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Abstract—Demand responsive transit (DRT) services have
significantly evolved in the past few years owing to develop-
ments in information and communication technologies. Among
the many forms of DRT services, demand responsive bus
(DRB) services are gaining traction as a complimentary mode
to existing public transit services, especially to dynamically
bridge the first/last mile connectivity. Simultaneously, the stern
regulations imposed by regulators on greenhouse gas emission
have enforced electric vehicles (EV) to replace conventional
vehicles. However, state-of-the-art (SoA) work proposed to
generate routes for EV-based DRB services are inhibited by
the low number of ride matches and the excessively high
computation time of the algorithms deeming them unsuitable
for real-time computations. To this end, we propose a genetic
algorithm for dynamic scheduling of EV in a DRB service that
reacts to first mile ride requests of passengers. In addition, we
also formulate an optimal mixed integer program to generate
baseline results. Experiments on an actual road network show
that the proposed GA generates significantly accurate results
compared to the baseline in real-time. Further, we analyze the
benefits of rescheduling passengers and flexible estimated time
of arrival of EV to optimize the total travel time of passengers.

I. INTRODUCTION

Digital revolution has paved the way for novel business
models. Even public transportation, which has traditionally
relied on fixed routes and schedules, is undergoing a tremen-
dous transformation from entirely new ideas. For example,
demand responsive transit (DRT) services with flexible routes
and schedules that connect riders to drivers, through a mobile
platform have become a common practice. Typically, in a
DRT system riders use their smartphone to request a ride
by indicating their origin, destination, intended pick-up/drop-
off time and the vehicle type. The service provider strives
to match the ride requests with the available vehicles and
allocates them to the riders, thereby facilitating ride-sharing
with co-riders. After the allocation, the estimated time of
arrival (ETA) of the vehicle is communicated to the rider,
while the new routes are updated in the vehicle.

The different variations of DRT services in operation [1]
are broadly classified into static and dynamic DRT services
based on the temporal scheduling capability. In a static DRT
service, all ride requests are known beforehand. Thus, match-
ing passengers and allocating vehicles can be processed
off-line. These services do not allow real-time changes to
the routes even though they are still flexible based on the
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received advance requests. In contrast, in a dynamic DRT
service, ride requests must be scheduled in real-time. There-
fore, real-time scheduling and routing algorithms must be
developed to match passenger requests to available vehicles.

Dynamic DRT services have been typically used to sat-
isfy the point-to-point transit requests of passengers. For
example, services such as Uber which has been in operation
since the inception in San Francisco, California in 2011 [1]
typically match 2 - 3 passengers going in the same direction
to a single vehicle. Lately, another variant of a dynamic
DRT service [2] typically known as demand responsive buses
(DRB), which match multiple passengers to a single vehicle,
has gained traction as a complementary mode to enhance the
user experience in public transit by extending its penetra-
tion through improved first/last mile (FM/LM) connectivity.
DRB provide transit services to passengers with common
origin/destination such as large-scale industrial estates with
multiple co-located companies, universities and residential
buildings in a neighborhood where the population density
is significantly high and public transit penetration is low.
Thus, in addition to the real-time computation requirement in
algorithms, DRB services also need to ensure responsiveness
for the relatively high number of passenger requests.

At the same time, stern regulations imposed on greenhouse
gas emission by vehicles [3], has made electric vehicles (EV)
a popular alternative mode of transit. Thus, works have stud-
ied the impact of EV-based point-to-point DRT services [4].
However, the limited driving range and high downtime
during charging of the EV pose additional constraints on
service providers, which restricts EV being considered as a
mainstream mode in public transit. Hence, managing EV-
based DRB services is a hot research topic.

To this end, our previous work proposes an EV-based
DRB service that connects passengers in a neighborhood to
the nearest rapid transit node and vice versa [5]. However,
in [5], dynamic passenger requests are mapped to a series
of periodic static requests. Thus, it does not allow real-time
route changes, which is the main characteristic of a dynamic
DRT service. Therefore, the proposed work advances the
state-of-the art by incorporating dynamic passenger requests
and passenger rescheduling to optimize the total travel time
of passengers. Further, we consider a fleet of EV with
disparate driving ranges and seating capacities. Hence, the
major contributions of this work are (i) a genetic algorithm
(GA) that generates near-optimal results in real-time for a
dynamic DRB service (ii) an optimal mathematical formu-
lation to model the proposed EV-based DRB service which
generates baseline results for comparison and (iii) an analysis
of the impact of rescheduling passengers.



II. RELATED WORK

The problem of matching passengers and allocating vehi-
cles in a DRB service stems from the vehicle routing problem
(VRP). Earliest literature on the VRP considered the static
case with a fleet of m homogeneous vehicles originating at a
single depot, serving requests of n passengers. However, with
the growth of computational capabilities and technological
advancements, many variants of the VRP such as hetero-
geneous fleets, multiple depots, dynamic passenger requests
etc. have been studied [6], [7]. Hence, in this section, we
provide a brief overview of important literature on DRB
services and highlight the limitations.

Uchimura et al. [8] propose a DRB service operated
by small buses and/or vans, which provides door-to-door
service. This service connects passengers to the inter-
community express bus service. A similar DRB service is
proposed by Tsubouchi et al. [9], where authors show the
validity of the proposed service and the algorithms by eval-
uating it in three cities in Japan. However, in both instances
the proposed algorithms have been validated only for small
test instances. Uehara et al. [10] propose a hierarchical DRB
service to improve the service quality of public transit in city
area and its suburbs. However, the system requires advance
reservations, thus it addresses only the static problem.

Wang [11] present a study on a last-mile transit system
with batch demands that results from passengers arriving at
a mass transit node such as a train station or bus stop. The
author proposes algorithms to schedule passengers to a multi-
vehicle fleet of delivery vehicles that transport passengers
to their end destination with the objective of minimizing
passenger waiting time and riding time. Raghunathan et
al. [12] advances the study by Wang [11] by proposing an
integrated last-mile transit problem. The authors propose a
clustering heuristic and a subsequent integer linear program-
ming (ILP) formulation to optimally schedule the passengers
such that the total travel time (waiting time and riding time)
is minimized. However in both works, the arrival times of
batch demands and ride-requests are known in advance and
hence, the problem can be generalized to a static case.
Scheltes and de Almeida Correia [13] study a variant of
this problem by replacing conventional vehicles with EV.
However, the authors only analyze a personalized EV system
and hence the complexities arising as a result of multiple
passengers sharing an EV is not considered.

Archetti et al. [14] study a large scale DRB service, which
satisfies point-to-point transit requests of passengers. The
proposed DRB service has flexible routes and bus stops. It
schedules dynamic ride requests with a lead time of 10 min-
utes. Authors test different scenarios using realistic origin-
destination locations and demand patterns in a one-hour time
horizon. Also, authors study the impact of lead time, size of
vehicle fleet, number of passenger requests etc. on the travel
time of ride requests. They compare the obtained results
against the travel data from private vehicles and public transit
using simulation studies. However, in comparison to our
work, which uses EV, authors use conventional vehicles and
do not reschedule passengers.

III. OPERATION OF THE DRB SERVICE

We envision that passengers in a neighborhood traveling
to a common destination such as a train station, request for
the DRB service for immediate rides using a smartphone
application. The fleet of EV that provide the DRT service are
assumed to be dispersed in the neighborhood either already
serving passenger requests (non-empty) or in an idle state
(empty) ready to be deployed. All ride requests are logged
in a centralized database and served periodically. We assume
that the database is updated in real-time with the available
seats, remaining driving range, GPS location etc. of the fleet
of EV. Next, using this data, an optimization algorithm is
executed, which in real-time matches the passengers to the
fleet of EV and outputs the routes. Finally, each passenger
is communicated the ETA of the EV.

Following assumptions are considered in the operation of
the DRB service. (1) The driving range of EV is directly
measured by the vehicle miles traveled (VMT) irrespective
of the loading and tropical weather conditions. (2) EV in
idle state can visit the charging stations. Hence, empty EV
with scheduled passengers or non-empty EV can visit the
charging stations only after it reaches the destination. (3)
Quality of service (QoS) for all passengers is guaranteed by
a maximum travel time (waiting time for the EV + riding
time). QoS is calculated as the multiplicative factor of the
travel time from the origin to the destination under prevailing
traffic conditions using a single occupancy vehicle (SOV).
For example, a QoS value of Nx implies that each passenger
will be ensured that the upper bound on the travel time will
be N times the travel time compared to a SOV. (4) Objective
of the optimization algorithm is to minimize the total travel
time of the passengers whilst satisfying all the constraints.

Dynamic operation of the DRB service is explained below.
We assume that in a practical scenario there are passengers
who have been already allocated to an EV but still not
picked-up due to the shorter scheduling period compared to
the ETA. This is illustrated in Fig. 1 using two instances of
a passenger request. Assume, that the request is logged at
Ty and the optimization algorithm is executed at 73. Then,
the passenger is scheduled to be picked-up at 75 with an
ETA (15 — T}). However, at Ty when the next instance of
the optimization algorithm is executed, the EV, which is
scheduled to pick-up the passenger has still not arrived and
the remaining ETA is (15 —T%»). Thus, at T, the optimization
algorithm will be executed not only on the requests logged
between 77 and 75 but also on passengers who have not
been picked-up. Thus, the DRB service can dynamically
reschedule the passenger (with an increased ETA but with
the same QoS) to optimize the total travel time.

Passenger Scheduled
Request Pick-up Time
I ETA (T;-T)) t
il Time
Ty T, T,
] ETA (T;—-T,) 1
Time
T, T T

Fig. 1: Illustration of Dynamib Passenger Rescheduling



IV. METHODOLOGY
A. Problem Formulation
Assume that when the optimization algorithm is executed

at T, there are v EV denoted by A to serve p passenger
requests denoted by (2 traveling to the destination denoted by
©. Passenger requests (£2) are classified as 2 = 2, UQ5UQ3,
where €); denote picked-up passengers, {22 denote reschedu-
lable passengers and 23 denote new passengers. Also, p; =|
Q |, p2 =| Q2 | and p3 =[ Q3 |, where p = p; + p2 + ps.
At T, passengers in set 2o U 23 (II) are scheduled. This
is defined using a weighted graph G = (9, E), where ®
defines all the nodes and £ all the valid edges. G contains
v+ p2+p3+ 1 nodes (P), where nodes 1,2,3,--- , v refer to
the fleet of EV (A), nodes v+1,v+2,v+3,--- ,v+ps+p3
refer to the set of passengers to be scheduled (IT) and node
v + p2 + p3 + 1 refers to the destination (©). Further, each
edge < 7,j > has an associated weight < ; ;,d; ; >, which
denotes the travel time and shortest distance between the two
nodes ¢ — j respectively. Further, all possible nodes where
a valid edge < 4,j > can terminate is denoted ¥ (P\A).

The constraints of the model consist of EV constraints,
(1) the seating capacity (l,), (ii) driving range (r,) and
(iii) maximum remaining travel time (rtt,); and passenger
constraints, (i) QoS measured by the maximum travel time
(up) and (ii) estimated time of arrival of an EV for each
passenger in €25 (ep,). Even though EV does not directly have
a travel time constraint, as passengers are picked-up (£21),
each passenger will indirectly impose a maximum remaining
travel time on the EV (as a result of u,, a travel time con-
straint is transferred to the EV when the passenger is picked-
up). Hence, when executing the optimization algorithm, a
maximum remaining travel time constraint is considered for
non-empty EV. Waiting time of a passenger from II and the
travel time (waiting time + riding time) of a passenger from
O, till Ty is defined by w, and tt, respectively. We define
rescheduling ratio (R) as pa/(p2 + p3) and ETA flexibility
window (F') as the additional time the ETA can be increased
for passengers in {2s.

We define a two dimensional binary array (m,), which
indicates the EV that has picked-up each passenger in €2; and
a variable (M), which shows the total number of passengers
picked-up by each EV until 7. Also, we define a binary
variable x;;,, given in Eq. 1 for each {edge, EV} tuple
{< 4,7 >,v}, where i # j, i # v+ps+p3s+1&
j #1,2,3,--- ,v; denotes if EV v travels along the edge
< 4,7 > from 7 to j. The integer variable s;,, given in Eq. 2
is defined for each {node, EV} pair {i,v}, denotes service
time of node ¢ by v. Table I summarizes the terminology.

1, EV v travels along edge ? — 7,
Tijo = . (D
0, otherwise.
f, EV v services node i, feZt,
Siv = . (2)
0, otherwise.

B. Proposed Genetic Algorithm
Block diagram of the proposed GA is given in Fig. 2.
Here, we explain the modules in detail.

TABLE I: Terminology

Term Description
[} set of all nodes
A set of EV nodes
Q set of all passenger nodes
)4 set of termination nodes
© destination node
(o1 set of picked-up passengers
Qg set of reschedulable passengers
Q3 set of new passengers
II set of schedulable passengers (22 U 23)
v vth BV
P pth schedulable passenger
) node i
< t,j > | edge from node i — j
ti,j travel time of edge < 4,5 >
di,; shortest path distance of edge < ¢,7 >
Iy seating capacity of vt EV
T driving range of v** EV
rity maximum remaining travel time of vth BV
Up maximum travel time of pth passenger (QoS)
ep ETA of an EV at pt" passenger from Qo
Wwp waiting time of a passenger from IT
ttp travel time of a passenger from 21
R rescheduling ratio
F ETA flexibility window
Mpy vector for picked-up passengers
My, total picked-up passengers in v*" EV
Tijo vector indicating the EV which picks up passengers in II
Siv time v*" EV reaches node 4 (service time)

1) Encoding & Initial Population Generation: Each pas-
senger (gene) is represented using integer encoding. A sin-
gle solution (chromosome) from the solution pool gives a
valid schedule for all the EV and is shown in path based
representation. This classification is shown in Fig. 3 with
an example of 10 passengers from set II and 3 EV. Chro-
mosomes are generated by modifying local search heuristics
in [5]. Features such as shortest distance, travel time, max-
imum/minimum remaining driving range/capacity etc. are
used to allocate passengers to EV. Also, random allocations
are used to ensure diversity in the population.

2) Fitness Evaluation: Fitness of a chromosome is mea-
sured using Eq. 3, which minimizes the total travel time of
all passengers (£2). Here, the two terms correspond to the set
of schedulable passengers (II) and the set of picked-up pas-
sengers ({27) respectively. Total travel time for schedulable
passengers (II) is equal to the summation of waiting time
of each passenger (w,,) and the time the EV which picks up
the passenger (z;;,) reaches the destination (se,). The total
travel time for picked-up passengers (£21) is equal to the
summation of the travel time of a passenger (¢t,) and the
time the EV which picked-up the passenger (m,,) reaches
the destination (sg,) after picking up other passengers.

Z Z Z Tijo * (591) + wz) + Z Z Mypy * (391; +ttp);

i€l jeP veEA pEQ VEA
3)

3) Genetic Operators: After selecting parents based on
the Roulette wheel method, genetic operators are performed
to improve the solution quality. Mutation helps to explore
new states and avoid local optima. Crossover improves the
average quality of the population. Specialized genetic opera-
tors based on the encoding scheme are used for fast conver-
gence and maintaining diversity in the solution space [15]. In
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the mutation phase, we use two operators, namely insertion
mutation and exchange mutation [16]. For each operator, we
generate two offspring based on reducing total travel time
and also the ETA. ETA based offspring generation helps to
improve the travel time of rescheduled passengers. Similarly,
in the crossover phase, we use the heuristic crossover and re-
insertion crossover operators [16]. In both cases, we generate
offspring by random selection of genes as well as selecting
the gene with the lowest fitness. In the heuristic crossover,
genes from each chromosome are swapped between them
while in the re-insertion crossover, the gene with the lowest
fitness (passenger with highest travel time) is moved and
re-inserted into the path of the other chromosome. Both
operators are iterated to generate multiple offspring.

4) Offspring Validation: Offspring are validated for EV
and passenger constraints given in Sect. IV-A. An offspring
that violates the constraints is removed from the population.

5) Population Selection: Here, the fittest chromosomes
are retained to maintain a constant population size.

6) Termination: The iterative process is terminated if
consecutive iterations of the GA do not improve the solution
quality. Finally, the fittest chromosome (best solution) is used
as the set of routes, which minimize the total travel time.

C. Baseline Result Generation
Baseline results are generated using an optimal mixed

integer program (MIP). We use the same objective as given
in Eq. 3. The constraints of the model are given below.

Zmij” =0 Vie A, YveA; where i#v; (4)

jen
Teju =0 Vjed, Vve A, 5)
Tive =0 Vi ell, Vv e A; (6)
Zijp =0 Vie A, VjeA YveA; @)
> wijy=1 Vi€ A; where M;#0; (8)
JEW
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D wy <1 VweN; (10)
jen
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JeEI i€l
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i€d jed
in@v <1 YveA; (13)
i€ll
S> mijy=1 Viell (14)
JEPVEA
Sy =0 Vie A, Yvoe A; where i=v; (15)

ZL’ijU(Sw -+ tij - Sjv) <0 Vie (@\@),V‘] € (I),VU c A;

(16)
Sey >0 Vv e A, 17
SN wije <ly— M, Vv €A (18)
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D> wijurdi <y Vo€ A (19)
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soy < rtt, Yv € A; where M, #0; (20)
Sev * Tijoy Su; Viell, Vjew, YveA; [@2))
Siv < e+ F VieQy YveA, (22)

Valid routes always originate from EV nodes. However, a
route of a particular EV originates from the node representing
it. This is validated in Eq. 4. Equation 5 prevents edges
originating from the destination node. Similarly, Eq. 6 and
Eq. 7 prevents an edge terminating at an EV node. Equation 6
validates such edges originating from a passenger node while
Eq. 7 validates the same for nodes originating from other EV
nodes. Equation 8 allows EV with picked-up passengers to
either travel to a passenger node (to pick-up new passengers)
or to the destination (in case of new passengers not assigned).
Equation 9 prevents loops at passenger nodes. Equation 10
ensures that the minimum number of EV are used to serve



passengers. Equation 11 states that the sum of all EV that
leave their respective origins should be equal to the sum
of all EV that reach the destination. Equation 12 validates
that each passenger node should have a valid incoming edge
and an outgoing edge. This states that an EV arriving at a
passenger node should always leave it. Equation 13 ensures
for all EV that at most there is only one outgoing edge from
a passenger node to the destination. Equation 14 validates
that only one EV will serve a single passenger. Equation 15
initializes the service time of all EV. Equation 16 models the
travel time between valid edges. However, this equation is
linearized using the method proposed in Cordeau et al. [17].
Lower bound of the service time at the destination is given
in Eq. 17. Equation 18 ensures that number of passengers in
the EV is less than or equal to the available seating capacity.
Here, when evaluating the capacity, we deduct the number
of seats occupied by picked-up passengers. Equation 19
ensures that the total travel distance is less than the driving
range of the EV. However, as mentioned earlier, we assume
the impact of factors such as loading and air-conditioning
is negligible on the driving range of the EV. Therefore,
the shortest path distance between nodes (d;;) is directly
compared against the driving range. Equation 20 validates the
maximum travel time of EV with picked-up passengers. This
constraint is not applicable for EV which are empty when
the optimization algorithm is executed. Equation 21 validates
the QoS parameter of the system. Thus, each passenger is
guaranteed that the travel time will not exceed the maximum
travel time of each passenger. The final constraint in Eq. 22
validates the ETA constraint of rescheduled passengers. Here,
we add a predefined ETA flexibility window to the ETA.

V. RESULTS

This section presents the experimental results. Here, run-
time is measured on a Windows 7 PC with 16GB RAM
and Intel Xeon E5-1650V2 CPU at 3.50 GHz. The GA is
implemented in C++. Baseline results are obtained by im-
plementing the MIP using IBM ILOG CPLEX optimization
studio 12.7.1 and the inbuilt constraint programming (cp)
solver is used to solve the formulation to optimality.

1) Experimental Setup: All experiments are simulated
in a locality surrounding a campus, which generally has a
fixed route transit service to the nearest transit hub. Hence,
this locality is ideal to test the proposed DRB service.
The locality and a sample instance are shown in Fig. 4.
Here, we show 6 ride requests (passenger symbol), 3 EV
(bus symbol) and the destination (metro symbol). Also, we
highlight different color schemes to indicate empty (red) and
non-empty (black) EV and rescheduable passengers (purple)
and new passengers (blue). The distance and travel time are
obtained in real-time using Google Maps APIs.

2) Parameters: In each experiment, EV driving range and
capacity are varied within the bounds given in Table II. QoS
of the system is set at 4x and the ETA flexibility window
is set to O minutes except in the last experiment. Other
parameter values are indicated in the individual experiments.
These values represent typical off-peak travel demands in the

R 2

Fig. 4: Locality of the Experimental Sétﬁp
TABLE II: Parameter Values

Bound | Driving Capacity | QoS | ETA Flexibility Window
Range

Lower | 25km 8 Ix 0 min

Upper | 35km 12 )

selected locality. Also, we distribute the passengers randomly
in the vicinity. We consider a time horizon of 10 minutes and
a scheduling interval of 5 minutes. Thus, the optimization
algorithm is executed at instances (75) 5 minutes and 10
minutes. The results presented are for 7; = 10 instance.

3) Computation Time Variation: In this experiment, com-
putation time is obtained by increasing the iteration count of
the genetic operators and schedulable passengers (p2 + p3).
The experiments are based on p; = 10, R = 0.25, v = 20.
Figure 5 shows the increase in computation time with both
the iteration count as well as the number of schedulable
passengers. Hence, we are motivated to select a suitable
iteration count for the remaining experiments.

=
o
]

80
60
0
20

Computation Time (s)

10 20 30 40 50 60 70 80 90 100

Iteration Count

50 Passengers 80 Passengers

Fig. 5: Computation Time Variation

120 Passengers

4) Selection of Iteration Count: Initially, we obtain the
total travel time of the same set of experiments from the
GA. Results for the case of 80 passengers is shown in
Fig. 6a. The results indicate that total travel time is reduced
(better solution) with the increasing iteration count. Next, we
calculate the improvement of the total travel time per unit
increase in computation time. Figure 6b shows the cumu-
lative improvement of total travel time per unit increase in
computation time for all the test cases. This graph indicates
that after 80 iterations, the improvement for all test cases is
marginal. Hence, the remaining experiments are performed
with 80 iterations.

5) Accuracy of the GA: The accuracy of the GA is
compared against baseline results. However, due to the
complexity of the optimal formulation, baseline results are
presented only for small test cases. Further, we obtain the
travel time of passengers using SOV and public transit
similar to Archetti et al. [14]. SOV time and public transit
time indicates the lower and upper bound of the travel time
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respectively. The results presented in Fig. 7 are based on
parameter values p; = 5 and R = 0.25. Results indicate that
the proposed GA generates schedules with high accuracy
comparable to the baseline. The average deviation of results
of the proposed GA is 1.13%. Further, in all cases the
proposed DRB service outperforms existing public transit.

SOV [IBaseline MGA [Public Transit
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Fig. 7: Accuracy of the Proposed GA

g
8

8

8
8

8

Total Travel Time (min.)
8

8

0

6) Impact of Reschedulable Passengers: Here, we study
the impact of reschedulable passengers (pz) on the total
travel time. This experiment is run on the scenarios given
in Table III. The corresponding results are shown in Fig. 8a
— Fig. 8d respectively. In all graphs, the total travel time
increases with R as a result of the increase in the number of
reschedulable passengers (p2). Hence, the flexibility of the
GA to optimize the routes are limited due to the constraint
of the ETA (e,) of the rescheduled passengers. Further, as
we observe in Fig. 8a & Fig. 8c at higher (p2/v) values the
GA does not find a feasible solution, which necessitates the
use of an ETA flexibility window.

TABLE III: Experimental Scenarios

Scenario | v p1 | p2+p3
1 20 | 20 150
2 20 15 70
3 11 15 70
4 1215 55
o 4000 @ 1510
£ £
= 3900 / E _ 1500
T T 3800 g
3 < & £ 1490
& E 3700 S E
= 3600 = 1480
2 3500 2 1470
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(c) Scenario 3 (d) Scenario 4
Fig. 8: Total Travel Time Variation with Rescheduling Ratio

7) Benefits of Flexible ETA: Here, we study the benefits of
a flexible ETA, which allows the GA to further optimize the

schedules without violating the QoS. We consider a test case
with p; = 5, pa +p3 = 55 with two scenarios reflecting R =
0.25, R = 0.40 and F' = 5 min, ' = 10 min. The results
for the two scenarios with v = 8 and 24 are presented in
Fig. 9a and Fig. 9b respectively. Figure 9a indicates that the
total travel time can be reduced with a flexible ETA. Further,
the benefit of rescheduling increases with higher number of
rescheduled passengers. However, as shown in Fig. 9b, when
the EV supply is high, benefits of rescheduling is negligible.

~R=0.25 R=0.40 —+R=025 —R=0.40
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= 1300 g 800
ETA ETA+5 ETA +10 ETA ETA+5S ETA+10
(a) 8 EV (b) 24 EV

Fig. 9: Benefits of Flexible ETA

VI. CONCLUSION

In this paper, we present a GA for dynamic scheduling
of passengers in an EV-based DRB service that bridges the
FM connectivity of passengers living in a neighborhood.
We also present an optimal MIP to get baseline results for
comparison. Further, we study the benefits of rescheduling
passengers and assigning a flexible ETA. In future, we plan
to vary parameters such as the number of EV, EV range and
capacity to observe the changes in the solution.
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