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Abstract—Introduction of demand response (DR) programs
could help improve the overall power system stability, even out
energy valleys and also push the prices lower due to the increased
competitiveness. Liberalization of electricity markets provides
possibilities for load aggregators to schedule consumption and
obtain revenue by direct participation in demand response pro-
grams. This paper proposes a robust algorithm for aggregation of
flexible loads within the same distribution network. Participation
in DR programs is investigated considering electric vehicle (EVs)
located at the same carpark. Battery aging is considered and a
utilization compensation scheme is proposed for EV drivers. A
robust algorithm based on a receding horizon linear problem
is designed for the load aggregator considering EV constraints,
price uncertainties and battery aging.

Index Terms—Demand Response, Electric Vehicles, Battery
Aging

NOMENCLATURE

A. Sets and Indices
c, C Index for EV and set of all EVs
j, J Index and set of all battery aging tangent hyperplanes
k,K Current time period and set of all time periods
t Future market period index
Ue, Ur Energy and reserve uncertainty sets

B. Parameters
τac , τ

d
c EV arrival and departure time

ψc,k Availability for EV c during period k
γmin Lower limit for charging rate [kW ]
γmax Upper limit for charging rate [kW ]
λdk Deterministic energy price [$/kWh]
λfk Energy price forecast [$/kWh]
λzk Scaled energy price error

λ̂k Maximum expected error for energy price [$/kWh]
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ϕdk Deterministic reserve price [$/kWh]
ϕfk Reserve price forecast [$/kWh]
ϕ̂k Maximum expected error for reserve price [$/kWh]
Γe Energy risk aversion value
Γr Reserve risk aversion value
σ Probability of load interruption
νbatc Total EV battery cost
νeolc Battery end of life capacity
crate Battery charging rate
Emax Upper limit for battery energy content [kWh]
Emin Lower limit for battery energy content [kWh]
Ereq Required battery energy before departure [kWh]
xf Final battery SOC
xi Initial battery SOC
yaj Aging parameter related to inital SOC [$/kWh]
ybj Aging parameter related to final SOC [$/kWh]
ycj Aging parameter related to charging rate [$/kW ]
ydj Constant aging factor [$]

C. Variables

δfixc,k Fixed battery utilization index
δflexc,k Flexible battery utilization index
δtotc,k Total battery utilization index
µ Energy procurement cost $

ν Battery aging cost [$]
π Reserve provision cost [$]
ρ Energy cost in case of load curtailment [$]
ξek, β

e Dual variables for robust energy procurement
ξrk, β

r Dual variables for robust reserve provision
rc,k Flexible charging schedule [kW ]
sc,k,t Re-scheduled capacity from period k to t
uc,k Fixed charging schedule [kW ]
xc,k Battery energy content [kWh]

D. Constants

η Charging efficiency
4t Time duration of each market period
H Time horizon for robust optimization problem
V Number of EVs
z1−13 Constants for the battery aging model
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I. INTRODUCTION

Electric vehicles are viewed as a promising technology that
can help reduce greenhouse gas emissions in the transporta-
tion sector and contribute to lower drivers’ carbon footprint.
However, a high penetration of electric vehicles may affect
the power system operation and stability [1]–[4]. Uncontrolled
charging may result in increased reserve requirements, higher
electricity prices and may require network reinforcement. In-
troduction of smart charging strategies could help improve the
overall power system stability, even out energy valleys and also
lower electricity prices due to the increased competitiveness
[5]–[7].

Liberalization of electricity markets provides possibilities
for electric loads to bid their capacities in the energy and
ancillary markets as a virtual power plant (VPP). By partici-
pating as market players, aggregators buy electricity directly
in the wholesale market and receive incentives for provision of
reserve and regulation [8]–[10]. Demand response programs
are being implemented around the globe [8]. Due to their lim-
ited size and relative low impact on the system, participation
of small consumers in DR programs is generally achieved
through aggregators [11]–[13].

Extensive literature is available regarding load scheduling
for participation in the wholesale electricity market and provi-
sion of ancillary services. Issues related to incentive payment
on different market time frames are considered in [14]–[16].
In [14], the authors design a DR payment system considering
load and system uncertainties. Imbalance settlement between
the day-ahead and real-time market is studied in [15]. It intro-
duces mechanism design and public good theory to derive an
optimal settlement mechanism for incentives. Reference [16]
proposes a fairness index to settle the incentives paid to aggre-
gators. All these methods calculate incentive payments assum-
ing known cost functions for loads. Although aggregation of
the energy requirements for EVs can be derived using standard
driving profiles, i.e. Urban Dynamometer Driving Schedule
(UDDS) and Highway Fuel Economy Test (HWFET). Ran-
domness resulting from different driving behaviors will have
an effect on the temporal distribution of these EV charging
requests. Variations in the energy price together with the
temporal sparsity of the charging requests will make obtaining
accurate load-price curves for individual EVs very difficult.
This work derives an optimized charging schedule based on the
battery state, energy requirements, arrival time and proposed
departure time provided by the EV owners.

Batteries installed in EVs degrade over time. Ag-
ing is characterized by loss of capacity and increased
impedance [17], [18]. Aging is dependent on different factors
namely charging power, initial state of charge (SOC), final
SOC, and temperature. Battery costs comprise a high pro-
portion of the total cost of EVs and aging costs should be
considered in order to promote participation of EV drivers in
DR programs. Some authors have developed very complex
models to measure battery degradation [19], [20]. Although
there are some publications combining battery aging and
EV scheduling [21], [22], in these works the authors use
simplified battery aging models. This work derives a battery

aging model using a piecewise linear approximation of a
four-dimensional function. Battery aging is considered while
deriving an optimized charging schedule. A battery utilization
index is proposed to compensate EV drivers for use of the
batteries to provide reserve capacity.

Charging of electric vehicles under uncertainties is studied
extensively in the literature. In [23], the effect of uncertain
departure times in the charging schedule of EV is analyzed.
In [24], the authors propose scheduling of EVs charging
operations in the day-ahead market as flexible and inflexible
loads. Day-ahead and hour-ahead operations are carried out to
mitigate forecast errors.

Stochastic programming has been applied to EV
scheduling in a smart grid environment [25]–[28].
The authors in [25], [26] consider uncertainties while
scheduling EV charging for participation in the day-ahead
market. In [27], the authors maximize the aggregator’s
profit considering the least profitable scenarios and different
risk aversion attitudes. Risk averse scheduling of EVs
for participation in the day-ahead and balancing markets
considering conditional values at risk is studied in [28]. In
Stochastic programming, it is assumed that the uncertain
parameter can be defined or at least approximated using a
probability distribution. Optimal scheduling is obtained by
considering multiple scenarios. Although scenario reduction
techniques can be implemented, stochastic programming may
result in higher computational requirements than those of
deterministic problems.

Non-probabilistic methods are used as an alternative to
stochastic programming in order to reduce the computa-
tional burden and to provide a robust formulation under
uncertainties [7], [29], [30]. A robust optimization tool for
scheduling of virtual power plants under uncertain electricity
price is proposed in [29]. An optimal bidding strategy under
uncertain energy price is proposed by [30]. The authors in [7]
propose a robust algorithm to adjust the load level in response
to prices. This work proposes a robust optimization framework
to reduce the computational requirements seen in stochastic
programming while still considering price uncertainties for
energy and reserve.

Although the authors in [31]–[36] consider uncertainties for
some parameters, a perfect forecast is assumed for both energy
and reserve prices. Some works in the literature also consider
uncertainties in the electricity price [7], [29], [30] but works
that considering both energy and reserve price uncertainties
simultaneously are rare.

Aggregators make decisions based on market prices. An
accurate forecast for these market prices is necessary to reduce
the risks resulting from price volatilities that may increase
operation costs for load aggregators. Different techniques have
been proposed to forecast electricity prices. The authors in
[37] propose forecast models to predict next-day electricity
market prices based on the autoregresive integrated moving
average (ARIMA) methodology. The authors in [38] propose a
hybrid approach combining artificial neural networks (ANNs)
and fuzzy logic to improve the forecasting accuracy and at the
same time reduce the computational time. Stationarity is as-
sumed over days, weeks, months, etc. For intra-hour forecast,
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different bidding strategies may be implemented by generation
company (generation companies). This will change depending
on the hour of the day, i.e. off-peak, mid-peak, peak periods,
the offer lead time and variance of the demand. This may result
in a lower accuracy for models which assume stationarity of
the data over all daily market periods. This work proposes two
ARIMA models to forecast the energy and reserve prices in
the National Electricity Market of Singapore (NEMS). These
forecast models reduce the uncertainties in prices resulting
from changes in bidding strategies by generation companies
over different times of the day.

The main focus of this publication is to propose a robust
scheduling algorithm for load aggregators considering both
battery aging and uncertainties in energy and reserve market
prices.

The main contributions are:
– Propose a robust formulation for scheduling EV charging

operations. Charging operation for each EV is scheduled
as fixed or flexible based on the availability of EVs.
The aggregator co-optimizes procurement of energy while
providing flexibility as ancillary services in the form of
interruptible load. An analysis of how different risk aver-
sion values affect the scheduling of energy and reserve is
designed.

– Develop an aging model to estimate battery degradation
during the charging cycle based on different battery
parameters , i.e. initial SOC, final SOC and charging rate.

– Introduce a compensation scheme for EV owners based
on the battery utilization index. This index is introduced
to provide compensations in case the battery is aged faster
due to the provision of ancillary services.

The remaining sections are organized as follows. In Sec-
tion II the forecast models used for both energy and reserve
price predictions are presented and a robust formulation for
load scheduling and ancillary service provision by the load
aggregator is designed. In Section III, the battery aging model
is explained together with the battery utilization compensation
formulation. The simulation framework is presented in Sec-
tion IV and the results are shown in Section V. Conclusions
and an outlook of future works is given in Section VI.

II. CHARGE SCHEDULING FOR ANCILLARY SERVICE
PROVISION

This section formulates the optimization problem from the
load aggregator point of view. A centralized load aggregator
control mechanism for participation in the wholesale energy
and reserve markets is proposed. This work considers aggre-
gation of EVs within the same carpark. This ensures that
aggregators are able to control the charging process in a
near real-time manner for provision of ancillary services. The
aggregator gets status updates and sends control signals to each
EV through the electric vehicle supply equipment (EVSE). A
two-way communication link is used to obtain the NEMS price
updates and submit the reserve capacity bids.

This paper considers only uni-directional power flow from
the grid into the vehicle. Although it has been proved [19],
[39]–[41] that vehicle-to-grid (V2G) may be a viable and

Fig. 1. Aggregator diagram considering ancillary service provision and battery
aging

even profitable way for EV drivers to obtain incentives. Some
shortcomings that may discourage EV users to participate in
V2G programs are: reduced battery lifetime due to increased
cycling, range anxiety in case of emergencies due to early
departure and high battery replacement costs.

An overview of the proposed system is shown in Fig. 1.
The objective of the carpark aggregator is to minimize the
total charging cost of all EVs c ∈ C = {1, 2, ..., V } over the
optimization horizon k ∈ K = {1, 2, ...,H} while maximiz-
ing the revenue obtained for provision of ancillary services.
The smart grid interface allows the carpark aggregator to
derive both the energy “λf” and reserve “ϕf” price forecasts.
Forecasts are derived using the ARIMA model introduced in
Section II-A and the day ahead energy “λd” and reserve “ϕd”
price forecasts provided by the system operator. An optimized
fixed “uc” and flexible “rc” charging schedule is obtained
considering both the price uncertainties and the compensation
to EV owners “δflexc ” for battery utilization.

A. Multiplicative ARIMA Model

Liberalization of the electricity market results in the intro-
duction of different market structures. Some consider day-
ahead and balancing markets [28]. Others, like the NEMS,
clear all energy and ancillary prices in a real-time manner.
All market participants are required to maintain standing bids
and are allowed to change the bids up to 65 minutes before
the actual trading period begins. The market clearing engine
(MCE) is run for every half-hourly period and a forecast for
the following 24 hours is provided based on these standing
bids.

The day-ahead price forecasts are provided by the market
operator based on the standing bids from all the participants.

λd ,
[
λdk, λ

d
k+1, . . . , λ

d
k+H

]
(1)

ϕd ,
[
ϕdk, ϕ

d
k+1, . . . , ϕ

d
k+H

]
(2)

where λd and ϕd are the energy and reserve price forecasts
provided by the power system operator (PSO) for the following
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Fig. 2. Autocorrelation for (a) USEP and (b) MRP prices in the NEMS during
2014

H ≥ 1 market periods. This forecast is updated every period
based on the standing bids from the market participants.

Time-series are considered stationary if the frequency distri-
bution for the observations at time {t1, t2, ...th} are the same
as the ones for {t1 + t, t2 + t, ...th + t} [42]. Fig. 2 shows
the autocorrelation for the energy and reserve prices during
the year 2014. Jumps in the autocorrelation indicate a non-
stationary process but show high seasonal correlation. Seasonal
integration could be used to filter the seasonal component.

A multiplicative ARIMA model is created based on past
price data for the NEMS. A seasonal and a non-seasonal
model is created based on the general multiplicative ARIMA
formulation [37].

Data from the year 2014 was used to train the ARIMA
predictor for both the energy (USEP) and reserve (MRP)
prices. The model orders were obtained using a combination
of Akaike information criteria (AIC) and Bayesial informa-
tion criteria (BIC). Parameters for the ARIMAs model were
estimated using the maximum likelihood method proposed by
Box-Jenkins [43].

Two independent models were created, one for the energy
and another for the reserve prices. Predicted energy λf and
reserve ϕf prices during period k and for H ≥ 1 future periods
are defined as:

λf ,
[
λfk , λ

f
k+1, . . . , λ

f
k+H

]
(3)

ϕf ,
[
ϕfk , ϕ

f
k+1, . . . , ϕ

f
k+H

]
(4)

B. Carpark aggregator model

A limited battery size and high uncertainties about future
trips will require EVs to charge up during peak hours. Vehi-
cles in general are parked for extended periods. Commercial
carparks will accommodate a high portion of EVs parked dur-
ing the day. This will create opportunities for carpark operators
to procure energy in the wholesale electricity market. The

carpark model presented in [8] is used to obtain the arrival-
departure times for the EVs in a carpark. Charging operation
is assumed to be possible within the interval [τac , τ

d
c ]. The

parameter ψc,k ∈ {0, 1} is updated based on the availability
of EV.

The battery SOC for each EV is defined as:

xc , [xc,k, xc,k+1, ...., xc,k+H ] ∀ c ∈ C (5)

The load aggregator schedules EVs as fixed or flexible loads
based on their availability and the system constraints. Fixed
and flexible scheduling vectors for all EVs are defined as:

uc , [uc,k, uc,k+1, . . . , uc,k+H ] ∀ c ∈ C (6)

rc , [rc,k, rc,k+1, . . . , rc,k+H ] ∀ c ∈ C (7)

The total fixed and flexible charging power for each EV
c ∈ C is limited between [γmin, γmax] to avoid excessive
aging in the batteries.

γmin ≤ uc + rc ≤ γmax (8)

The updated SOC for each EV is calculated using:

xc,k+1 = xc,k +4t · η [uc,k + rc,k] (9)

The energy for each EV at departure should be greater or equal
to the minimum charging requirements. This is accomplished
introducing the following constraint:

xc,τd
c +1 ≥ Ereq (10)

The battery state for each EV c ∈ C at each period k ∈ K
should comply with the following constraint.

Emin ≤ xc,k ≤ Emax (11)

The cost of energy procurement for the aggregator is defined
as:

µ ,
H∑
k=1

V∑
c=1

[uc,k + rc,k] · 4t · λfk (12)

Flexibility resulting from the long waiting times could be
exploited by providing this flexibility in the charging process
as an ancillary service to the grid. Incentives obtained for
reserve provision are defined as:

π ,
H∑
k=1

V∑
c=1

rc,k · 4t · ϕfk (13)

The charging process should be re-scheduled to future
periods if EVs are required to curtail their loads during system
contingencies. The cost of shifting the charging operation
sc,k,t from period k to a future period t is given by:

ρ ,
H∑
t=1

H∑
k=1

V∑
c=1

sc,k,t · 4t · λft (14)

The aggregator schedules the charging operations based on



1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2598851, IEEE
Transactions on Smart Grid

5

the following problem:

min
u,−r

µ− π + σ · ρ (15)

subject to:
Equations (9) to (11)∑H

t=k+1 sc,k,t · ψc,t ≥ rc,k ∀ k ∈ K (16)

γmin ≤ uc,k + rc,k + sc,k,t ≤ γmax ∀ k, t ∈ H (17)
uc,k, rc,k, sc,k,t ≥ 0 ∀ c ∈ C and k, t ∈ K (18)

Equation (16) ensures that the flexible loads which are
curtailed during period k could be re-scheduled to future
periods {k + 1, ...k + H}. Equation (17) ensures that the re-
scheduled power does not violate the charging constraints in
(8) and that (10) is still feasible. Parameter σ is introduced
to penalize the re-scheduling cost based on the probability of
load curtailment.

Flexible loads are considered to be interruptible, i.e. the
charging process can be re-scheduled for future periods. Cur-
tailments of the charging operation that will violate the EV
constraints are scheduled as fixed loads. The optimal decision
for the current period is implemented and the time is stepped
forward in one period. Receding horizon control is used to
ensure the optimal control sequence is updated based on the
latest information available.

C. Robust formulation

Imperfect information on prices could result in increased
operational costs for aggregators. This work proposes a robust
formulation against increase in costs resulting from higher en-
ergy prices and loss of incentives due to lower reserve prices.
A robust optimization model similar to the one presented
in [7] is implemented for the carpark aggregator. This work
is extended to include both uncertainties in the energy and
reserve prices. Price uncertainties are defined by the polyhedral
sets:

Ue ,
{
λfk ∈ R ∀ k, λfk ∈ [λfk + λ̂k]

}
(19)

Ur ,
{
ϕfk ∈ R ∀ k, ϕfk ∈ [ϕfk − ϕ̂k]

}
(20)

where λ̂k is defined as the expected deviation between the
ARIMA energy forecast λfk and the deterministic λdk energy
price that will result in increased energy procurement cost.

λ̂k = λdk − λ
f
k ∀ k ∈ K (21)

Similarly, ϕ̂k is defined as the expected deviation between
the ARIMA reserve forecast ϕfk and the deterministic reserve
ϕdk prices that will result in reduced incentive payments for
participation as interruptible loads.

ϕ̂k = ϕfk − ϕ
d
k ∀ k ∈ K (22)

The scaled deviation of the energy price from its nominal
value λzk is defined as:

λzk =
λk − λdk
λ̂k

∀ k ∈ K (23)

)/($ MWh

timek k+1 k+2 k+3 k+4

1e

0e

10 e

 

f

f

eU

Fig. 3. Robust formulation for uncertain energy price

where parameter λzk belongs to [0, 1]. The risk aversion value
for the aggregator towards errors in the energy price is set to:∑H

k=1 λ
z
k

|H|
≤ Γe (24)

Parameters Γe and Γr represent the risk aversion atti-
tude of the aggregator with respect to the energy and re-
serve prices respectively. The deviations are bounded within
Γe = [0, 1] and Γr = [0, 1]. A value of “1” represents a very
conservative risk averse attitude. The load aggregator assumes
the worst value for both λ̂k and ϕ̂k during all optimization
periods [44]. A value of “0” represents a risk seeking attitude
The aggregator assumes a perfect forecast with no protection
against uncertainties. A value between (0, 1) will represent a
trade-off between a risk averse and a risk seeking attitude.
Figure 3 shows an example of how the expected energy price
λfk changes for different values of Γe.

The robust counterparts of (12) and (13) are given by:

µ ,
H∑
k=1

V∑
c=1

[uc,k + rc,k] · 4t · λfk + ξek + Γe · βe (25)

π ,
H∑
k=1

V∑
c=1

rc,k · 4t · ϕfk + ξrk + Γr · βr (26)

and the following constraints are added:

ξek + βe ≥
∑V
c=1 [uc,k + rc,k] · 4t · λ̂k ∀ k ∈ K (27)

ξrk + βr ≥
∑V
c=1 rc,k · 4t · ϕ̂k ∀ k ∈ K (28)

βe, βr ≥ 0 ξek, ξ
r
k ≥ 0 ∀ k ∈ K (29)

The first term in (25) and (26) represent the expected cost
considering the price forecasts. The last two terms define
the robust formulation derived using duality theory [7], [45].
Equations (27) and (28) are the auxiliary constraints used to
limit the energy and reserve price error within their expected
uncertainty range defined by (19) and (20). A detailed expla-
nation on the robust formulation is given in [7], [44], [45]

III. BATTERY AGING

The battery aging model is an improved version of the
model presented in [17]. In order to evaluate the battery
aging behavior of battery electric vehicles, aging tests were
conducted where cells were cycled through different SOCs
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Fig. 4. Battery aging parameters: (a) energy fade and (b) aging factor

and with different battery charging rates (C-rates), since the
variation of these parameters has an effect on the aging
behavior. After periodical time intervals, characterization tests
were conducted for the determination of the remaining energy
content of the test cells. ICR18650-22FM batteries from man-
ufacturer Samsung SDI were used for the tests. It is assumed
that aging within the battery pack of electric vehicles occurs
in the same way as in the test cells.

The decrease of the energy content of the cells over the
course of the aging tests was evaluated for each test condition
and values for the normalized energy fade during the charging
process were derived. The energy fade values of the test cells
which were charged between different combinations of initial
and final SOC at the standard charging rate are plotted in
Fig. 4(a) and described in the following equation:

f(xi, xf ) = z1 · ez2(x
i−xf−z3) + z4 · ez5(1−x

i)

+ z6 · ez7(x
f−1) (30)

where z1, z2, z3, z4, z5, z6 and z7 are constants, and xi,xf

depict the initial and final battery SOC respectively.
The energy fade values for the aging tests at different charge

rates between a fixed SOC combination were compared and
an aging factor for different charge rates was derived.

g(crate) = z8 · ez9(c
rate−z10) + z11 · ez12(c

rate−z13) (31)

where z8, z9, z10, z11, z12 and z13 are constants and crate

represents the battery charging rate. An example of the aging
factor values for the test cells and the fitted function is given
in Fig. 4(b)

The energy fade of a specific charge process with values
for initial SOC, final SOC, and battery charging rate (C-rate)
can be calculated by multiplying the normalized energy fade

with the aging factor corresponding to the specific C-rate. This
results in a four-dimensional function with input parameters
which include initial SOC, final SOC, and C-rate and the
energy fade as function values.

h(xi, xf , crate) = f(xi, xf ) · g(crate) (32)

A battery aging function is proposed using a piece-
wise linear approximation of the four-dimensional func-
tion with tangent hyperplanes in several points of the
energy fade function. A compromise is required in or-
der to model the battery aging accurately without increas-
ing the complexity of the optimization problem. In this
work, the equations of the hyperplanes are calculated for
142 different combinations of initial SOC, final SOC, and
C-rates. The piecewise linear approximation is given by:

h(xi, xf , crate) = yaj · xi + ybj · xf + ycj · crate + ydj

∀j ∈ J (33)

The total energy fade for EV c during period k is approxi-
mated using:

δtotc,k ≥ yaj · xc,k + ybj · xc,k+1 + ycj · [uc,k + rc,k] + ydj (34)

δtotc,k ≥ 0 ∀ k ∈ K, c ∈ C (35)

Parameters yaj , ybj , y
c
j , and ydj are defined for each tangent

hyperplanes j ∈ J and are calculated from the experimental
data using regression.

The total costs of the aggregator comprises both the pay-
ment for energy consumption and the incentives for provision
of reserves. EV drivers may not be willing to shoulder higher
battery aging costs for provision of reserves unless they receive
a compensation for the increased battery utilization. This work
proposes a payment mechanism for EV drivers to offset the
higher battery aging costs. The total energy fade in (34) is
then split into two components, the capacity fade due to fixed
charging scheduling and the capacity fade due to the flexible
charging schedule.

δfixc,k ≥ y
a
j · xc,k + ybj · xc,k+1 + ycj · uc,k + ydj (36)

δfixc,k ≥ 0 ∀ k ∈ K, c ∈ C (37)

The total battery aging cost for the EV drivers is calculated
using:

ν =
H∑
k=1

V∑
c=1

δtotc,k
(1− νeolc )

· νbatc (38)

where νbatc represents the total battery costs for EV c and νeolc

depicts the lower limit for the battery capacity before replace-
ment is needed due to the end of useful life. Equation (15) is
updated to include the battery aging costs:

min
u,−r

µ− π + σ · ρ+ ν (39)

subject to:
Equations (8) to (11)
Equations (16) to (18)
Equations (27) to (29) and (34) to (38)
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It should be noted that including (38) in the objective
function will result in minimization of the total battery aging
cost. Flexible charging will only be considered when the
incentives received as reserve providers are greater than the
battery aging costs. The compensation for battery utilization
is then calculated by the difference between the aging cost
resulting from the fixed and flexible charging operations;

δflexc,k = δtotc,k − δ
fix
c,k ∀ k ∈ K, c ∈ C (40)

νflexc,k =
δflexc,k

(1− νeolc )
· νbatc ∀ k ∈ K, c ∈ C (41)

IV. SIMULATION FRAMEWORK

The effect of different risk aversion values in the energy
procurement cost and ancillary service provision incentives
for load aggregators is studied. Data analysis and model
estimation is achieved using the econometrics toolbox in
MATLAB c©. The optimization problem is implemented using
YALMIP [46] and is solved using Gurobi 6.5.0 [47]. The linear
problem is solved using the interior point method and Gurobi
default parameters. The average computational time required
to solve one iteration of the optimization problem is 14 s on a
machine with an Intel Xeon E5-2630 v3 @ 2.4 GHz processor
and 128 GB of RAM.

Parameters like arrival time, parking time and energy con-
sumption for each EV are derived using the model presented
in [8]. A list of the EV parameters used in the simulation is
given in Table I. This work assumes that all EVs in the carpark
have the same parameters. This assumption could be relaxed
and different parameters could be used for each EV without
any increase in the problem complexity.

The NEMS framework is used in the paper. A detailed
explanation of how the prices are cleared is given in Sec-
tion II-A. Under this framework, the interruptible load (IL)
program allows load providers to submit a set of price-quantity
bids before each market period and receive incentives for
providing system reserves. The MCE considers reserves from
both generators and load providers equal and provides an
optimal schedule based on the system constraints and the price
bids. Load providers are required to react when the under-
frequency relay is triggered according to the market operation
rules detailed in [48].

The following assumptions are made while scheduling re-
serves provided by the EVs:
– The load aggregator bids in the contingency reserve market

and is paid based on the contingency reserve price for the
NEMS.

– Bids by the load aggregator are low enough such that they
are always scheduled by the MCE.

– The under-frequency relay is not activated during the opti-
mization horizon.
Data from the NEMS for the entire year 2014 was used

to train the energy and reserve price forecast model pre-
sented in Section II-A. Forecast for each market period k
was created using energy and reserve prices for the past
{k−48, k−47, ..., k−1} and the current k half-hourly market
periods. Fig. 5(a) and 5(b) show the energy and reserve prices
for April 2015.
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Fig. 5. NEMS (a) energy and (b) reserve prices for April 2015

Table I
SIMULATION PARAMETERS

Optimization parameters

V 400 number of EVs
H 48 optimization horizon
|J | 142 number of hyperplanes
∆t 0.5 h period duration

EV parameters

γmin 0 min charging rate
γmax 24 kW max charging rate
Emin 4.8 kWh min battery capacity
Emax 24 kWh battery capacity
η 0.9 charging efficiency
νbat 7200 $ battery cost
νeol 0.8 battery end of life capacity

The optimization problem defined in (39) was solved using
the market data for April 2015 and the parameters shown in
Table I, a rolling window with an horizon of H = 48 periods
was used.

A. Base Case

The base case is solved using the energy and reserve
price forecast data provided by the NEMS. These prices are
obtained based on the standing offers for market participants.
The problem in (15) is solved considering (12) to (14) as
the energy procurement cost, incentive payments and the re-
schedule costs respectively. This is considered as a baseline
and its solution is compared with that of the proposed method.
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Fig. 6. Energy procurement cost for different risk aversion values
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Fig. 7. Reserve cost for different risk aversion values

B. Robust model considering battery aging

This scenario considers the robust formulation and the
battery aging incentives presented in Sections II-C and III
respectively. The effect of different risk aversion values in the
total cost for the load aggregator is studied. The results for
the problem stated in (39) are analyzed and then are compared
with those of the baseline.

The values for Γe and Γr represent the risk aversion for
the load aggregator towards future energy and reserve prices
respectively. Γe and Γr can take values in the range of [0, 1]. A
value of 1 for both Γe and Γr describes a conservative scenario
that expects the worst case value for each future market period
in the horizon. On the other hand, a value of 0 for both Γe

and Γr will describe an optimistic attitude assuming a perfect
forecast.

V. SIMULATION RESULTS

The proposed method is analyzed using real market prices
for an entire month of April 2015. This allows a more
representative view of the effect of different risk aversion
values on the cost incurred by the load aggregator over an
entire month.

The total energy procurement cost for the entire month is
given in Fig. 6. It can be seen that the results obtained with
the proposed method leads to savings of 4.0% in the best case,
and 1.4% in the worst case. Energy procurement costs were
better than those of the base case for all Γe and Γr values.
Increasing the value of Γe, i.e. assuming higher energy price
than the forecast, results in a steep reduction of the energy
cost. On the other hand, increasing Γr results in higher energy
costs. This is due to the increase in flexible load scheduled by
the load aggregator.

Reserve costs for the load aggregator are given in Fig. 7.
A negative value means that the load aggregator receives
payments from the PSO for the provision of reserves. It
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Fig. 8. Battery cost for different energy and reserve risk aversion values
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Fig. 9. Total aging cost per period comparison

can be seen that contrary to what happens with the energy
cost, a reduction of incentives is observed using the robust
formulation. These reductions represent a drop of 23.5% and
19.1% for the worst and best case respectively. It can be seen
that the reserve incentives are generally lower (less negative)
than those in the deterministic case. The main reason for this
is due to a higher volatility observed in the reserve market.
During these periods of higher volatility, the ARIMA model
is unable to accurately forecast the jumps in the reserve price
resulting in less incentive payments to the load aggregator.

Risk hedging by increasing Γe and Γr protects the aggre-
gator from jumps in the energy and reserve prices. But at the
same time, it makes less attractive for the load aggregator to
schedule flexible loads for provision of reserve capacity.

The total battery cost is given in Fig. 8. Battery costs
increase with higher values of Γe and Γr. This is due to
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Fig. 12. Total cost for different energy and reserve risk aversion values

the higher battery aging resulting from an increase in the
flexible loads scheduled. Aging costs are directly proportional
to the capacity lost in the battery. Reduction in the battery
aging cost represents not only savings for the EV drivers, at
the same time extends the battery lifetime. Figure 9 shows
a comparison of the aggregated aging costs for the carpark
during each market period. Savings in the batery aging cost
are achieved by reducing the C-rate of the EV and shifting the
increased consumption which will result in increased battery
degradation to other periods where the EV is also available.

A comparison between aging costs resulting from fixed and
flexible charging operation is given in Fig. 10. The battery
compensation payment and the total incentives for reserve
provision are shown in Fig. 11. Part of the incentives obtained
for provision of reserves is used to compensate EV drivers
for the reduction in the battery lifetime due to provision of
ancillary services.

Figure 12 shows the total cost for the load aggregator
considering the combination of the energy procurement cost,
reserve provision incentive and the battery utilization costs. A
summary of the best and worst case for the proposed method
is given in Table II. The proposed method performs better than

Table II
TOTAL SYSTEM COSTS

Scenario
Energy
Cost $

Reserve
Cost $

Battery
Cost $

Total
Cost $

Base Case 4742.5 -766.1 211.9 4188.3
Γe=0 Γr=0 4638.0 -620.1 51.9 4069.7
Γe=0 Γr=0.5 4672.9 -609.6 61.3 4124.6
Γe=0 Γr=1 4676.5 -609.4 62.0 4129.1
Γe=0.5 Γr=0 4554.0 -616.9 60.0 3997.2
Γe=0.5 Γr=0.5 4589.5 -586.7 72.6 4075.4
Γe=0.5 Γr=1 4591.2 -586.5 73.3 4078.1
Γe=1 Γr=0 4555.8 -618.2 61.4 3999.0
Γe=1 Γr=0.5 4590.8 -587.2 74.0 4077.6
Γe=1 Γr=1 4592.5 -586.9 74.7 4080.3

the deterministic case and can lead to savings of up to 4.6%
when the risk aversion values are set to Γe = 0.5 and Γr = 0
respectively.

VI. CONCLUSIONS

This paper proposes a scheduling mechanism for an load
aggregator for participation in the wholesale market under
uncertain energy and reserve prices. Scheduling of flexible
loads allows provision of ancillary services in the form of
interruptible loads. In case of curtailment, the aggregator
ensures that the curtailed capacity is re-scheduled in the future
market periods while ensuring that EV constraints are not
violated.

Uncertainties are modeled using a robust optimization
framework. This allows the load aggregator to hedge against
changes in prices that will result in increased cost without a
big increase in computational complexity. It also allows EV
drivers to hedge the risk due to increased battery aging under
uncertain reserve prices. Different risk aversion attitudes by the
load aggregator are investigated and their impact in the total
cost is analyzed. The results show that load aggregators could
benefit from a less risk averse attitude in the energy market
but further improvements are required in the reserve price
forecast model in order to increase the incentives obtained
for the provision of ancillary services.

Payments to EV owners in the form of a battery utilization
compensation scheme is devised. This compensation ensures
EV drivers are paid for the battery aging resulting from
participation as ancillary service providers. Simulations show
that a 50% reduction in the total battery degradation costs is
possible without increasing the total cost.

The proposed method has the advantage of being solved
independently by each load aggregator. This setup ensures that
local EV information is not broadcast to any higher level con-
troller while reducing the problem complexity. A multi-carpark
setup can be enabled by solving the problem for each load
aggregator independently and providing a hierarchical market
structure where aggregators exchange partial information and
solve the higher level problem iteratively to prevent possible
congestion in the distribution system.
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Research areas to be considered in the future work include:
(i) Study the effect of congestion in the total cost for multiple
load aggregators; (ii) Improve the energy and reserve price
forecast by modeling price jumps; and (iii) design a distributed
algorithm for controlling multiple load aggregators managed
by a single distribution grid operator.
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