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Abstract— Transit systems have encountered a radical change
in the recent past as a result of the digital disruption.
Consequently, traditional public transit systems no longer
satisfy the diversified demands of passengers and hence, have
been complemented by demand responsive transit solutions.
However, we identify a lack of simulation tools developed to test
and validate complex scenarios for real-time demand responsive
public transit. Thus, in this paper, we propose a simulation
framework, which combines complex scenario creation, op-
timization algorithm execution and result visualization using
SUMO, an open source continuous simulator. In comparison
to a state-of-the-art work, the proposed tool supports features
such as varying vehicle capacity and driving range, immediate
and advance passenger requests and maximum travel time con-
straints. Further, the framework follows a modular architecture
that allows plug-and-play support for external modules.

I. INTRODUCTION

Digital disruption has induced a wave of novel business

models in the recent past. The effects of digital disruption is

evident in all spheres of human life including public transit.

As a result, traditional timetable-based transit systems no

longer satisfy the diversified demands of passengers and

hence, innovative real-time demand responsive transit (DRT)

systems have become the future of public transit.

DRT systems have gained widespread popularity not only

due to the ability to satisfy multiple user-groups but also by

extending the penetration of existing public transit by linking

the critical first/last miles. However, most of DRT-based work

has been focused on ride-sourcing systems (e.g. Uber, Grab)

which connect private hire drivers with passengers using a

mobile application [1]. In contrast, relatively new research

such as the work by Javier et al. [2] has lead to the emergence

of real-time DRT-based public transit systems. Such systems

typically consist of a fleet of buses, which operate with

flexible routes and timetables. These services have recently

been proposed in Australia [3] and Singapore [4].

Further, existing work on DRT-based public transit, focus

mostly on developing optimal routing and scheduling algo-

rithms [5] [6] [7]. However, prior to the implementation of

algorithms using actual vehicles, it is essential that such a

system can be tested and validated using simulations [8].

This not only saves a considerable amount of time but also

reduces the cost of implementation. Furthermore, simulations
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can help to easily create realistic scenarios which can occur

in real-world implementation. Also, evaluation and demon-

stration of a proposed idea prior to implementation and

testing and training the users through simulation models can

immensely benefit transit service providers [9]. Additionally,

simulations help to visualize the flow of vehicles in order to

understand their behavior. Also, the complexity of describing

some systems using analytical models calls for simulation

models. Thus, we identify the benefits of developing a

simulation framework that can generate complex scenarios

to test and validate DRT-based public transit systems.

However, as shown later in Section II, existing tools lack

support to automatically generate complex scenarios to test

DRT-based public transit systems. Hence, this work attempts

to bridge the gap by proposing a simulation framework to test

different scenarios using a real-world virtual environment.

The main contributions of this work are (1) development

of a holistic framework, which combines complex scenario

creation, optimization algorithm execution and result visu-

alization using an open source continuous simulator (2) a

plug-and-play architecture that facilitates rapid turn-around

time for replacement of the modules using external tools. The

rest of the paper is organized as follows. Section II highlights

the state-of-the-art work, followed by the architecture of the

framework in Section III and an illustration of a simulation

in Section IV. Finally, we conclude in Section V.

II. RELATED WORK

Simulation models are classified as macroscopic, meso-

scopic and microscopic models based on the level of details

incorporated in the model [10]. A macroscopic model de-

scribes entities and their activities and interactions at a low

level of detail. In contrast, a microscopic model describes

both the system entities and their interactions at a high level

of detail. Mesoscopic models generally represent entities at a

high level of detail but describes their interactions at a much

lower level of detail. However, in the case of DRT-based

systems, each vehicle needs to be controlled independently

and hence, microscopic simulations are preferred.

Existing microscopic traffic simulation packages such as

PARAMICS [11], VGSim [12], SUMO [13] and Aimsun [14]

provide functionality for route choice, traffic light control,

vehicle communication, demand modeling, etc. Further, these

tools allow users to simulate road networks of a given

map. However, as a result of the open source licensing and

extensive support and features, our simulation framework is

built using SUMO (Simulation of Urban MObility), which

has already been used in similar works [13].



Macedo et al. [15] propose a model to simulate electric

buses in a realistic urban mobility environment. They pro-

pose to couple SUMO with a model of an electric vehicle

generated using MatLab/Simulink. However, the main goal

of this work is to model electric vehicle behavior and hence,

is not comparable with the proposed simulation framework.

Similarly, Mayer et al [16] propose a simulation model and

its corresponding discrete event simulator for a rich vehicle

routing problem. Bischoff et al [17] propose an approach

to dynamically simulate ridesharing services with a fleet of

vehicles of a capacity between two and four. The work that

is closest to our work is proposed in [8]. Here, authors

propose a simulation platform developed using Vissim to

test vehicle routing algorithms in a fleet management system.

Further, it allows users to perform a graphical illustration of

vehicles serving on-demand customer requests. However, the

illustration is based on only a single vehicle and 5 customer

requests. Also, it does not model features such as maximum

travel time constraints, advanced passenger requests etc.

III. SIMULATION FRAMEWORK

In this section, we first present the simulation setup fol-

lowed by the simulation framework. The framework consists

of three modules, namely the graphical user interface (GUI),

vehicle routing and scheduling engine (VRSE) and the open

source simulation platform (OSSP). The GUI facilitates to

build a test scenario and subsequently the VRSE generates

the routes and schedules of the vehicles. Finally, the OSSP

simulates the test scenario. Subsequent sections explain the

architecture of the modules in detail.

A. Simulation Setup

We select the locality surrounding Nanyang Technological

University (NTU), Singapore as the virtual environment to

create test scenarios. Within this locality, we assume passen-

gers request for rides using a smartphone application from

their respective origin locations. Then, a vehicle/vehicles

from the fleet will be scheduled in real-time to pick-up the

passengers and drop-off at the destination without violating

the constraints of the system. However, it should be noted

that, in the illustrations provided in the subsequent sections,

we have limited the passenger request origins to existing bus

stop locations (nodes). Also, for clarity, we have only shown

5 nodes. However, the methods proposed in this work are

independent of the number of nodes. Henceforth, we will use

this setup to illustrate the functionalities of the simulator.

B. Graphical User Interface

The GUI is used to create an instance of the problem

by distributing passengers and vehicles on the map. Further,

the GUI allows to configure microscopic parameters of

both passengers and vehicles. Next, the generated scenario

is validated and exported to the VRSE. After the VRSE

execution, results are imported into the GUI for visualization.

The flow diagram of the GUI is given in Fig. 1. Here, we

have separated the GUI module into 2 submodules, namely

Scenario Creation and Data Export. The former submodule
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Fig. 1: Flow Diagram of the GUI
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Fig. 2: Passenger and Vehicle Distribution

is managed by the user while the latter is handled by the

tool. Also, it should be noted that we use Google Maps [18]

to import the map of NTU to the GUI.

1) Scenario Creation: Scenario creation submodule con-

sists of allocation and configuration of microscopic param-

eters of passengers and vehicles. Fig. 2 shows an allocation

of 10 passengers and 2 vehicles in the GUI. Also, the

corresponding description of terms used in the GUI is given

in Table I. Subsequently, microscopic parameters can be

configured using the Settings button in the GUI.

Microscopic parameters that can be configured are ca-

pacity of vehicles, driving range of vehicles (for simulation

of electric vehicles with limited driving range), passenger

request start time (immediate requests or advance requests)

and maximum travel time of passengers (waiting time +

riding time). Also, the parameters can be further configured

to generate homogeneous or heterogeneous configurations.

Thus, if a user sets a parameter to the homogeneous config-

uration mode, the corresponding value of that parameter will

be equal in all objects. In contrast, if the user chooses the

heterogeneous configuration mode, the corresponding value

of that parameter will vary. Table II provides a description

of the microscopic parameters for both configuration modes

and the respective variables that can be configured by a user.



TABLE I: Description of Terms in the GUI

Term Description Example
P (n) Node with n passengers Node 2
V Node with a vehicle Node 4
P (n), V Node with n passengers and a vehicle Node 1
No Description Node without passengers or a vehicle Node 3
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Fig. 3: Flow Diagram of the VRSE

2) Data Export: Data export submodule consists of sce-

nario validator, distance and time matrix generator and the

data exporter. Validation of the scenario is performed as a

prerequisite of the VRSE module. VRSE may have specific

input conditions that are mandatory for accurate functioning.

For example, if the optimization algorithm satisfies all pas-

senger requests, the vehicles should have sufficient capacity.

Hence, we validate this condition prior to VRSE execution.

However, it is still feasible to execute VRSE even without

the presence of the scenario validator.

Next, the distance and time matrices are generated by

querying the Google distance matrix API [19]. It should be

noted that, this API generates travel times considering the

real-time traffic conditions of the road network. Also, we

extract the transit times (travel time to the destination using

existing public transit) of the passengers. Finally, the data

exporter converts the test scenario into the VRSE compliant

file formats. It is noteworthy, that the modular architecture

of the framework allows a user to plug-and-play a third party

VRSE module. To this end, a user can either comply to the

current output format of the data exporter or change the data

exporter according to the third party VRSE file format.

C. Vehicle Routing and Scheduling Engine

Task of VRSE is generating the routes and schedules of the

vehicles for the test scenario. The flow diagram of the VRSE

module is given in Fig. 3. It comprises of two submodules,

namely Algorithm Executor and Result Validator.

1) Algorithm Executor: The algorithm executor is the

main computation engine of the simulator. It accepts the

input data from the GUI and generates routes and schedules

based on the optimization algorithm. In the illustrations,

we use the optimization algorithm proposed in [20], which

strives to minimize the travel time of passengers within the

given constraints. However, as mentioned in Section III-B.2,

a user can replace this module by a third party component.

2) Result Validator: This is an optional submodule which

automates the validation of the routes and schedules gener-

ated by the algorithm executor. Based on the optimization

algorithm in [20], we validate the following constraints,

(i) all passengers are serviced by the vehicles, (ii) each

passenger is serviced by only one vehicle, (iii) capacity

constraint of the vehicles are not violated and finally (iv)
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Fig. 4: Results of the VRSE Execution

vehicle miles traveled by each vehicle is within driving range

constraints. After validation of the results, they are exported

to the GUI for visualization (Refer Section III-C.3) and the

OSSP for simulation (Refer Section III-D).

3) Visualization of Results in the GUI: An illustration of

the outcome of the VRSE for the test scenario in Section III-

B.1 with 10 passengers and 2 vehicles is shown in Fig. 4.

As mentioned in Section III-C.1, based on the objective of

the optimization algorithm used in VRSE to minimize travel

time, the output that is shown in the GUI compares temporal

features. It also shows a summary of the test scenario and

the runtime of the optimization algorithm. Table III provides

a description of the results in the GUI.

In this example, the total travel time of the passengers

using the proposed DRT solution is 210 minutes. In contrast,

if passengers use private vehicles (SOV) to travel to the

destination the travel time is 122 minutes. The SOV time

is the lower bound of the outcome of the test scenario.

Similarly, the transit time reflects an upper bound. The

quality of optimization algorithm can be easily analyzed by

comparing the result with these two values using the GUI.

Another feature of the GUI is the color-based visualization

scheme for displaying results. We illustrate this using Fig. 5,

a segment of an output for a test scenario. Here, we observe

two vehicles at nodes 1 and 2, displayed in red and blue

color respectively. In this, four passengers at node 1 have

been allocated to the vehicle shown in red while the other

passenger is allocated to the vehicle shown in blue. This

is represented in Fig. 5, as P (4+ 1) with the corresponding

colors of the two vehicles. Thus, the color-based visualization

scheme helps quick identification of the outcome.



TABLE II: Configuration Modes of Microscopic Parameters
Microscopic Parameter Homogeneous Configuration Heterogeneous Configuration
Vehicle Capacity Constant value of the vehicle capacity

c : Capacity of all vehicles
Random value is assigned within the user-defined lower
and upper bound values of the capacity
C1 : Lower bound of the capacity
C2 : Upper bound of the capacity

Vehicle Range Constant value of the vehicle driving range
r : Driving range of all vehicles

Sum of direct travel distance to the destination of all the
passengers is averaged over the number of vehicles and
randomly varied within ± R%
R : Average travel distance variation percentage

Passenger Request Start Time Constant value of the request start time of passengers
0 : Immediate request
t : Advance request valid after the tth minute

Random value is assigned within the user-defined lower
and upper bound values of the request start time
T1 : Lower bound of the request start time
T2 : Upper bound of the request start time

Maximum Travel Time Constant value of the maximum travel time of passengers
n : Maximum travel time

Direct travel time to the destination of each passenger is
incremented by N%
N : Direct travel time increment percentage

TABLE III: Description of Results in the GUI
Term Description
Total Travel Time Total travel time of the passengers using the

proposed DRT solution for the optimization al-
gorithm used in VRSE module

SOV Time Total travel time of the passengers using a private
vehicle (Single Occupancy Vehicle) to travel to
the destination

Transit Time Total travel time of the passengers using public
transit to travel to the destination

Algorithm Runtime The runtime of the optimization algorithm
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Fig. 5: Color-based Visualization in the GUI

D. Open Source Simulation Platform
The OSSP module performs a continuous simulation of the

routes generated by the VRSE. The OSSP comprises 5 sub-

modules, namely Road Network Generator, Fleet and Node
Manager, Trip Generator, Visual Configuration Manager and

Routing Manager. Here, the Road Network Generator creates

the road network of the selected area. Properties of the fleet

of vehicles and pick-up points are configured in the Fleet and
Node Manager. The Trip Generator submodule generates the

routes of the vehicles for the simulation based on VRSE

results. Next, the Visual Configuration Manager sets the

graphical settings in the SUMO GUI. Finally, the Routing
Manager performs the continuous simulation according to

the microscopic parameters configured by the user. The sub-

modules are explained in detail in the subsequent sections.

1) Road Network Generator: This submodule generates

the road network for the setup given in Section III-A. Thus,

for the simulation, we generate the road network for the map

of NTU shown in Fig. 2. Here, we use Open Street Maps
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Fig. 6: Road Network used for Simulation using SUMO

                    

<stop busStop="Node 1" duration="10"/>           
<stop busStop="Node 1" duration="10"/>           
<stop busStop="Node 1" duration="10"/>           
<stop busStop="Node 1" duration="10"/>           
<stop busStop="Node 2" duration="10"/>           
<stop busStop="Node 2" duration="10"/>           
<stop busStop="Destination" duration="10"/>           
<stop busStop="Destination "duration="10"/>           
<stop busStop="Destination " duration="10"/>           
<stop busStop="Destination " duration="10"/>           
<stop busStop="Destination " duration="10"/>           
<stop busStop="Destination " duration="10"/>           
                    

……..                   
……..                   
                    
                    

 

Fig. 7: Sample Routes of the Trip Generator

(OSM) [21] to obtain the map data of the selected area.

The quality of the simulation can be enhanced further by

processing the map data obtained from OSM using the Java

OpenStreet Map editor (JOSM) [22]. Therefore, we have

improved the connectivity of the road network using JOSM.

Further, a user can configure the speed limits of the roads,

the number of lanes, one-way roads and traffic light systems

using the JOSM editor. Next, we convert the map into a

SUMO road network [23] file using NETCONVERT [24].

During this process, the map is converted to a directed graph

such that traffic can be simulated on it using SUMO. Further,

NETCONVERT provides options to discard certain types of

roads, remove roads that are not connected etc. Finally, we
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generate a map suitable for traffic simulation using SUMO.

2) Fleet and Node Manager: This submodule defines

the properties of the vehicles used in the simulation. It

configures vehicle attributes such as acceleration, deceler-

ation, maximum speed etc. Also, it is used to include the

passenger pick-up and drop-off points to the generated map.

The exact locations of the pick-up points are extracted from

the locations selected by the user when creating the instance

in Fig. 4. However, according to the optimization algorithm

in [20], the drop-off point of all passengers is a common

destination. The road network generated for the map of NTU

in Fig. 2 after pre-processing is given in Fig. 6. Here, we have

highlighted the passenger pick-up locations in red circles and

the common destination with a purple circle. It should be

noted that node 3 is not shown in this network as it is not a

pick-up point.

3) Trip Generator: After creating the road network and

adding the vehicles and passengers to the map, the next

step is assigning the routes for individual vehicles. Each

route starts from the origin of the vehicles and ends at the

common destination. Along the route, vehicles will visit the

passengers to pick them up. Thus, output of the VRSE is

used to create the route file. We generate an XML file which

includes the routes for each vehicle. Fig. 7 shows a sample

route file generated for the results in Fig. 4. The route file

contains two entries for a passenger, one for the pick-up point

and the other for the drop-off point. Hence, the route file

for V1 consists of 12 entries, corresponding to 6 passengers.

Further, at each pick-up and drop-off point we add a constant

(10 time unit) waiting time. This is reflected in all entries of

the file.

4) Visual Configuration Manager: This submodule con-

figures the graphical settings of the simulation. Here, visual

attributes such as colors of the streets, vehicles, pick-up

points and their names, display sizes etc. can be configured.

5) Routing Manager: Finally, the continuous simulation

of the test scenario is managed by the SUMO routing engine.

Here, we use Dijkstra algorithm to generate the shortest path

between the nodes for routing the vehicles. This is in line

with the distance matrix API used in VRSE to generate

distance and time matrices, that produce the shortest paths.

IV. SIMULATION RESULTS

This section shows an illustration of a simulation. The

user can perform a simulation by clicking the Display in
SUMO button in the GUI. At this point, the result generated

from VRSE is pre-processed using the OSSP to perform a

graphical simulation using SUMO. Here, we use the example

in Fig. 4 for the illustration. The routes of the two vehicles

as generated by the VRSE are V1 : Node 1 −→ Node 2

−→ Common Destination; and V2: Node 4 −→ Node 5

−→ Common Destination. Fig. 8 shows a time interleaved

simulation of the vehicle routes. Here, we have highlighted

the two vehicles V1 and V2 using blue and green squares

respectively. Also, the nodes and the common destination are

also marked. Fig. 8a shows the two vehicles at the origins

of the routes. Fig. 8b shows the two vehicles moving to

the passenger pick-up points, namely node 2 and node 5

respectively. Fig. 8c shows both vehicles at the respective

pick-up points. Next, Fig. 8d shows both vehicles moving

to the common destination. Finally, Fig. 8e shows that V1

has already reached the common destination while V2 is still

moving along the route to the common destination.

V. CONCLUSION

In this work, we propose a simulation framework, which

combines complex scenario creation, optimization algorithm

execution and result visualization using the simulator SUMO.

The framework helps to test, validate and visualize real-time

DRT-based public transit systems, which is a hot topic of re-

search. The framework has a modular architecture and hence

support plug-and-play capability for external modules. In

future, we plan to incorporate traffic information, pedestrian

behavior etc. in order to illustrate a more realistic simulation.
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