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Abstract—On-demand transit has significantly changed the
landscape of personal transportation. Even traditional public
transit is being overhauled by employing similar strategies,
leading to the introduction of new services such as on-demand
public transit (ODPT). ODPT links a geographical area using a
fleet of vehicles that operate with flexible routes and timetables as
opposed to its’ fixed route and timetable counterparts. Further,
strict regulations on reducing the carbon footprint has enforced
transport operators to rely on electric vehicle (EV) fleets in
public transit. However, in addition to the requirement to
compute routes and schedules in real-time for ODPT services,
EVs also impose constraints due to reduced driving ranges. This
necessitates highly responsive real-time algorithms to cater for
the significantly larger number of computations. To this end, we
propose a hybrid methodology, which exploits parallel computing
techniques using a clustering algorithm to decompose a large
problem into smaller sub-problems, which are subsequently
solved using a genetic algorithm. The result obtained from this
step is used as an initial solution in a global optimization stage
to further improve the quality of results. Experiments using the
actual road network show that the proposed method not only
improves speed of computation but also the quality of results
compared to the state-of-the-art.

Index Terms—genetic algorithm; shortest path; intelligent
transportation systems; electric vehicles; vehicle mile traveled;
hybrid systems; modelling

I. INTRODUCTION

On-demand transit has drastically changed over the past
five years in comparison to its earlier variants, which focused
on para-transit services for the elderly and disabled. Nowa-
days, passengers and drivers are connected through mobile
platforms, which enables real-time on-demand transit services
such as UberX [1]. Moreover, technology has enabled services
such as UberPool that allow multiple (1-2) passengers to share
a ride in a vehicle without violating estimated arrival time at
destination of co-passengers. Further, it has resulted in novel
on-demand public transit (ODPT) services where traditional
fixed route public transit is replaced with on-demand buses.

Typically, in ODPT, buses respond in real-time to the point-
to-point transit requests of passengers by providing pick-up
and drop-off services at designated bus stop locations. ODPT
is provided in selected geographical areas, typically, during
off peak hours [2]. In general, these services set a constraint
on maximum travel time of a passenger request to ensure that
the user-experience of the service is maintained [3]. Within
these constraints, the operator strives to minimize the vehicle

miles traveled (VMT) to ensure the profitability of the service
resulting in a real-time combinatorial optimization problem.

However, unlike the private transit services that allow lim-
ited sharing of rides, ODPT services allow a large number
of passengers to share a single ride. Also, a significantly
higher number of passengers request for the service. Thus, it is
necessary to perform a large number of computations in order
to optimally allocate vehicles to passengers and to schedule
pick-up of the allocated passengers in a vehicle. Therefore,
almost all ODPT services impose a deadline before the start
of the service to compensate for the significantly high runtime
of the scheduling algorithms. The deadline can be a few hours
before start of service for a guaranteed seat or a few minutes
which does not guarantee a seat [4]. Therefore, responsiveness
of the algorithm is of significant importance in ODPT.

Additionally, the growth in the adoption of alternative fuel
vehicles [5] such as electric vehicles (EV) for public transit
fleets have enforced further constraints on the operator. Due to
the high infrastructure cost required for fast or rapid charging
of EVs, operators are forced to tolerate the large downtimes
and limited driving range. Thus, in addition to managing the
ODPT service, a fleet of EV imposes an additional constraint
of limited driving range. Hence, EV-based ODPT services
have been preferred for high frequency but relatively short
distance first/last mile transit [6], deployed in resort islands [7],
universities [8], industrial estates [3] etc.

However, as shown in Section II, existing works on schedul-
ing EV for ODPT is limited to low capacity sharing of rides or
low number of passenger ride requests, which can potentially
be used only in rural areas or off-peak hours. Thus, the re-
sponsiveness of these algorithms for high capacity deployment
has not been validated. Hence, we identify a need to develop
a methodology that provides near-optimal schedules for EV-
based ODPT in near real-time. To this end, the contribution
of this work is a hybrid methodology, which exploits parallel
computing techniques using shortest path based clustering to
decompose a large problem into smaller sub-problems, which
are subsequently solved using a genetic algorithm for each
cluster. The result obtained from this step is used as an initial
solution in a global optimization to further improve the quality
of results. Experimental results for an actual road network
show that the proposed hybrid method not only improves speed
of computation but also quality of results.



II. LITERATURE
The concept of on-demand transit originates from the

vehicle routing problem (VRP) proposed by Dantzig and
Ramser [9]. The VRP has been modified by introducing
numerous real-life constraints resulting in a large number of
variants. In this domain, the on-demand transit problem was
proposed by Psaraftis [10]. Initially, the problem was limited to
a single vehicle and solutions focused on exact methodologies
such as dynamic programming, integer linear programming
etc. Later, variants such as multiple vehicles and depots, time-
windows, loading and unloading criteria were introduced. Con-
sequently, solutions differed from exact approaches to heuristic
formulations such as tabu search, simulated annealing, genetic
algorithms etc.

In the large body of research, we note several works that
explicitly focus on ODPT. The works by Uchimura et al. [11],
Tsubouchi et al. [12] and Uehara et al [13] propose ODPT
services operated by small buses and/or vans, which provides
door-to-door service similar to a shared public taxi. These
services connect passengers to the inter-community express
bus service at a transit hub. However, in all the works the
proposed algorithms have been validated only for small test
instances. Also, the service requires advance reservations to
compensate for the significantly high algorithm runtime. The
additional constraints of limited driving ranges have also not
been considered in the works, which will further increase the
algorithm runtime.

Wang [14] presents a study on a last-mile transit service
with batch demands that result from passengers arriving at a
mass transit node such as a train station at the same time.
The author proposes algorithms to schedule passengers to
a fleet of multiple types of delivery vehicles that transport
passengers to their end destination with the objective of
minimizing passenger travel time (waiting time and riding
time). However, the arrival time of batch demands is known in
advance and hence real-time route and schedule computation is
not a requirement. Raghunathan et al. [15] advances the study
in [14] by proposing an integrated last-mile transit problem.
Here, authors consider multiple time-windows for arrival of
passengers on the mass transit node. Authors propose a clus-
tering heuristic and a subsequent integer linear programming
(ILP) formulation to optimally schedule the passengers such
that the total travel time is minimized. The work requires
ride requests to be received in advance to compensate for the
high runtime of the ILP. Further, authors do not consider the
additional constraints imposed by using EV.

Scheltes and de Almeida Correia [16] study a variant of
the problem in [14] by replacing conventional vehicles with
EV. However, authors only analyze a personalized EV service
and hence the complexities arising as a result of multiple
passengers sharing an EV is not considered. Zhu et al [17]
propose a dynamic path planning strategy based on a greedy
algorithm for a peer-to-peer ride-sharing service. In the ex-
periments, authors use characteristics of a Tesla model S car
with five seats and supercharger facilities. Thus, the algorithm
needs to be further verified with EV characteristics used for
public transit. Perera et al. [18] propose a genetic algorithm
to model an on-demand first mile transit service provided by
EV. The work proposes to minimize the total passenger travel

time within the driving range constraint of the EV fleet. Even
though, results show that the proposed algorithm can produce
schedules significantly quicker, it does not exploit parallel
computing techniques as that proposed in this work.

III. PROPOSED ON-DEMAND PUBLIC TRANSIT SERVICE

The ODPT service proposed in this work is based on that
in [18]. Here, we summarize the operational details of the
service. The ODPT service operates in a given geographical
area known as a zone. We assume that passengers dispersed
in a zone request for immediate rides using a mobile phone
application by indicating the pick-up bus stop. Also, we
assume that all passengers travel to a common destination
such as a train/metro station or a shopping mall in the zone.
The fleet of EV are assumed to be dispersed in the zone. EV
have the same seating capacity, driving range and are empty
when the algorithm is executed. We assume that the proposed
algorithm is executed periodically to allocate passengers to the
EV and schedule their pick-up. Here, all ride requests received
during successive executions of the algorithm are considered
as the input demand to the algorithm. Next, based on the
outcome of the algorithm, each EV visits the allocated bus
stops in the sequence specified by the algorithm to pick-up
passengers and finally arrive at the common destination. We
assume that EV can only visit the charging stations when it
reaches the destination. Thus, when performing computations
each EV needs sufficient driving range to reach the destination
after picking-up each passenger.

However, the excessive travel time of passengers compared
to a private vehicle ride to the destination is a drawback
of high capacity ride-sharing systems such as the ODPT in
this work. Here, travel time is equivalent to the addition of
waiting time for an EV and the riding time on the EV to the
destination. To mitigate this drawback, we impose a maximum
travel time constraint for each passenger request based on the
travel time to the destination from the origin under prevailing
traffic conditions. Thus, each request is constrained by a
multiplicative factor (for example 4x) of the travel time to
the destination using a private vehicle ride, which is imposed
as the maximum travel time constraint. Therefore, each rider
is guaranteed that the EV reaches the destination before the
maximum travel time constraint is reached. This multiplicative
factor is known as the quality of service (QoS) of the system.
This additional constraint will aid to uphold user-experience
of the ODPT service as well as increase its predictability. The
objective of the study is to derive a set of schedules in real-
time to minimize the total VMT of the fleet of EV. This will
ensure that operator profits are maintained while providing the
ODPT service by reducing the number of charging instances
that is required for the EV.

IV. METHODOLOGY

In this section, we present the proposed methodology for
generating routes and schedules for the fleet of EV that relies
on a cluster-first, route-second approach shown in Fig. 1.
The approach of clustering a large problem into smaller sub-
problems that can be solved independently using parallel
computing techniques can significantly improve speed of com-
putation of the algorithm. In contrast, badly selected clusters



degrade the solution quality as EV have to detour a long
distance to pick-up passengers instead of following the path
to the destination. In the proposed algorithm, the clustering
phase is a one-time offline step. In this phase, bus stops are
divided into clusters. Therefore, this step is only required if a
new bus stop or a road is added to the network. The routing
phase is executed periodically when passengers are scheduled
to the EV. Here, EV are first allocated to the clusters based
on the real demand. Also, as the objective of the study is to
minimize the VMT, it is equally important that most of the EV
are fully utilized. This will reduce the number of EV required
to serve passengers and in turn reduce the VMT. Therefore,
only the minimum number of EV are allocated to a cluster.
Thus, after clustering bus stops and allocating EV, we use a
state-of-the-art metaheuristic proposed in Perera et al. [18] to
solve each smaller sub-problem to near optimality. The genetic
algorithm (GA) proposed in [18] strives to minimize the total
passenger travel time. However, based on the objective of this
work, the code is modified to minimize the VMT. Next, any
unscheduled passengers are scheduled using the remaining EV.
Finally, the results obtained from the previous steps are used
as an initial solution in a global optimization to allow inter-
cluster exchange of passengers to improve solution quality.
Next, we describe the steps of the proposed method in detail.

Offline Phase

Online Phase

Identification of Bus Stops

Shortest Path-based Clustering of Bus Stops

Demand & Flexible Cluster based EV Allocation

Parallel Implementation of GA

GA
Cluster 1

GA
Cluster 2

GA for Unscheduled Passengers

GA
Cluster n

Unscheduled
Passengers?

Remaining
EV?

Obtain Initial Solution for all Clusters

Global Optimization with Initial Solution

Yes

No

No

Yes

Road Network of Geographical Area (Zone)

Routes & Schedules for the Fleet of EV

Fig. 1: Proposed Methodology

A. Shortest Path-based Clustering

The input to the offline phase consists of the road network
of the selected geographical area. Next, bus stop locations are
identified and the GPS coordinates are extracted. Thereafter,

a clustering algorithm is used to decompose the problem into
smaller sub-problems. In general, clusters are formed based
on the shape of the zone. For example, k-means clustering
finds clusters that are spherical and k-medians clustering
finds clusters that look like diamonds [19]. Thus, traditional
clustering techniques are not suitable for ODPT services such
as the one presented in this work. Therefore, existing works
use a variant of the sweep algorithm [20] to generate clusters.
However, as the sweep algorithm works with polar angle,
the clusters generated using the algorithm in a road network
may include paths which require significant detours. Thus,
we propose shortest path based clustering of bus stops. Also,
since this is an offline phase, the runtime does not deter the
responsiveness of the algorithm. The technique for generating
clusters based on the shortest path is explained subsequently.

Initially, we obtain the shortest path data from Open Source
Routing Machine [21] by providing the GPS coordinates of
the bus stops and the destination. After obtaining all route
data, it is converted to a tree data structure. Here, the root
of the tree represents the destination, the branches represent
waypoints (junctions in the road network) along the route to
the destination and the leaf nodes represent the bus stops. Thus,
traversing the tree from a leaf node to the root shows the route
an EV requires to take in order to reach the destination. Thus,
multiple bus stops which coincide on the same shortest path,
with only the distance from the last waypoint to the bus stop
differing, will overlap in this data structure. These stops are
formed into clusters which will reduce the VMT of the EV.
However, if a bus stop is located along the shortest path of
multiple other bus stops, they are excluded from the tree and
kept in a separate list which is allocated to the final clusters
based on the demand during the online phase. These are termed
as bus stops that belong to flexible clusters.

The formulation of clusters is explained using the road
network shown in Fig. 2. Here, the black dots show the bus
stops and the purple triangle at the bottom left shows the
destination. There are 24 bus stops in the selected zone. The
constructed tree of the bus stops is shown in Fig. 3. Here, the
number at the leaf node represents bus stops directly connected
to the waypoint. We identify 3 clusters as shown in Fig. 3 that
have 5, 8 and 7 bus stops each. Cluster 1, which has 5 bus
stops is shown in Fig. 2 outlined with a black ellipse. They are
all connected to the same waypoint and have the same shortest
path from the waypoint. In addition, we identified 4 bus stops
that have been grouped into flexible clusters.

B. EV Allocation to Clusters

In this step, the EV are allocated to the clusters based on
the real demand. The pseudo code of the algorithm used for
allocation is given in Algorithm 1. Initially, in Algorithm 1,
the demand is aggregated and the minimum number of EV
required for each cluster is computed (line 2-3). Then, the
required number of EV, which are nearest to the cluster center
(center of the GPS coordinates) is allocated (line 4). This is
repeated for all the clusters. At the end of the first stage of
allocation, we compute the remaining seating capacity of each
cluster (line 5). Then, passengers at bus stops that belong to
flexible clusters are allocated such that the number of EV used
is minimized (line 9). However, if the capacity is insufficient



Cluster 1

Fig. 2: Road Network of the Zone

X

X

X X

XX X X

4 1 7 X 3 X

4X

X

1

Cluster 1

Cluster 2

Cluster 3

Fig. 3: Tree of the Bus Stops

new EV are allocated from the fleet (line 10). At the end of
EV allocation, we use Open Source Routing Machine [21]
to generate the distance and time matrices required for the
GA. Here, the OSRM Route Service API is used to obtain the
distance and time matrices of the fastest route by providing the
GPS coordinates of the bus stop, EV locations and destination.

Algorithm 1 Pseudo Code of the EV allocation algorithm

Input: Clusters of Bus Stops, Demand at Bus Stops, Bus Stop
and EV Locations

Output: Final Clusters with Passengers and EV
1: repeat(
2: aggregate demand of passengers
3: calculate the minimum number of EV required
4: allocate EV nearest to the cluster centre
5: compute the remaining capacity
6: )
7: until final cluster
8:
9: allocate passengers at bus stops with flexible clusters

10: if (insufficient capacity) allocate EV from the fleet

C. Parallel Implementation of the GA

The next step in the method relies on the modified GA,
which is executed in parallel for each cluster. As mentioned,
we modify the algorithm in [18] to optimize for reducing
VMT. Also, the work in [18] considers that all passengers are
served by the EV. However, in this scenario, we modify the
GA such that it only schedules the passengers that meet the
constraints. Later, all unscheduled passengers are scheduled
using the remaining EV. The output of this step consists of
the schedules of the allocated EV in each cluster and the list
of unscheduled passengers if any.

Main steps of the GA are explained here for clarity. GA
is a multi-population algorithm. The algorithm starts with a
pool of initial solutions that are generated using local search
techniques and random allocation. Each solution in the solution
pool, termed a chromosome consists of the schedule for the
EVs. Fitness value of a chromosome represents the quality
of the solution. Thus, a chromosome with a higher fitness
value implies the schedule of the EVs are superior (less VMT)
in comparison to a chromosome with a lower fitness value.
The GA strives to minimize the VMT of a chromosome by
performing genetic operations, namely mutation and crossover.
However, certain chromosomes are selected from the solution
pool prior to performing genetic operations. A roulette wheel
based selection strategy is used for selection. After genetic
operations, the suitable subset of candidates are selected for the
next iteration of the algorithm. This process is repeated until
the termination criteria (a predefined number of iterations) is
satisfied.

D. Implement GA for Unscheduled Passengers

In this step, unscheduled passengers of all the clusters
are scheduled using the GA. However, if all passengers are
scheduled or if all the EV are used at the initial allocation
step, the algorithm advances to generate the initial solution.

E. Generate the Initial Solution

The initial solution consists of the schedules for all EV in
the given problem. It is generated by combining the solutions
obtained in each cluster and the solution for unscheduled
passengers if any. It is noteworthy that the initial solution
obtained at this step also gives a feasible solution for the
ODPT service. However, we perform another step to optimize
the schedules since clustering can degrade the solution quality.

F. Global Optimization to Improve Solution Quality

In the final step of the method, the initial solution is used
as an input with the large problem to the GA used in [18].
Therefore, at this step the GA can perform any inter-cluster
optimizations which are not possible in the earlier step as the
problem is decomposed into small sub-problems. Further, as
we provide an initial solution to the large problem, runtime is
not affected by performing this step. The output of this step
gives the final schedules for the fleet of EV.

V. RESULTS

In this section, we present the experimental results of the
proposed method. Initially, we explain the selected geograph-
ical area followed by the experimental parameters. Then, we



discuss the comparison strategy. Finally, we show the results
obtained for runtime and VMT of the fleet of EV. The method
proposed in Section IV is implemented in C++. The runtime
is measured on a PC with 16 GB RAM, running Windows 7
Professional on an Intel Xeon E5-1650V2 CPU at 3.50 GHz.

A. Geographical Area (Zone)

As mentioned in Section I, EV-based ODPT services are
used for frequent trips in areas where existing traditional public
transit penetration is relatively low. Therefore, we select two
zones for the experiments, which display such characteristics.
In both zones, the nearest train/metro station is selected as the
common destination of the ODPT service. The first zone is
selected surrounding a University. The other zone is a large
residential area. A University generally has a high population
density and typically provides fixed route shuttle services to
the nearest train/metro station. Thus, it is an ideal platform to
validate the ODPT service. The residential area is selected as
a proof of concept that ODPT services should not be restricted
to specific zones. Table I indicates the number of bus stops,
clusters and bus stops with flexible clusters in the selected
zones.

TABLE I: Output of the Offline Phase

Geographical area Bus stops Clusters Bus stops with flexi-
ble clusters

Zone 1 45 3 12
Zone 2 36 3 14

B. Experimental Parameters

Experimental parameters used for performance evaluation of
the ODPT service is given in Table II. The parameters in the
setup consists of number of passengers and EV, the capacity
and driving range of EV, and QoS. The number of passengers
in the experiments are chosen based on the real demand that is
observed on fixed route transit services using historical data.
EV characteristics are based on the parameters used in [18].
QoS parameter indicates that each passenger is guaranteed to
reach the destination within 4 times the travel time to the
destination using a private vehicle. For example, if the travel
time to the destination from the location of the bus stop is 6
minutes, maximum travel time constraint of the passenger will
be 24 minutes. Also, in the experiments, passengers and EV
are randomly distributed in the zone. Thus, some bus stops
contain multiple passengers while some will be empty.

TABLE II: Values of the Parameters

Parameter Test Case Number
1 2 3

Number of Passengers 60 90 120
Number of EV 10 15 20
EV capacity 8
EV driving range 30 km
QoS 4x

C. Comparison Strategy

In order to evaluate the benefits of the proposed method in
terms of runtime and quality of results, we use 2 versions of

TABLE III: Parameters of the GA

Parameter Method
Proposed SOA V1 SOA V2

Population 50 50 1000
Iterations 100 100 5000

the GA proposed in [18] (henceforth referred as the state-
of-the-art (SOA)). The runtime of the proposed method is
compared with the SOA by using identical parameters. To this
end, we implement the GA with a population size of 50 and
100 iterations (SOA V1). The solution quality is compared
with an instance of the SOA by implementing the GA with
a population size of 1000 and 5000 iterations (SOA V2).
Parameter values have been tuned using the generate and test
principle [22]. This provides baseline results for comparison.
In addition, the result obtained in SOA V1 is also used to show
that the proposed method not only improves runtime but also
quality of the solution. Table III depicts the parameters used
in the 3 methods.

D. Performance Evaluation

Here, we present results of the 3 experiments in the two
zones. Initially, we show the distribution of passengers among
the clusters in each experiment. Next, the runtime is compared
with the SOA V1 method. Finally, we show the VMT from the
solution obtained from the proposed method and compare it
with SOA V1 and SOA V2 methods. Here, a comparison with
the former method shows the improvement of the solution and
the latter shows the deviation from baseline results.

TABLE IV: EV and Passenger Distribution

Zone Test Case
Number

{EV,Passenger} tuple for Cluster Number

1 2 3 Unscheduled

Zone 1
1 1,6 5,35 3,19 -
2 3,21 6,46 3,23 -
3 2,15 8,64 6,41 1,2

Zone 2
1 2,15 4,25 3,20 1,2
2 3,22 6,43 4,25 1,8
3 5,38 6,45 5,37 -
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Fig. 4: Runtime Comparison of the Algorithm

Table IV shows the EV and passenger distribution of the
experiments. Results show that cluster 2 in zone 1 is crowded
compared to the others. In zone 2, passengers are uniformly
distributed. Also, the number of unscheduled passengers in
the initial step is higher in zone 2. This is mainly due to the
large geographical area of zone 2, which increases the travel
time between the bus stops that leads to failed travel time
constraints.

Figure 4 shows the runtime comparison between SOA V1

and the proposed methods. The horizontal axis in the graph
shows the test case number while the vertical axis shows the
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Fig. 5: VMT of the fleet of EV

runtime in seconds. Here, we observe that in both zones the
runtime of the proposed algorithm is in the same order as
the SOA V1 method. In fact, in 4 test cases the runtime of
the proposed method is superior. However, as we observe
in Fig. 5, the proposed algorithm generates schedules which
are significantly superior to SOA V1 method without com-
promising the runtime. Figure 5 shows VMT of the EV fleet
from the 3 methods. Here, the horizontal axis shows the 3
methods, namely SOA V1, proposed and SOA V2 respectively.
The vertical axis shows VMT in km. We observe an average
7.6% improvement of the quality of results compared to SOA
V1 and an average deviation of 6.6% compared to the SOA V2

(baseline).
VI. CONCLUSION

This work proposes a hybrid methodology for scheduling
an ODPT service, which links a geographical area using a
fleet of EV that responds in real-time to point-to-point transit
requests of passengers. The problem incorporates finding the
schedules of the EV fleet that minimizes the VMT under
various constraints. In comparison to the state-of-art, we pro-
pose a method to decompose a large problem into small sub-
problems by using a shortest path based clustering algorithm
and subsequently generate schedules for each cluster using a
GA. Finally, a global optimization is performed to mitigate the
impact of clustering. Experiments on two geographical areas
prove that the proposed algorithm can significantly improve
the quality of results without compromising on the runtime.
In future, we plan to derive algorithms for moving passengers
from a common origin to multiple destinations. Also, we plan
to extend the work to consider city-wide deployment of ODPT
services that requires to identify profitable clusters in real-time
in order to implement the proposed algorithm.
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