
Charging Optimization of Battery Electric Vehicles 
including Cycle Battery Aging 

Annette E. Trippe 
Raghavendra Arunachala 

Tobias Massier 
TUM CREATE

Singapore 
annette.trippe@tum-create.edu.sg 

Andreas Jossen 
Institute for Electrical Energy Storage 

Technology 
Technische Universität München 

(TUM)
Munich, Germany 

 

Thomas Hamacher 
Institute for Renewable and 
Sustainable Energy Systems 

Technische Universität München 
(TUM)

Munich, Germany 
 

 
Abstract—Controlled charging of battery electric vehicles is one 
instrument of smart grids in order to intelligently use the 
electricity load generated by electric vehicles (EVs). However, 
battery constraints as well as effects of the charging processes on 
the battery should not be neglected. This work elaborates an EV 
charging model, which optimizes the charging process while 
considering cycle battery aging effects. Formulated as a 
quadratic constraint program, it minimizes total charging cost, 
consisting of charging electricity cost and battery aging cost. 
Cycle battery aging tests are conducted and used to analyze and 
model the battery aging behavior. The optimization model is 
applied to a sample of EVs in Singapore and four different 
scenarios are evaluated. The resulting battery aging cost 
accounts for a substantial share of the total charging cost, i.e., 
between 52% and 93%. Therefore, an inclusion of battery aging 
into the intelligent controlling of EV charging is crucial. 

Index Terms— Cost optimization, Cycle battery aging, Electric 
vehicles, Intelligent charging.  

I. INTRODUCTION 

Looking into smart grids, one aim is to control the
charging processes of battery electric vehicles in order to have 
positive effects on the power system. Therefore, objectives 
and constraints often refer to the power system and all its 
components. However, one should consider not only the 
effects of electric vehicle (EV) charging on the power system, 
but also the impact on the battery, especially on its aging 
behavior.  

References [1] and [2] are dealing with a multi-objective 
optimization, where both the energy cost for plug-in hybrid 
electric vehicles and the battery degradation is minimized. 
Here, the starting point of charging and the energy amount to 
recharge is optimized, but not the charging rates. A Pareto-
front of several optimal solutions results for each vehicle, 
which then have to be weighted by energy cost and battery 
degradation. One battery aging effect is considered, i.e., the 
growth of the solid electrolyte interphase (SEI) layer. This 
might be the most important aging effect for the specific 
battery used in this model, but may not suitable as the sole 

effect to reflect battery aging in a general charging 
optimization model.  

In [3], the influence of different average states of charge 
(SOCs) on the battery lifetime is compared and analyzed. 
Various charging strategies including cost optimized charging 
or battery lifetime optimized charging are investigated and the 
ratio between charging electricity cost and battery degradation 
cost is evaluated for the different charging strategies. The 
model takes into account the SOC as a factor for calendar and 
cycle battery aging, but not different charging rates.  

Our previous work [4] already regarded battery constraints 
within the charging optimization. However, it considered only 
the charging processes the battery is capable of, and not how 
the battery aging is affected during charging.  

The purpose of this work is to elaborate a model, which 
depicts the relationship between charging electricity cost and 
battery aging cost during a charging process of battery electric 
vehicles. The developed charging optimization model 
minimizes electricity cost of the charging process and at the 
same time aging cost of the vehicle’s battery. The cycle 
battery aging during the charging processes is reflected by a 
battery aging function, which yields different aging behavior 
for different charging rates. Cycle battery aging tests are 
conducted and used to develop a battery aging model. This 
battery aging model is included in the charging optimization 
model to minimize total charging cost. As an example case, 
the optimization is applied to a simulation study of Singapore 
in order to obtain information on the ratio between charging 
electricity cost and battery aging cost as well as to allow a 
deeper understanding of the resulting intelligent charging 
power profiles. 

II. BATTERY AGING MECHANISMS AND CYCLE TESTS 

In order to consider battery aging within the charging 
optimization model for electric vehicles, battery aging tests 
were conducted. After a discussion of the applicable aging 
effects, the conducted cycle aging tests are described. 
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A. Applicable Battery Aging Effects

Aging mechanisms in lithium ion batteries are complex 
processes of electrochemical, structural and mechanical 
degradation that limit the performance and safety of a battery 
throughout its life, whether it is being used or not. It is mainly 
characterized by loss of capacity and impedance growth. The 
most difficult and challenging task is to identify the nature of 
aging mechanisms as several factors such as environmental 
conditions, charge and discharge protocols, and rest time 
influence different aging effects in a battery.

The most common aging effects derived from the usage of 
a battery in an electric vehicle application are loss of cyclable
lithium, surface film formation, electrolyte decomposition, 
contact loss, active material degradation due to dissolution, 
structural degradation, delamination of composite material, 
etc.  All these effects can occur simultaneously and in most 
instances some effects dominate the aging mechanism, 
depending on the usage of the battery [5], [6]. 

Battery lifetime can be predicted with the knowledge of 
complex aging mechanisms and the stress factors, which 
influences the rate of aging processes. Different operating 
conditions such as ambient temperature, operating voltage, 
applied current, cycling depth etc. can be used to describe 
stress factors, which affect the lifetime of a battery. 

High ambient temperature reduces the lifetime of the 
battery by accelerating the aging processes. It increases the 
rate of parasitic side reactions, leading to irreversible loss of 
cyclable lithium and causing capacity fade. At high 
temperatures, the formation of a SEI layer is fostered. The 
properties of the SEI layer affect its stability at high 
temperature, leading to dissolution and reformation of the 
layer. The process of reformation and breakdown of the layer 
causes impedance rise and capacity fade [7].  High operating 
voltages have a similar effect as the parasitic side reactions 
and the accompanying growth of the SEI layer. Furthermore, 
electrolyte dissolution may occur [8]. High current rates
increase the polarization due to the limitation of diffusion as 
the ionic mass transfer is much slower than the electronic 
transfer. In addition, the battery temperature increases due to 
the Joule heating effect. These stress factors lead to faster 
degradation of the battery.   

In a particular application of fast charging, the stress 
factors as high operating voltage in combination with high 
current and high temperature occur simultaneously.  While in 
most cycle battery aging studies constant current constant 
voltage (CCCV) is used, in automotive applications a battery 
is charged in a constant power (CP) phase followed by a 
constant voltage (CV) phase. A change in the charging power 
can significantly influence the amount of time spent in the CP
and CV phase respectively. If the charging power is increased, 
the upper cut-off voltage will be reached at a much earlier 
time and the battery remains in the CV phase for a longer 
time. It behaves vice versa for lowering the charging power. 
Thereby, longer time spent in CV phase reduces the stability 
of electrolyte and increases the growth of the SEI layer due to 
high operating voltage [9], [10].   

Another important degradation mechanism occurring 
during fast charging is lithium plating. When the charging 

current is high, some of the lithium ions are not intercalated 
into the graphite anode due to the limitation of diffusion, 
especially at lower temperatures. Under these conditions the
non-intercalated ions may be reduced to lithium metal and 
deposit on the anode surface, decreasing the amount of 
cyclable lithium ions. If this process continues, the lithium 
deposition can grow dendrites, causing internal short circuits, 
which – in a worst case scenario – can trigger a thermal 
runaway [6]. 

B. Battery Testing Procedure 

The most prominent chemistries used in automotive 
applications are lithium nickel cobalt aluminum oxide (NCA),
lithium nickel manganese cobalt oxide (NMC), and lithium 
iron phosphate (LFP) as cathode and graphite as anode 
material [11]. Cylindrical cells have many safety features such 
as separator shutdown, current interrupting device, positive 
temperature coefficient, and pressure vents etc. [12]. The cells 
chosen for the aging tests are Panasonic 18650 cylindrical 
cells with a nominal capacity of 2.25 Ah, a nominal voltage of 
3.6 V, and a usable energy content of 8.1 Wh. The active 
material consists of a Li[NiMnCo]O2 cathode, a graphite 
anode and an organic electrolyte, mainly composed of alkyl 
carbonate [13]. Hence, the choice of the cell was made based 
on its chemistry and excellent safety features. 

The test regime consisted of characterization tests and
cycle aging tests. In the beginning of the test regime, the fresh 
cells underwent a characterization test to measure the cell 
capacity and its impedance. After the completion of this test, 
aging tests were performed. The aging tests were interrupted 
at regular intervals (50 or 100 cycles) to perform intermediate 
characterization tests to evaluate the state of health (SOH) of 
the cells. After the completion of the characterization tests, the 
aging tests were resumed. 

The characterization test consisted of two parts, (1) 
discharge capacity measurement and (2) hybrid pulse power 
characterization (HPPC). The cell discharge capacity was 
measured by first removing the residual capacity, followed by 
CCCV charging regime at 1 C. A 1 hour pause was provided 
between successive charge and discharge. The cells were 
discharged at 1 C to the cut-off voltage in order to measure the 
discharge capacity. Prior to the beginning of the HPPC test, 
the cells were completely charged and the HPPC test was 
conducted as described in [14].  

 The aging tests were performed by cycling the cells at 
different charge rates and a constant discharge rate, as shown 
in the test matrix in TABLE I. The charging was done in 
constant power constant voltage (CPCV) mode with the cutoff 
current 110 mA. The charging power rates were calculated as 
equivalents of C-rates, i.e., the amount of Ah charged during 
the CC phase at a specific C-rate equals the amount of Ah 
charged during the corresponding CP phase. The charging 
power rates shall be named P-rates in this work, analogue to 
their equivalent C-rates. The discharge conditions were 
constant for all cells, i.e., constant current discharge at 1 C. 
Three cells were used for each test condition to guard against 
outliers and manufacturing errors of the cells. The cells were 
cycled between 3.0 V and 4.2 V. The characterization and 
aging tests were performed at room temperature (25 ± 2 °C).
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TABLE I.   TEST MATRIX FOR CYCLE AGING 

Cells Charge rate Discharge rate 
Characterization 

tests after 

1 - 3  0.2 P (1.70 W) 1 C 100 cycles 

4 - 6 0.5 P (4.29 W) 1 C 100 cycles 

7 - 9 1 P (8.71 W) 1 C 100 cycles

10 - 12 2 P (17.75 W) 1 C 50 cycles 

 

III. METHODOLOGY  OF CHARGING OPTIMIZATION MODEL 

 The charging optimization model consists of three parts. 
First, data from the battery aging tests is evaluated, analyzed 
and expressed in functional equations. Second, the controlling 
of the charging processes is formulated as an optimization 
problem whereas on the one hand the charging electricity cost 
and on the other hand the battery aging cost is minimized. 
Thereby, the equations from the battery aging model are 
included into the optimization model. Third, the optimization 
model is applied and solved within a mobility behavior 
simulation in Singapore. 

A. Battery Aging Model 

The battery aging model used in this work is based on the 
aforementioned battery aging tests. In this battery aging
model, the physical quantity used to reflect the aging behavior 
is the energy fade. As it is calculated by multiplying the cell’s 
capacity and average cell voltage, the aging effects causing 
capacity fade and impedance increase are included. The 
measurement of the remaining cell discharge capacity during 
the characterization tests after each 50 or 100 cycles 
respectively was used together with the cell voltage to 
determine the energy fade during the cycling. Fig. 1 illustrates 
the developing of the testing cells’ usable energy content for 
cycling at the four different P-rates. As a common 

Figure 1. Normalized usable energy content in % and linear approximation
(dashed lines) over the course of cycling for four P-rates.

definition, the battery reaches its end of life when the energy 
content hits 80% of its initial value [15]. The remaining usable 
energy content as a function of number of cycles shows a 

nearly linear behavior for the different P-rates and is therefore 
approximated with a linear slope. The energy fade at each P-
rate is expressed by the gradient of the respective linear slope.
For 0.2 P, only 250 cycles could be conducted, since for this 
P-rate one full cycle takes 6.5 hours and the time frame for the 
aging tests was limited. Since the energy content reached only 
90% after 250 cycles, the further decrease of the energy 
content is extrapolated according to the previous behavior.  

A battery aging function is derived from the energy fade 
data evaluated earlier, i.e., the gradients of the linear slopes 
describing the developing of the cells’ usable energy content. 
Therefore, the values for energy fade at each P-rate are plotted 
against the charging power, as depicted in Fig. 2. Analyzing 
the data points given, the battery aging function could be a 
polynomial or exponential function. However, instead of 
hypothesizing on the form of the aging function, we 
approximate the function piecewise linearly with three secants 
through the four given data points. The advantage of this 
approach is a less complex function to be included into the 
charging optimization model, which in turn leads to a less 
complex optimization problem. This can be solved with higher 
computational efficiency and accuracy. This issue will be 
explained in more detail in the subsequent section. 

Figure 2.  Energy fade in Wh/cycle as a function of charging power and its 
piecewise linear approximation by three secants. 

B. Charging Optimization Model 

The objective of the charging optimization model is to 
minimize the sum of charging electricity cost and battery
aging cost. Equation (1) describes the linear objective function 
of the optimization problem, where charging power P and 
battery aging cost caging are the variables to be optimized. The 
electricity price is reflected by pr and ∆t is the length of a time 
step. pcar and t are indices for the number of the parking events 
of a car and the time respectively. 

( ) ( ) ( )( )min , ,
car

car aging car

p t

P p t pr t t c p t⋅ ∆ +⋅∑∑  (1) 

The battery aging model is included in the battery aging 
cost constraint of the optimization problem, as expressed 
in (2).  



( ) ( )
( ) ( )

( ) ( )
( )/

,
c ,

,
                     , ,

k car k

aging car

initial car EndOfLife car

car

battery car cha dis car

initial car

a P p t b
p t

E p E p

P p t t
c p r p t k

E p

⋅ +
≥ ⋅

−

⋅∆
⋅ ⋅ ∀

 (2) 

The constraint contains the three secants approximating 
the energy fade per cycle as a function of charging power in 
Fig. 2. The functional equations of the three secants k = 1,2,3 

are described by the term ( ),
k car k

a P p t b⋅ + , where ak and bk 

are the gradient and y-intercept respectively, scaled up to the 
battery pack size of the respective EV. The scaled energy fade 
per cycle is divided by the total energy fade over the life cycle, 
i.e., the difference of the initial usable energy content Einitial 
and the usable energy content at end of life EEndOfLife. Thus, the 
share of one full cycle in the total energy fade is calculated. 
The result is multiplied by the battery cost cbattery and the aging 
ratio between charging and discharging rcha/dis, in order to 
obtain the battery aging cost for a full charge at a specific 
charging power rate. However, since the charging power can 
be altered within one charging process, the share of each time 
step (charged at a specific power) in the aging cost of a full 
charge has to be calculated. This is achieved by multiplying 
the aging cost of a full charge by the energy share of one time 

step ( ) ( ), /
car initial car

P p t t E p⋅∆ . 

A conservative approach is used to describe the battery 
aging cost. First, the secants in Fig. 2 lie above the actual 
aging function – whether polynomial or exponential – and the 
battery aging cost constraint in (2) is using these secants as 
lower bound for the battery aging cost. Second, the cycle 
battery aging tests were conducted without active cooling 
while cycling. Thus, a temperature rise occurred, especially at 
higher P-rates, which can lead to faster aging, as explained 
earlier. However, with an appropriate cooling while charging 
in an EV application, aging effects might be lower than in the 
model used in this work. Therefore, the battery aging cost 
might be lower in reality.

The optimization model contains two more constraints 
besides the battery aging cost constraint. Equation (3) defines 
the required energy demand for each parking event and 
ensures that it is met, where SOCstart and SOCend is the state of
charge at the beginning and end respectively of a parking 
event. Equation (4) guarantees, that the charging power P does 
not exceed the power limit Pmax, i.e., the power limit of the 
battery, the charging process, or the charging station, 
whichever is lower.  

( ) ( )

( ) ( )( )

,

             

car fix initial car

t

end car start car car

P p t t E p

SOC p SOC p p

⋅∆ = ⋅

− ∀

∑
 (3) 

( ) ( )max
,                               ,

car car car
P p t P p p t≤ ∀   (4) 

Since the optimization problem has a linear objective 
function (1) and quadratic (2) as well as linear constraints (3) 
and (4), it is a quadratically constrained program (QCP), 
which is convex and therefore has a unique optimal solution. 

The advantage of the piecewise linear approximation of the 
battery aging function, as depicted in Fig. 2, is a quadratic 
battery aging cost constraint instead of a general nonlinear
constraint. Thus, we deal with a QCP instead of a nonlinear 
program, which can be solved more efficiently. The CPLEX 
solver [16], called from GAMS [17], is used to solve the QCP. 

C. Case Study of Singapore 

The charging optimization model is applied to a sample of 
EVs in Singapore. In order to simulate the driving and parking 
behavior of electric vehicles, a mobility model specific for 
Singapore is used, which was elaborated in [18]. A sample of 
100 EVs is simulated for one week in time steps of
10 minutes. The simulation creates data including number, 
length, time, and duration of trips and the according energy 
consumption, as well as data on parking duration and times.  

The mobility model was configured such that EVs charge 
only when their SOC falls below 60%. If this is the case, it is 
recharged to a randomly picked SOC up to 97%. This SOC 
limit is chosen, because it is considered as battery preserving 
[9], [10]. The EVs are only charged in CP mode in order to 
avoid the aforementioned damage occurring to the battery 
during the CV phase. Besides, only a very small amount of 
energy would be charged to the battery during the long 
duration of the CV phase. The battery aging model includes 
full cycles in CPCV charging, but the charging optimization
assumes only partial cycles in CP charging. The EVs have 
batteries of 12 kWh, 16 kWh, 20 kWh, or 24 kWh, which is 
uniformly distributed among the EVs. The maximum charging 
power for each parking event of the EVs is set as the 
minimum of the following three values: the maximum power 
of the charging station (set to 43.5 kW as in Mode 3 [19]), the 
maximum power the EV’s battery can handle (assumed to be 
at 2 P charge rate), and the maximum power at which the 
desired SOC can be reached within the CP phase. In order to 
calculate the latter, a function was derived from the cycle 
aging test data, which describes the threshold SOC, where the
CP phase transforms into the CV phase, as a function of the 
charging power. The threshold SOC decreases with rising 
charging power, as explained earlier. In case the parking 
duration is too short to reach the desired SOC at the given 
maximum power limit, the aimed SOC is recalculated to what 
is possible under the prevailing circumstances.  

Further assumptions made for the simulation of charging 
optimization including cyclic battery aging for a sample of 
100 EVs in Singapore are the following: In EV applications, a 
battery is considered to be at its end of life when the usable 
energy content has reached 80% of its initial value [15]. The 
specific battery price is set to 600 USD/kWh [20] in the 
calculations. The resale value of a depleted battery for second
life applications is assumed to amount to 20% of its initial 
value. The battery cost cbattery is calculated by subtracting the 
resale value of a depleted battery from the price for a new 
battery. The aging impact of charging is simplifying assumed 
to be the same as during discharge for different P-rates, setting 
rcha/dis to 0.5. The electricity price in Singapore was 
downloaded from the Electricity Market Company website 
[21] half-hourly for the week from April 7 to 13, 2014. For 
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conversion from SGD to USD, an exchange rate of 
1.26 SGD = 1 USD as of April 30, 2014 was used. 

IV. RESULTS AND DISCUSSION 

The aforementioned charging optimization model was applied 
to a sample of 100 EVs in Singapore, using the assumptions 
and the mobility model explained before, and so it includes 
1043 charging processes which are optimized. It is called the 
base scenario subsequently. The total cost for 100 EVs 
amounts to USD 3,387.35, which split into charging electricity
cost of USD 667.07 and battery aging cost of USD 2,720.28. 
The aging cost makes up 80% of the total cost. Fig. 3 (a) 
shows the total charging power profile of these 100 EVs for 
two days. The charging power of 100 EVs reaches a 
maximum of 90.20 kW on Wednesday early evening, while 
the average charging power per EV is at 0.94 kW. Peaks in the 
charging power profile tend to occur during valleys in the 
electricity price which is displayed in Fig. 3 (d).  

For comparison, the charging optimization model was 
executed with omitting the battery aging cost. Thereby, the P- 
rates can be chosen more freely in order to minimize charging 
electricity cost. This is achieved by higher power rates 
compared to the base scenario during time periods with lower 
electricity price, as pictured in Fig. 3 (b) and (d). This is 
reflected by the sixfold increase of the maximum total 

charging power and the elevenfold increase of the average 
charging power per EV, as shown in TABLE II. Thereby, the 
charging electricity cost in this scenario could be reduced by
8% to USD 611.73. However, when calculating the battery 
aging cost for these charging schemes minimizing solely the 
charging electricity cost, it rises to USD 8,737.13, which is 
more than three times as high as for the charging optimization 
including battery aging aspects. For the scenario without 
battery aging constraints, the battery aging cost accounts for 
93% of the total cost. This sums up to USD 9,348.86, which is 
a substantial increase to the previous scenario. Hence, the 
advantage of including the battery aging cost into the charging 
optimization is given.  

The aforementioned values for the battery aging cost are 
very high compared to the charging electricity cost. This can 
be the case due to the battery aging data used. The cells lasted 
for 466 to 38 full cycles in the cycle aging tests, depending on 
the charging power rate lying in a range from 0.2 P to 2 P. For 
automotive applications, the numbers seem to be insufficient – 
especially for 2 P charging rates – even though EV 
manufacturers don’t provide information on the number of 
cycles an EV can endure in fast charging mode. Therefore, a 
scenario with a longer cycle life of the cells was calculated, 
assuming 932 full cycles for 0.2 P, i.e., double the cycle life of 
the testing cells. Within the longer cycle life scenario, 

 

Figure 3.  Total charging power profiles in kW for (a) base scenario, (b) scenario without aging constraints, and (c) scenario with longer cycle life as well as 
(d) electricity price in USD/kWh.



charging electricity cost, battery aging cost, as well as total 
cost decrease, as listed in TABLE II. Now, the battery aging 
cost’s share in the total cost dropped to 68%. The scenario’s
charging power profile in Fig. 3 (c) resembles the one of the 
base scenario. 

TABLE II.  RESULTS OF CHARGING OPTIMIZATION FOR FOUR 
SCENARIOS 

Scenario Base
w/o aging 

constraints 
Longer 

cycle life 
Future 

scenario 

Total cost (USD) 3,387.35 9,348.86 2,024.30 1,337.41 

Charging electricity 
cost (USD) 

667.07 611.73 656.44 645.98 

Battery aging cost 
(USD) 

2,720.28 8,737.13 1,367.86 691.43 

Max. total charging 
power (kW) 

90.20 555.40 105.13 120.96 

Average charging 
power per EV (kW) 

0.94 10.72 0.94 0.94 

 

As decrease in battery cost is expected, a future scenario 
with a lower specific battery price of 300 USD/kWh [22] and 
longer cycle life is calculated. In this case, the battery aging 
cost declines to 52% of the total charging cost. 

Regarding the high share of the battery aging cost in all 
four scenarios, it becomes clear, how important it is to include
battery aging factors into an optimization model for the 
charging processes of EVs.  

V. CONCLUSION AND OUTLOOK 

A charging optimization model for battery electric vehicles 
including cycle battery aging was elaborated. It minimizes the 
total cost of charging processes, consisting of charging
electricity cost and battery aging cost. The battery aging cost 
is described by means of data from cycle aging tests 
conducted in the framework of this work. The charging 
optimization model was applied to a simulation of 100 EVs in 
Singapore in order to minimize their total charging cost. The 
share of the battery aging cost in the total charging cost ranges 
from 52% to 93%, depending on the scenario. This high share 
of battery aging cost highlights the significance of the 
inclusion of battery aging into optimization models for 
controlled EV charging.  

Of course, not only the parameters examined within the 
conducted scenario analysis have an impact on the results of 
the model. Other major factors are assumed to be the battery 
aging data, the resale value of the battery, as well as additional 
costs, e.g., charging infrastructure cost. The influence of these 
parameters will be investigated in future work with a profound 
sensitivity analysis. Furthermore, the battery aging model will 
be expanded by calendar aging and CV charging effects and 
the optimization model will be enlarged and configured for a 
larger sample of EVs as well as a longer time period. Thus, the 
impact of optimized large scale EV charging on the power 
system can be evaluated. With these outcomes, the benefits of 
controlled EV charging for the power system, the effects on 
the battery, and how both relate to each other, can be 
examined. Additionally, a profound statement can be made 

which important aspects in the battery development should be 
regarded in the future, e.g., higher cycle stability of the battery 
at high charging rates in order to better facilitate fast charging.
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