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Abstract—The Oriented Fast and Rotated BRIEF (ORB)
feature extractor, which consists of key-point detection and
descriptor computation, is a key module in many computer
vision systems. Existing hardware implementations of ORB
feature extractor only focus on increasing performance with
power optimization as a post consideration. In this paper, we
present a stream-based ORB feature extractor that incorporates
mechanisms to lower the dynamic power consumption. These
mechanisms exploit the fact that the number of detected key-
points is typically small. The proposed solution significantly
lowers the switching activity of the key-point detection and
descriptor computation stages by early pruning of non-likely
key-points and gating the descriptor computation stages. Further
power reduction and resource minimization are achieved by
employing a threshold-guided bit-width optimization strategy to
truncate the redundant bits in the key-point detection stage.
Finally, we propose an approximation method to achieve rotation
invariance of the descriptors. FPGA implementation targeting
the Altera Aria V device shows that the proposed strategies lead
to over 25% reduction in dynamic power and lower resource
utilization, with only marginal loss in accuracy.

I. INTRODUCTION

Visual feature extraction is a fundamental module in many

computer vision systems found in robotics, augmented reality,

and autonomous vehicles. Many feature descriptors such as

Scale-Invariant Feature Transform (SIFT) [1], Speeded Up

Robust Features (SURF) [2], Oriented Fast and Rotated BRIEF

(ORB) [3], etc. have been previously explored. Studies in [4],

[5], [6], [7] have shown that the ORB descriptor achieves better

performance compared to other descriptors.

ORB feature extraction consists of two steps: key-point

detection and descriptor computation. Key-point detection

determines the corners in each image frame using Features

from an Accelerated Segment Test (FAST) [8] or Harris-

Stephans Corner Detection (HCD) [9] algorithms. In the

descriptor computation step, the rotation-aware Binary Robust

Independent Elementary Feature (rBRIEF) [3] descriptor is

extracted from an image patch that is centered at the detected

key-points. Typically, a 256-bit rBRIEF descriptor is computed

by performing binary tests on 256 pre-determined point-pairs

in the image patch. In order to achieve rotation invariance, the

point-pairs must be oriented based on the patch’s moments.

In order to achieve real-time performance, a number of

hardware implementations of the ORB feature descriptor has

been reported. Existing hardware realizations of the ORB

feature extractor typically relies on non-stream processing

architectures (e.g. [10]). These architectures assume the avail-

ability of a frame buffer that stores the image frame. The work

in [11] attempts to reduce the external memory bandwidth

of ORB design through data reuse. This is achieved by

reusing the same image patch for computing descriptors of two

continuous key-points at close proximity in the same row. The

work in [12] employs word length optimization by truncating

the image moments to 8 bits to improve the throughput. This

enables the implementation to achieve 20 frames per second

(fps) on 640x480 image frame.
Stream-based processing architectures (e.g. [13]) are ex-

tremely attractive as they do not require external memories

for storing input video frames and can achieve high throughput

(since the memory fetch and store latencies are avoided). More

recently, [14] presented a multi-level pyramid architecture for

ORB feature extraction. The authors investigated the appro-

priate number of pyramid levels but did not elaborate on the

details of the architecture. The existing works mainly focus

on improving the throughput of the system while neglecting

power efficiency, which is a primary concern in embedded

systems.
Power optimization for stream-based ORB feature extrac-

tor is challenging. Firstly, the key-point detection algorithm

(e.g. HCD) is computationally intensive due to the numerous

addition and multiplication operators needed for calculating

the corner response. Secondly, a large number of row buffers

are typically used in stream processing to cache the input

pixel stream, which contributes to significant dynamic power

consumption and hardware resources. In particular, as the row

buffers must be in continuous active state, existing power

reduction techniques such as clock gating cannot be employed.

Furthermore, the operations for computing the rBRIEF de-

scriptors are generally kept in active state to maintain the

desired throughput.
The main contributions of this work are as follows:

• We propose a new stream-based architecture for ORB

feature extraction that utilizes an approximation angle

discretization method to achieve rotation invariance of the

descriptors that avoids costly operations. The proposed

architecture significantly outperforms a recently reported

implementation in terms of accuracy, resource utilization

and power.
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• We present strategies to lower the dynamic power by

effectively inhibiting unnecessary signal activities in the

key-point detection and descriptor computation pipeline.

This is achieved by integrating the method in [15] that

approximates the corner response at the early pipeline

stages to detect the non-likely corners, and gating the

descriptor computation units such that they are in idle

state when no corners are detected.

• The power consumption is further lowered by introducing

a bit-width optimization strategy in the key-point detec-

tion stage, which is based on the intuition that errors

arising from the truncated bit-width that are less than

the corner response threshold will not result in loss of

accuracy.

• We will show that the proposed strategies maintain a

marginal loss of accuracy while achieving notable savings

in dynamic power and resource utilization on the Altera

Aria V FPGA.

II. ORB FEATURE EXTRACTION

In this section, we will provide a background on ORB

feature extraction, which consists of key-point detection and

rBRIEF descriptor computation.

A. Harris Corner Detection

Key-point detection aims to determine all the corners (i.e.

key-points) in an image frame and can be achieved using

the FAST or HCD algorithms. As discussed in [14], even

though the HCD algorithm is more computational intensive

than FAST, it calculates the corner response that yield more

robust corners. As such, similar to the implementation in [14],

we adopt the HCD algorithm for key-point detection.

The HCD algorithm determines corners based on gradient

change in intensity which is approximated by matrix M within

a small window W of each pixel p(x,y) as shown in (1).

M =

[ ∑
w w(x)I2x

∑
w w(x)IxIy∑

w w(x)IxIy
∑

w w(x)I2y

]
=

[
a b
b c

]
(1)

where Ix and Iy are the horizontal and vertical gradients, and

w(x) is the Gaussian weight function. The matrix M yields two

eigenvalues: λ1 and λ2 which indicate the intensity change in

a window W centered on the pixel p(x,y). p(x,y) is a corner if

its eigenvalues are high. HCD algorithm evaluates only the

determinant and trace of matrix M to compute the corner

measure R as shown in (2),

R = (ac− b2)− k.(a+ c)2 (2)

where k is determined empirically (usually in the range 0.04 to

0.06). The corner response is then subjected to a threshold T
to identify strong corners. Finally, Non-Maximal Suppression

(NMS) is applied to a nxn image patch to select the corners

with the highest corner response.

B. rBRIEF Descriptor Computation

Rotated BRIEF (rBRIEF) [3] is a binary descriptor that

overcomes the limitations of BRIEF [16] which suffers from

rotation variance and scale changes. This is accomplished by

first calculating the intensity centroid [17] of the image patch

that is centered at a detected corner as follows:

m01 =
∑
x,y

y × p(x, y),

m10 =
∑
x,y

x× p(x, y),
(3)

where p(x,y) is the intensity of pixel at position (x,y). The

orientation is then performed on the two computed values m01

and m10 as follows:

θ = atan2(m01,m10) (4)

Next, the pre-determined point-pairs (samples) in the patch are

multiplied with the rotation matrix [3] as shown in (5).[
rx
ry

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
(5)

The coordinates (rx, ry) of rotated samples are rounded to

the nearest pixel. The final descriptor is an nd dimensional

bit-string where each bit is the result of point pair (si, sj)

comparison in (6).

τ(p; si; sj) :=

{
1 if p(si) < p(sj)

0 otherwise
(6)

We choose nd to be 256 bits and the point pairs will be

computed on a 37x37 image patch. This has been shown in

previous studies to be sufficient for achieving high accuracy.

III. OVERVIEW OF PROPOSED ORB FEATURE EXTRACTOR

Fig. 1 shows the overview of the proposed stream-based

ORB feature extractor. Although the original ORB algorithm

incorporates a multilevel pyramid to eliminate the scale vari-

ance, we will limit our discussion to a single level imple-

mentation in order to highlight our proposed strategies. The

proposed architecture can be easily extended to multilevel by

simply replicating the design in Fig. 1 for each pyramid level.

In this section, we will describe the basic computation blocks

of ORB feature extraction. The mechanisms for lowering

dynamic power (denoted in red blocks in Fig. 1), will be

discussed in the next section.

As can be observed from Fig. 1, the ORB extractor consists

of row buffers, the Key-point Detector (KD) and rBRIEF

Descriptor Computation (DC) modules. Under the assumption

that the image is read sequentially using a raster scan mode at

a rate of one pixel per clock cycle, the incoming pixels need to

be cached locally using a set of row buffers. 36 row buffers are

concatenated in the form of FIFO (First-In, First-Out) delay

buffers to cache the incoming pixels. This is due to the fact

that the rBRIEF descriptor will be computed on a 37x37 image

patch that is centered at each detected key-point. The size of

each row buffer is equivalent to the horizontal resolution of

the image L (for example L = 640 for 640x480 image).
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Fig. 1: Feature Extraction Architecture using ORB algorithm

A. Key-point Detector (KD)

The KD module is based on the HCD architecture in [18],

and consists of five pipeline stages:

• Gradient Computation: The first pipeline stage computes

the horizontal gradient Ix and vertical gradient Iy on a

5×3 neighbor of pixels which are streamed from the row

buffers.

• Product of Gradients: The second pipeline stage is re-

sponsible for computing the product of gradients, i.e. I2x,

I2y and IxIy .

• Gaussian Smoothing: The Gaussian weight function w(x)
is applied to 3× 3 product of gradients to produce a, b,
c in parallel as shown in (1).

• Corner Response: This stage computes the corner re-

sponse as shown in (2). The constant k is chosen to be

0.0625 similar to the implementation in [19] so that the

calculation involves only shift operations.

• Non-Maximal Suppression (NMS): The final pipeline

stage first compares the corner response R with threshold

T , and propagates the value of R if it is larger than T ,

otherwise it propagates 0. Next, pixels with the largest

corner response in the 7x7 neighborhood of pixels are

determined as corners.

B. Descriptor Computation (DC)

Fig. 1 shows the DC module which consists of four units

to calculate the rBRIEF descriptor that was discussed in

Subsection II.B:

• Centroid: This unit is responsible for calculating image

moments: m01 and m10 as in (3). The details of the

circuitry can be found in [14].

• Angle: This unit computes the atan2 value of m01 and

m10, and then finds cos θ and sin θ. We have employed

an approximation method based on angle discretization

to achieve rotation invariance of the descriptors to avoid

costly operations. Instead of calculating atan2 which is a

costly operation, we approximate θ as θi that best meets

the condition in (7).

m′01 ≈ m′10 × tan(θi), (7)

where θi is an angle which is nearest to θ in the set of

the discretized values in [0, 2π]. To increase the accuracy

of the approximation with a constraint of a small number

of discretized values, the angle is transformed to the first

quadrant [0, π
2 ], therefore, the discretization is computed

in [0, π
2 ] instead of [0, 2π]. The quadrant which the

θ belongs to is determined based on the sign of m01

and m10. m′01 and m′10 are the absolute values of m01

and m10, respectively. After ascertaining θi, the values

of cos θ and sin θ could be determined according to the

quadrant using Look-up Tables (LUT) instead of using

the CORDIC engine [20], [21].

m10

M
ult Block

x tan( 1)
x tan( 2)

x tan( NT)

Best M
atch

i

Cos( i)
LUT

Sin( i)
LUT  sin 

cos  
BT

quadrant

Angle

Map to 
 [0, /2]

m01

m'10

m'01

Fig. 2: Angle unit of DC

Fig. 2 shows the proposed architecture for calculating

orientation. The accuracy of approximating the rotation

angle in the DC depends on the number of discretized

tangent values NT and the number of bits BT represent-

ing these values. By iteratively increasing the number of

the discretized values and truncating bit-width to obtain

an desired accuracy with a low hardware cost, NT and

BT are found to be 25 and 11, respectively. The accuracy

evaluation is presented in detail in the SubSection V-A.

• Rotator: The cos θ and sin θ values are used to perform

the rotation on the samples as in (5). Two main steps are

involved in this calculation. First, the X and Y coordinate

vectors of 512 samples are multiplied with the cos θ and

sin θ values. Second, the AddSubVector block performs

addition and subtraction of the multiplication’s results to

generate the rotated coordinates.

• Generator: The last unit receives 512 rotated samples that

are calculated from the previous unit to construct 256
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descriptor bits. The 37 × 37 image patch must first be

cached in a window buffer and then in each clock cycle,

2 samples are extracted for the binary test.

IV. DYNAMIC POWER OPTIMIZATION

In this section, we present the proposed mechanisms for

lowering dynamic power of the ORB feature extractor de-

scribed in the previous section.

A. Inhibiting Redundant Signal Activities in KD

The original HCD algorithm requires numerous addition and

multiplication operators to calculate the corner response of

all pixels. However, typically only a small number of pixels

are identified as corners in an image frame. For example, our

studies reveal that in a 640x480 image, the number of pixels

that are identified as corners is usually only in the range of 300

to 700, which is approximately 0.2% of the total pixels. As

such, we adopt the scheme that was introduced in [15] to detect

the likelihood of a pixel being a non-corner in the early stages

of the KD pipeline, and put the subsequent pipeline stages of

KD in quiescent state to reduce the dynamic power. This is

achieved by incorporating the Non-Corner Detection and Zero

Propagation (NCDZP) and Reset Product of Gradients (RPG)

units in Fig. 1.

Fig. 3 shows the detailed architecture of KD, where the two

red dotted boxes indicate the NCDZP and RPG units. The

NCDZP is accountable for computing a′c′ based on (8) and

comparing this value with threshold t. A pixel is considered as

a potential corner if its corresponding a′c′ exceeds a threshold

which is empirically found to be t = 0.05 × max(a′c′),
where max(a′c′) is the maximum a′c′ value in the previous

image frame [22]. If the a′c′ term of a pixel is smaller

than the threshold, the pixel is considered an unlikely key-

point and NCDZP will propagate zeros to the subsequent

pipeline stages (Product of Gradients, Gaussian Smoothing

and Corner Response) to place them in idle state. Otherwise,

the gradient Ix and Iy will be passed to the subsequent

stages (via multiplexer) for computing the corner response

of the corresponding pixel. There may be instances where

the gradients of an unlikely key-point are propagated to the

subsequent pipeline stages (if their neighboring pixels are

likely key-points), and hence the RPG unit is required to reset

the corresponding values of I2x, I2y , and IxIy . Details of this

scheme can be found in [15].

a′ =
∑

|Ix|, c′ =
∑

|Iy|, (8)

B. Inhibiting Redundant Signal Activities in DC

We can extend a similar concept to inhibit redundant signals

in the DC module for reducing dynamic power. In particular,

the DC module shown in Fig. 1 only needs to compute the

image moments (i.e. m01, m10) and orientation (i.e. cos θ,

sin θ) on image patches that are centered at key-points. Since

the number of corners (key-points) in a typical image frame

is small, the pipeline stages in the DC module can also be

kept idle most of the time to reduce the switching activity. To

TABLE I: Bit-width comparison before (Pre-Opt) and after

optimization (Post-Opt)

Pipeline Stage Bit-width Pre-Opt Post-Opt

Gradient Computation G 11 6

Product of Gradients 2G 22 12

Gaussian Smoothing 2G+ 5 27 17

Corner Response 2(2G+ 5) 54 34

achieve this, when corners are not detected in the KD module,

the Gating Logic units in the DC module of Fig. 1 are used

to inhibit the 37 pixel column and 37x37 image patch inputs

to the Centroid and the window buffer of the Generator units

respectively. As soon as a key-point is detected, the Gating
Logic units enable the pixel values from the row buffers to

propagate to the Centroid and Generator units so that the

rBRIEF descriptor can be computed.

C. Threshold-Guided Bit-width Optimization in KD

The scheme described in Section IV.A to inhibit the redun-

dant signals of the KD module can only achieve around 10%

reduction in dynamic power [15]. In order to further reduce the

dynamic power of the KD module, we propose a threshold-

guided bit-width optimization strategy that does not lead to

notable degradation in accuracy.

The operator bit-width in the KD architecture in Fig. 3

increase notably from one pipeline stage to the next due to

the multiplication and addition operations. For example, if the

bit-width of the input pixels is 8 (for gray scale images), the

bit-width of the gradient values will be conservatively set to

11 (i.e. G = 11). Extending this, the Harris corner response R
will be 54 bits, which is over six times larger than the bit-width

of the input pixels. The work in [23] has demonstrated that

truncating the bit-width of the data-path can lead to significant

reduction in resources usage and power consumption without

sacrificing much accuracy.

As such, we devise an approach to determine the optimal

bit-width of the operations in KD with regard to the threshold

value T used in the final pipeline stage of KD. The optimiza-

tion aims to remove the least significant bits (LSBs) of both

R and T such that the truncation does not affect a change

in the thresholding decision. However, the truncation should

be performed at the earlier stages, i.e. Gradient Computation
to achieve the maximum efficiency because the bit-width of

operations increase in a systematic fashion at each stage as

shown in Table I.

To achieve this, we derived the error propagation equations

(in Table II) due to bit-width truncation from the Gradient
Computation stage to Corner Response stage using differential

calculus [24]. Let G be the bit-width of the gradient values.

The bit-width truncation is performed by iteratively decreasing

G from 11 (i.e. original bit-width) until (9) is violated. This

is because the error incurred by bit-width truncation does not
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Fig. 3: Proposed KD architecture (each square box represents a register)

TABLE II: Error propagation at each pipeline stage of KD due

to bit-width truncation

Pipeline Stage Error Propagation Equations

Gradient
Computation

ΔIx = 211−G − 1

ΔIy = 211−G − 1

Product of
Gradients

ΔI2x = 2.|Ix|.(ΔIx)

ΔI2y = 2.|Iy |.(ΔIy)

ΔIxIy =
√

(Iy .ΔIx)2 + (Ix.ΔIy)2

Gaussian
Smoothing

Δa ≈ ΔI2x

Δb ≈ ΔIxIy

Δc ≈ ΔI2y

Corner
Response

ΔR =
√

(ΔR1)2 + (ΔR2)2 + (ΔR3)2

ΔR1 =
√

(c.Δa)2 + (a.Δc)2

ΔR2 = 2.|b|.Δb

ΔR3 = (a+ c).(

√
(Δa)2+(Δc)2

8
)

affect the thresholding decision if the maximum output error
ΔR with respect to G does not exceed the threshold T . At

the end of the iterations, G is determined as the minimal

bit-width at the Gradient Computation stage which results

in marginal error. The proposed methodology is applied to

the KD architecture for a set of image datasets, and the

optimal value of G is found to be 6. The evaluation of

accuracy degradation of the proposed bit-width optimization

is presented in Section V-A.

max(ΔR(G)) < T (9)

By combining our proposed bit-width truncation method

with the method described in Section IV.A to inhibit redundant

signal activities for the KD module, we achieved a significant

dynamic power reduction of over 40% for the KD module.

V. RESULTS AND DISCUSSION

In this section, we first discuss the impact of the proposed

strategies for lowering power on accuracy, and then provide

the hardware implementation gains in terms of power and

resource utilization. We will also compare the results of our

ORB feature extractor with a recently reported implementation

(i.e. [14]). The implementation in [14] is denoted as Existing.

In order to perform fair comparisons, we have ensured that the

proposed designs and Existing employs similar design speci-

fications (i.e. 37x37 image patch, clock operating frequency,

single-level implementation, etc.).

A. Accuracy Evaluation

Since the descriptors are generated from image patches

centered at the detected key-points, the accuracy evaluation

needs to be performed at two levels: firstly the accuracy of

the detected key-points (i.e. KD) and secondly, the accuracy

of the descriptors.

We will first evaluate the impact of the proposed power

optimization strategies on the accuracy of KD (i.e. strategies

discussed in Section IV.A and Section IV.C). Our original

KD implementation without power optimizations (discussed in

Section III) is denoted as Prop1-KD. To compare the accuracy

of Prop1-KD and the proposed KD architecture with power

optimization (Prop2-KD), we use the repeatability criterion

[25]. The principle behind the repeatability criterion is that

key-point detection should be robust under variety of changes

in image conditions, i.e. rotation, scaling, and illumination.

Hence, an accurate feature detector should be able to detect
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Fig. 4: Image set. From Top left: Bikes, Leuven, Trees, UBC.

features at close proximity between images with changes in

viewpoint. The repeatability rate is defined as the ratio of

the number of repeated features between two images (within

certain pixel allowance), to the minimum number of features

that are in common region of the two images of the same scene

but with changes in imaging condition(s). The difference in the

repeatability of Prop2-KD and Prop1-KD is computed using

(10).

Δr =
|repeatProp2−KD − repeatProp1−KD|

repeatProp1−KD
.100% (10)

We use four 640x480 image sets (Bikes, Leuven, Trees,

UBC) from the image dataset in [26], which has various trans-

formations such as blur, zoom, and illumination for accuracy

evaluation. Fig. 4 shows the original images of each image

set. Fig. 5 illustrates the difference in repeatability rate of

Prop1-KD and Prop2-KD, where the x-axis is the truncated

bit-width of gradient values (G = 11 to 5). The results show

that the repeatability difference increases with larger bit-width

truncation which implies higher accuracy degradation. When

6 bits of the gradients are truncated, the loss of accuracy

of the proposed architecture is marginal (less than 6%) for

all datasets, but the gains in terms of power and resource

utilization reduction are significant (as shown in the next sub-

section).

Next, we compare the overall accuracy of the proposed ORB

feature extractor (with power optimizations on KD and DC as

discussed in Section IV) with an existing design [14] using

the Hamming distance [27] of the descriptor bits. We denote

the proposed ORB feature extractor as Prop2. The Hamming

distance metric defines the number of different symbols in

each position between two equal-length strings. The descriptor

accuracy is determined by computing the Hamming distance of

the 256-bit descriptor vectors of each implementation (Existing
and Prop2) with the software ORB implementation that uses

double precision floating points. Fig. 6 shows the average

Hamming distance of Prop2 and Existing. It is evident that our

design results in fewer error bits than Existing. Particularly, the
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Fig. 5: The difference in repeatability rate of Prop1-KD and

Prop2-KD.

Bike Trees Leuven UBC
0

10

20

30

A
ve
ra
g
e
H
a
m
m
in
g
D
is
ta
n
ce

Existing Prop2

Fig. 6: Hamming distances with respect to the

implementation using double precision.

proposed ORB feature descriptor achieves about 50% reduced

Hamming distance compared to Existing for all four datasets.

One of the main reasons that our design resulted in higher

accuracy is the rounding scheme that we have employed in the

Angle unit for approximating the nearest index of the cos θ and

sin θ LUT, and for determining the point-pairs for binary test.

Unlike Existing, we employ rounding to the nearest integer,

which produces more accurate results.

B. Power and Area Evaluations

In the previous sub-section, we have shown that the pro-

posed power optimization strategies incur marginal loss in

accuracy. Next, we will evaluate the hardware implementation

gains in terms of power and resource utilization. We use

Verilog to implement all the designs. Quartus II Version

15.1.0 is used to synthesize the design which target the Altera

Aria V (5AGXFB3H4F35C4) FPGA. We denote the base

hardware implementation of our ORB feature extractor without

power optimization (described in Section III) as Prop1, and

the implementation with power optimizations (described in

Section IV) as Prop2.
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TABLE III: Number of detected non-likely corners in NCDZP
stage and final detected corners

Dataset Unlikely Keypoints
Final Keypoints

Prop1-KD. Prop2-KD.

Bikes 290181 672 668

Leuven 282655 477 478

Trees 210064 623 624

UBC 270981 798 798

Table III reports the number of non-likely corners detected

at the NCDZP stage, and the final corners detected by Prop2.

It is evident that a large number of pixels (average 78.27%

of image frame) are typically detected as non-corners in the

NCDZP stage. This shows that most of the time, the Product
of Gradients, Gaussian Smoothing, and Corner Response
pipeline stages in KD are kept in ’idle’ state, leading to reduce

dynamic power consumption. In addition, the final number of

corners detected in the KD module is also usually very small

(average 0.21% of image frame). This implies that the DC
module in Prop2 is also kept ’idle’ most of the time.

We first investigate the impact of the proposed strategies on

the resource utilization and dynamic power of the KD module.

Table IV shows the maximum frequency, area utilization and

percentage difference in resource utilization between the KD
modules of Prop1-KD and seven Prop2-KD implementations.

The number indicated after Prop2-KD indicates the truncated

bit-width of the gradient G. As can be observed, the maximum

frequency of both architectures varies between 173 MHz and

179 Mhz. In terms of resource utilization, Prop2-KD-11 has

21% higher Adaptive Logic Module (ALM) than Prop1-KD
due to the additional resources introduced (i.e. NCZDP and

RPG). However, when 6 bits of the gradient are truncated

(Prop2-KD-06), the resource utilization reduces to only 80%

of Prop1-KD. As discussed in the previous sub-section, the

accuracy loss due to this bit-width trunctation is marginal (less

than 6% as shown in Fig. 5).

To obtain accurate power analysis, we perform timing

TABLE IV: Maximum clock frequency and resource utiliza-

tion of KD

Method
Maximum

Area (ALM)
Relative

Frequency (MHz) Utilization

Prop1-KD 173.55 1257 100%

Prop2-KD-11 179.02 1524 121%

Prop2-KD-10 174.64 1405 111%

Prop2-KD-09 174.86 1332 106%

Prop2-KD-08 177.30 1206 96%

Prop2-KD-07 173.76 1146 91%

Prop2-KD-06 178.35 1000 80%

Prop2-KD-05 176.71 891 71%

456789101112
0

10

20

30

40

50

Bit-width of Gradient (G)

D
y
n
a
m
ic

P
ow

er
R
ed

u
ct
io
n
(%

)

Bikes Leuven Trees UBC

Fig. 7: Dynamic power reduction of Prop2-KD with varying

bit-width of G

simulation using ModelSim-Altera 10.3d to obtain the actual

switching activity statistics of the architecture based on the

original images in the four image sets. The switching activity

statistics are then used for power analysis in Altera PowerPlay.

For a fair comparison, we employed the same clock operating

frequency of 170 MHz for both Prop1-KD and Prop2-KD.

Fig. 7 shows the percentage of dynamic power reduction of

Prop2-KD with respect to Prop1-KD when the bit-width of G
varies from 5 to 11 in the four datasets. In can be observed that

as soon as bit-width truncation is applied, the power reduction

is significant, from 6% reduction in Trees to 25% reduction in

Bikes. The percentage power reduction increases significantly

when larger number of bits are truncated. The percentage

power reduction converges to approximately 48% when G
is 5 bits for all images. This shows the effectiveness of the

proposed strategies for inhibiting redundant signal activities

and bit-width truncation. As 6 bit truncation of G leads to over

40% dynamic power and 20% hardware resource reduction

with marginal accuracy loss, we choose this parameter in the

final implementation of Prop2. Table V reports the dynamic

power of DC for Prop1 (Prop1-DC) and Prop2 (Prop2-DC)

for the four image datasets. It can be observed that Prop2-DC
achieves an average power reduction of approximately 20%

due to the Gating Logic inserted to keep the DC pipeline stages

in idle state when no corners are detected.

Finally, we compare the hardware resources and dynamic

power of three designs (combining KD and DC): Existing,

Prop1, and Prop2 with 6 bit truncation of the gradient values.

All three designs have the same clock operating frequency of

150 MHz (based on [14]). Table VI reports the results of the

TABLE V: Dynamic power consumption (mW) of DC

Method Prop1-DC Prop2-DC Reduction (%)

UBC 261.26 208.43 20.22

Bikes 254.58 200.94 21.07

Trees 269.86 219.42 18.69

Leuven 259.07 207.25 20.00
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TABLE VI: Resource utilization and dynamic power compar-

ison

Design Memory bits Logic Cells DSPs Dynamic Power

Existing 953328 34650 92 593.33 mW

Prop1 488740 15868 12 354.46 mW

Prop2 411931 15320 13 265.04 mW

three designs. The reported dynamic power is based on the

average power obtained for the 4 datasets. It is evident that

Prop2 not only achieves about 25% power reduction but also

consumes less hardware resources than Prop1. As discussed

earlier, the accuracy degradation of Prop2 is less than 6%

compared to Prop1. In addition, Prop2 exhibits significantly

lower resource utilization and dynamic power consumption

compared to [14] 1.

VI. CONCLUSIONS

This paper presents a power-efficient architecture for ORB

feature extractor which is capable of processing a pixel stream

at high throughput without the need of any image frame

buffers. To reduce hardware complexity, we proposed ap-

proximate computation strategies to determine the orientation

angle of the patch. In order to reduce dynamic power, we

devised methods to lower the switching activity of the key-

point detection and descriptor computation stages by early

pruning of non-likely key-points and gating the descriptor

computation stages. A threshold-guided bit-width optimization

strategy is employed to truncate the redundant bits in the

key-point detection stage. FPGA implementation results show

that the proposed strategies can achieve over 25% dynamic

power reduction and fewer hardware resources with minimal

accuracy loss (less than 6%).
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