Residential 41.72 0.42 

Work-related 71.72 0.51 

Leisure-related 50.29 0.50 

All car parks 163.73 0.48 

a. currency exchange rate as of 2013-02-28: 1 US$ = 1.2363 S$ [13] 

 

For comparison, a cost minimizing charging optimization 
excluding the battery constraints, described in the equations 
formulated in (4)-(6) as well as through parameter Echarge in 
Section II.C, was calculated for the same 100 EVs. The 
charging cost for all car parks in this case is 161.62 S$, a 
decrease of 2.11 S$. Per EV, the charging is 0.02 S$ cheaper 
for one day. Given a lifetime of an EV of 5 years, an amount 
of 39 S$ could be saved when charging without battery 
constraints. The peak power between 3:00 AM and 5:00 AM 
increases to 696 kW for charging without battery constraints. 
This would more than double the maximum power compared 
to the scenario with battery constraints if it is not restricted 
otherwise. Even though the charging cost with regard to 
battery constraints are slightly higher, it is beneficial to take 
them into account, because these charging strategies guarantee 
charging processes adapted to battery restrictions. The upper 
charging voltage limit is not exceeded and this leads to longer 
lifetime of batteries and enhances safety [7].  

This can be summarized to two main advantages of cost 
optimized charging including battery constraints compared to 
charging without battery constraints. First, the slightly higher 
charging cost is compensated by longer lifetime and increased 
battery safety. Based on cost in the range of 15,000 S$ for a 
new battery [13], [14], the additional amount of 39 S$ for 
battery adjusted charging for 5 years is amortized as soon as 
the battery experiences a longer lifespan of only 5 days. 
Secondly, the significantly higher peak power of charging 
without battery constraints, as it appears between 3:00 AM 



and 5:00 AM, is assumed to have effects on the power supply 
system in scenarios with a larger amount of EVs and 
especially if photovoltaic systems play an important role in the 
power system.  

V. CONCLUSION AND OUTLOOK 

An optimization model for EV charging strategies 
considering battery constraints with the objective to minimize 
charging cost was developed. As case study for Singapore, it 
was applied to a sample of 100 EVs, which are parking and 
charging in Singaporean car parks. The cost minimized 
charging processes occur mainly during load valleys and 
hence have a positive effect on the grid load. Moreover, the 
charging strategies consider battery restrictions and thereby 
ensure battery lifetime and safety, which overcompensates the 
slightly higher charging cost compared to charging without 
battery constraints.  

Future research will consider valley filling of the grid load 
as objective and compare it to the model elaborated here. 
Furthermore, the cost for charging infrastructure and demand 
for charging stations will be included. The model can be 
extended to larger systems as districts, cities or even larger 
areas. In addition, various battery types with corresponding 
battery profiles can be integrated to cover the diversity of the 
EV market. Moreover, charging profiles for higher C-rates can 
be implemented in order to include fast charging options. 
Thus, a comprehensive view on future large scale EV charging 
can be given. 
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