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Abstract—Liberalized markets provide opportunities for load
aggregators to reduce their operating cost by participation in
the wholesale electricity market. Reduction in operating cost
result from shifting flexible loads based on the electricity price
and also from incentives paid for ancillary service provision.
Increased penetration of distributed renewable generation could
help distribution system operators (DSO) reduce energy losses
and increase network reliability. On the other hand, variability
of renewable sources introduce additional challenges that need to
be addressed in order to reduce their adverse effects on the power
system. This work proposes an energy management system for
aggregation of controllable loads in the distribution system. Local
generation uncertainties are considered using model predictive
control (MPC). The goal of the controller is to provide a
schedule for the controllable loads while considering both local
solar photovoltaic (PV) generation and provision of ancillary
services. A case study based on the National Electricity Market of
Singapore (NEMS) is presented to validate the proposed method.

Index Terms—Energy Management System, Demand Re-
sponse, Distributed Generation

I. INTRODUCTION

In conventional power systems, demand forecasts are de-
rived based on statistical data and ancillary services are
procured to balance any mismatch between the forecasted and
the actual value. Greenhouse gas emissions from conventional
power generation and the possible effect of these gases on
global warming result in government policies promoting the
use of renewables. As a result, DSO face new challenges that
require an estimation of both demand and generation.

Increased penetration of renewables and the uncertainty
inherent to these resources usually result in additional require-
ments for both reserve and regulation. Conventional genera-
tors are unable to follow rapid changes in the demand and
more expensive generation is required to restore the system
frequency to the nominal value. Utilities and power network
operators introduced demand response (DR) initiatives to
increase the system flexibility [1], [2]. In these programs,
consumers respond to system operator commands and receive
incentive payments for changing their electricity usage.

Aggregation of multiple devices is required to participate in
the wholesale electricity market and provide ancillary services.

In tropical countries, heating, ventilation, and air conditioning
(HVAC) represent a high portion of the commercial and
residential electricity usage. HVAC systems in commercial
buildings present a relatively high inertia and therefore are
very suitable for participation in DR programs. Transportation
electrification initiatives by many countries result in increased
power demand on distribution level. Due to their limited range,
electric vehicles (EVs) require multiple charging operations
throughout the day. Also, EVs are parked during most of the
day, which allows some flexibility to schedule the charging
process based on the energy availability and price [3].

Provision of ancillary services using DR has been widely
discussed in the literature. DR as spinning reserve for fre-
quency restoration is considered in [4]. Authors in [5] propose
performance measures for DR aggregation control service.
Both [4] and [5] provide algorithms to control flexible loads
but do not consider effects in the total cost for the system.
Authors in [6] study price-based control of building HVAC
systems for balancing energy costs. A model predictive con-
troller is proposed to control the HVAC systems but other types
of controllable consumers are not considered. Possible rewards
for direct load control in reserve market is studied in [7].
Centralized and decentralized control methods for aggregation
of loads are considered but details of how these individual
loads are controlled are not given.

This paper proposes a model to aggregate flexible loads
and renewable generation using a MPC based controller.
Aggregation of multiple commercial buildings and a carpark is
assumed. Local PV generation is considered at these buildings.
Demand flexibility is provided by controlling the building
HVAC systems and scheduling the chaging of the EVs in the
carpark. Uncertainties on both the load and generation side
are considered and an optimized schedule is proposed.

Real market data for the NEMS is used to evaluate op-
portunities of ancillary service provision by the aggregator.
Scheduling of both EVs at the carpark and the building
HVAC system is considered. A strategy to provide ancillary
services is devised. Minimum local reserve provision due to
PV generation is ensured and the remaining capacity is bid
as interruptible load (IL). The simulation results analize the
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effect of this strategy in the aggregator operation cost.
Section II describes the models used for the carpark, build-

ing HVAC and local PV generation. Section III describe the
centralized control strategy and the constraints used by the
controller. Simulation results considering the centralized MPC
controller are given in Section IV. Conclusions and future
research are given in Section V.

II. SYSTEM DESCRIPTION

A. EV model

The carpark model used in this paper is an extension of the
one given in [3]. The carpark is assumed to be located in a
non-residential area near the city center. The arrival-departure
events are created using probabilistic modeling based on
different driver profiles. The model is validated using real
occupancy values for a carpark in Singapore [3].

The state space representation for each vehicle in the
carpark is given by:

xk+1
v = Avx

k
v +Bvu

k
v + Evd̂

k
v (1)

Where the state xk+1
v represents the EVs battery state of

charge (SOC) at the end of period k. Input vector uk
v and

disturbance vector d̂kv represent the power consumption and
the disturbances during period k respectively.

The coefficients Av , Bv , and Ev define the relationship
between the inputs, state and disturbances and the state of the
EV at the beginning of the next market period k+1. This paper
assumes a charging efficiency ηEV of 0.9, no self-discharge
and no disturbances. Coefficients are set to Av = 1, Bv = ηc
and Ev = 0 respectively.

Generally, EVs are parked for extended periods during
the day. This creates opportunities for carpark operators to
schedule the charging process and minimize the charging cost.
This work considers participation of the carpark as an ancillary
service provider i.e. participation as ILs. EVs are regarded
as flexible load if the scheduled charging operation could
be curtailed and rescheduled based on the EV availability.
Charging operations curtailments that will result in violation
of the EV constraints are set as fixed loads.

Equation (1) becomes:

xk+1
v = Avx

k
v +Bv

�
uk
v + rkv

�
+ Evd̂kv (2)

Where, rkv represents the flexible charging power for the EV
during period k.

B. HVAC model

The building model is derived from the works in [8]–[10].
The HVAC air flow is controlled by a variable frequency drive.
The thermal model of a zone is obtained by considering the
heat flux between the walls and rooms [10]. The model is
linearized using sequential quadratic programming. Zero-order
hold is used to derive the discrete linear time invariant state
space representation for each zone.

xk+1
z = Azx

k
z +Bzu

k
z + Ez d̂

k
z (3)

The state vector xz ∈ Rw+1 represent the temperature of
each node in the zone i.e. w walls plus the zone temperature.
The term uk

z shows the total power consumption of the zone
and d̂kz ∈ Rw+1 give the disturbances at each node. A
simplified building model is created by aggregation of rooms
with similar characteristics into a single zone where thermal
coupling between rooms is not considered.

The building model is obtained by aggregating all zones.
Each zone is controlled independently based on the state space
representation given in (3). Variable frequency drives allow
HVAC systems to dynamically control the air flow input into
each zone. By introducing an additional term rkz , the total
power consumption for each zone is then decoupled into fixed
and variable load. The fixed load ensures that the temperature
remains within the comfort zone of dwellers and the flexible
load represent the power consumption that could be curtailed
to provide ancillary services. Incentives are paid by the power
system operator (PSO) for participation as IL. The payment is
received based on the capacity provided for curtailment and
the reserve price [11].

Equation (3) is rewritten as:

xk+1
z = Azx

k
z +Bz

�
uk
z + rkz

�
+ Ez d̂

k
z (4)

C. Local PV generation model

Local renewable generation could help buildings reduce
their carbon footprint and may also help reduce the total
cost paid for electricity. Uncertainty related to intermittent
renewable generation usually results in increased reserve re-
quirements for the PSO. In this work, the solar PV array is
modeled as a combination of series and parallel connected PV
modules. Individual PV modules are operated in maximum
power point tracking (MPPT) mode to maximize the power
output.

Irradiance data from a meteorological station in Singapore
is used and gaussian noise ε is added to simulate uncertainties
in the forecast. For each period k the irradiance forecast is
obtained by Ikf = Ikr + ε. Where ε is assumed to be normally
distributed with parameters N(0,α

√
Ik
r ). The term α ∈ [0, 1]

models the forecast error for the actual irradiance value Ikr .
Irradiance values are converted to power output assuming
MPPT operation of each PV module.

In practice, intermittent generation sources are considered
as non-controllable and are not required to submit half-hourly
offers in the energy market [12]. The uncertainty is managed
by the PSO and is aggregated over the entire system. The
non-controllable nature of these resources results in increased
regulation and reserve requirements. This paper proposes a
method to schedule the PV output and provide reserve locally
by means of flexible loads.

III. CENTRALIZED MPC CONTROLLER

This work assumes a centralized control system and per-
fect two-way communication between the central controller,
building management system and the carpark operator. An
overview of the aggregator is given in Fig. 1. The centralized
controller schedules EVs charging and HVAC operation based
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Fig. 1. Carpark and building aggregator considering MPC control scheme

on the energy and reserve prices. This paper considers bids
in the reserve market as IL [11]. Flexible loads that could
be rescheduled (EVs) or curtailed without compromising the
dwellers comfort (HVAC) are bid as interruptible loads. Un-
certainty of the local PV generation is considered assuming a
PV forecast and a given reserve requirement for each market
period k.

The arrival-departure of EVs is modeled assuming 10%
penetration of EVs [3]. This results in 200 unique parking
events where arrival departures times are known in advance.
A total of 450 TS-S425 [13] monocrystalline PV modules
are considered for installation at the building rooftops. This
comprises a rated capacity of about 190 kWp in total. A total
of 375 rooms distributed in 15 different zones are considered.

A. Centralized aggregator model

The state space matrices of the aggregated system model
is obtained by diagonal addition of the individual sys-
tem blocks. For a total of j subsystems (j = n + m
with n EVs and m zones). System matrices are given by:
A = diag(A1

v, .., A
n
v , A

1
z, ..., A

m
z ), the same procedure is fol-

lowed to obtain matrices B = diag(B1
v , .., B

n
v , B

1
z , ..., B

m
z )

and E = diag(E1
v , .., E

n
v , E

1
z , ..., E

m
z ).

States for each subsystem are aggregated to obtain the
system state x = [x1

v, .., x
n
v , x

1
z, ..., x

m
z ]�. Inputs and distur-

bances are aggregated in the same way. Fixed and flexi-
ble loads inputs are aggregated as u = [u1

v, .., u
n
v , u

1
z, ..., u

m
z ]�

and r = [r1v, .., r
n
v , r

1
z , ..., r

m
z ]� respectively. The system distur-

bance vector is given by d̂ = [d̂1v, .., d̂
n
v , d̂

1
z, ..., d̂

m
z ]�.

The state space representation of the aggregated system for
a given an initial state x0 for a time horizon of h periods is
given by:

xk = Ax0 + B
�
uk + rk

�
+ Ed̂

k
(5)

Where the predicted states for each period k within the
prediction horizon H and for a total of h periods is given
by xk =

�
xk|k, xk|k+1 . . . , xk|k+h

��
. Superscript “k|k + 1” is

used to denote the prediction state at time k for time k + 1.
Predicted state vectors uk, rk and d̂k are represented in similar
way. Matrices A, B, and E are of appropriate dimensions.

PV output power forecast pk
pv for each period k is given as

ppv
k =[pk|k

pv ,pk|k+1
pv ,...,pk|k+h

pv ]
�. Local PV reserve requirements

rkpv are given based on the maximum forecast error α for each
period k .

rpv
k = α[pk|k

pv ,pk|k+1
pv ,...,pk|k+h

pv ]
� (6)

Availability of each EV and HVAC zone during period k is
given as a binary variable ψk,i. Values for ψk,i are set to “1”
when the subsystem i is available during period k and to “0”
otherwise.

Total cost for the aggregator considering local PV genera-
tion, carpark and building consumption for each period k is
given by:

Jk
c = Δt · epk ·

�
� uk + rk � −pk

pv
�

(7)

The total system incentive for ancillary service provision in
the form of IL during period k is given by:

Jk
r = Δt · rpk ·

�
� rk � −rkpv

�
(8)

The aggregator manages the schedule of each EV and
building zone based on the following MPC control problem:

min
uk,−rk

h�

k=1

Jk
c − Jk

r (9a)

subject to:

xk+1
c = A xkc + B uk + E d̂

k
(9b)

xk
min ≤ xkc ≤ xk

max, ∀ k ∈ H (9c)

xk+1
nc = A xknc + B

�
uk + rk

�
+ E d̂

k
(9d)

xk
min ≤ xknc ≤ xk

max, ∀ k ∈ H (9e)

rk =
�h

t=k+1 ck,t ◦ ψt ∀ k ∈ H (9f)

uk
min ≤ uk + rk + ct,k ≤ uk

max ◦ ψk, ∀ k, t ∈ H (9g)

� rk �≥ rkpv, ∀ k ∈ H (9h)

uk, rk, rkpv ≥ 0 ∀ k ∈ H (9i)

The objective of the MPC controller is to obtain an optimal
fix and flexible loads schedule considering minimization of
the total energy cost Jk

c and maximization of the incentives
obtained for ancillary service provision Jk

r .
Assignment of fixed and flexible loads is considered by

calculating two possible trajectories for each period k. First,
(9b) calculates the trajectory for a given input power uk that
will result in minimization of the total cost of the system
considering the zone temperature constraints and the minimum
required charge for EVs given in (9c).

Equation (9d) shows the trajectory considering both fixed
and flexible loads, this is done assuming that that rkz could
be curtailed without compromising dwellers comfort and the
final charge requirements of EV owners given in (9e).

Provision of reserve may result in curtailment of loads
when the system underfrequency relay is triggered. Due to the



(a)

(b)

Fig. 2. NEMS energy (a) and reserve (b) price

high thermal inertia and the fact that the comfort of dwellers
is already ensured by uk, curtailment of the flexible HVAC
load does not require re-scheduling to future periods. On the
other hand, curtailment will result in lower EV SOC before
departure. Corrective action need to be implemented and the
curtailed flexible load needs to be rescheduled. Equation (9f)
shows the auxiliary variable ck,t that is introduced to ensure
that in case of curtailment of flexible loads bid as reserve
during period k could be rescheduled to a future period t.

Equation (9g) ensures that the inputs for each period k
will be within the maximum and minimum system limits.
Rescheduled capacity from period t to current period k is also
considered.

Ancillary services are provided in the form of IL. Reserve
capacity resulting from the scheduling of flexible loads could
be considered both for system and local reserve. Equation (9h)
ensures that the increased system reserve requirements result-
ing from the installation of PV generation is supplied locally.

IV. SIMULATION RESULTS

The centralized MPC controller introduced in Section III is
tested using market data from the NEMS. Simulation results
present the effect of local reserve provision on the scheduling
of both the EVs and HVAC systems. The optimal schedule for
fixed and flexible loads is obtained solving the linear problem
in (9a) using YALMIP [14] and CPLEX [15] solver.

The schedule is obtained by running the optimization prob-
lem for a horizon of 48 half-hourly periods. The optimal
schedule for current period k is implemented and the opti-
mization parameters are updated. Flexible loads are bid as
IL after the local PV reserve requirements are fulfilled. This
is repeated before the beginning of each market period. The
MPC controller ensures a feasible solution over the entire
prediction horizon considering all state, input and local reserve
constraints.

A. Aggregator scheduling considering local reserve

The simulation is run considering provision of local reserve
to cater for a 60% error of the total PV output i.e. α = 0.6.

(a)

(b)

Fig. 3. Aggregator consumption and local PV generation schedule

(a)

(b)

Fig. 4. Zone temperature (a) and thermal disturbances (b)

Figure 3(a) shows the total carpark and building load consid-
ering the energy and reserve prices for 48 half-hour market
periods given in Fig. 2(a) and 2(b). Figure 3(b) shows the
proportion of PV generation consumed locally and the export
to the grid. It can be seen that consumption is minimized and
export of local generation is maximized during high priced
periods.

Figure 4(a) shows the zone temperatures for both curtail-
ment and non-curtailment of flexible loads considering the
zonal thermal load given in Fig. 4(b). It can be seen that
the optimal schedule for both trajectories ensures the zone
temperature to be within the upper and lower limits.

Schedule for fixed and flexible loads for the carpark and
the building HVAC system are given in Fig. 5(a) and 5(b)
respectively. It can be seen that in general EV are more flexible
than HVAC systems. EVs are scheduled such that they benefit
not only for charging during low priced periods but also during
periods with high reserve prices. On the other hand, the main
reason for lower flexible load scheduling for HVAC is that
the trajectory that minimizes the operating cost is very close
to the upper temperature limit. The HVAC system will only
consume more energy and deviate from this trajectory when
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Fig. 5. Total carpark (a) and building (b) fixed and flexible load schedule

Fig. 6. Local PV forecast and reserve provision by load aggregator

if either the energy price for the subsequent periods is high or
revenue for participation as IL is high.

Figure 6 show the flexible load that is schedule to provide
ancillary services in the form of IL. The load aggregator gets
compensation for providing this flexibility. The capacity bid as
reserve is curtailed automatically when the system frequency
reaches the minimum threshold. The MPC controller ensures
curtailment of these loads will not result in violations of EVs
charge requirements and dwellers comfort.

B. Effect of local reserve provision on aggregator operation
cost

Figures 7(a) and 7(b) show the effect of different local
reserve requirements in the total system cost and the incentives
received for participation as IL. The simulation is run consid-
ering the same inputs as in Section IV-A. The base case is run
considering α = 0 i.e. relaxation of constraint (9h). Values of
α are then increased to consider local reserves for up to 100%
of the total PV forecast and results are normalized with respect
to the base case. An increase in the total aggregator cost is
observed, this is due to the reduction in the incentives obtained
by the aggregator and also to the increase in consumption
during high priced periods.

Results for the proposed system show that provision of local
reserves to support loss of up to 40% of the total PV generation
will result in an increase of about 1% in the total aggregator
cost.

V. CONCLUSION AND OUTLOOK

This paper suggests a method to minimize the total oper-
ation cost of an aggregator consisting of a combination of
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Fig. 7. Normalized aggregator cost (a) and incentives (b) considering dif-
ferent local reserve requirements

EVs, building HVAC system and local renewable generation.
Participation in the wholesale electricity market is considered
and an MPC scheme is devised. A consumption schedule
is given to minimize the total cost of the system. Fixed
and flexible loads are scheduled based on the energy and
reserve price, flexible loads are considered for ancillary service
provision.

The aggregator receive incentives for bidding reserve ca-
pacity as IL. Possible mismatch between the forecast and the
actual renewable generation was considered and the effect of
local reserve provision in the total aggregator cost was studied.
Simulation results show that provision of local reserves to
support loss of up to 40% of the total PV generation will
result in an increase of about 1% in the total aggregator cost.

Future work will focus in a robust formulation of the MPC
scheme considering load uncertainties and the cost of reserve
provision in reference to user preferences.
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