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Abstract—With the huge number of candidates for the CAE-
SAR competition for authenticated encryption, the task of de-
signing efficient implementations for these candidates becomes
a big challenge. The main goal of this competition is to find
smaller, faster, energy-efficient and secure authenticated encryp-
tion schemes. In this paper, an area efficient hardware implemen-
tation of CLOC, one of the 15 candidates for the third round of
CAESAR competition is presented. CLOC represents a new mode
of using AES, in order to provide both encryption/decryption
and MAC functionalities. Since the hardware design of AES is a
well studied problem, the challenge is to accommodate the mode
functionality with small area, high performance and low power
overhead. The proposed hardware implementation for the CLOC
is developed by sharing the AES core by applying a pipeline
technique. By using commercial synthesis flows and 65 nm ASIC
technology, it shows, for low power applications, that proposed
hardware architecture of CLOC reduces the area by 42.85% and
consumes 37.8% less power when compared with the existing
high throughput implementation of CLOC. In addition, area-
efficiency of the proposed design is also improved by 17.6% and
the proposed design consumes only 2.6 µW.

Keywords—AES, Authenticated Encryption, ASIC implemen-
tation. Technology mapping, logic optimization.

I. INTRODUCTION

The security goals of any communication system can be
defined with mainly two goals: confidentiality and integrity.
While encryption provides confidentiality, this may not be
sufficient to the systems in which data is streamed in in-
secure channels. Such systems also need data integrity and
authentication in order to ensure that original information
has not been modified by unauthorized or unknown parties.
Thus, Authenticated Encryption (AE) has emerged as a scheme
that provides both confidentiality and integrity of the data
simultaneously [1].

The straightforward way to design an AE scheme is by
using a secure encryption scheme and a secure Message
Authentication Code (MAC) with two separate keys and use
both of them as a generic composition. This composition could
have three different approaches: MAC-then-encrypt, Encrypt-
and-MAC, and Encrypt-then-MAC, and only the former one
is guaranteed to be secure under condition that both the
encryption scheme and the MAC are secure [2]. The main
disadvantages of such approacesh are: being slow, requiring

two different keys and even may have error implementations
if not handled carefully.

Thus, dedicated AE schemes have been introduced to over-
come the generic composition method. Most of these schemes
were developed as modes for block ciphers such as the Counter
with CBC-MAC (CCM) mode [3], the Galois Counter Mode
(GCM) [4] and the Offset Codebook Mode (OCB) [5].

In order to fill the gap and standardize the authenticated
encryption schemes; NIST and Daniel Bernstein co-founded
the Competition for Authenticated Encryption: Security, Ap-
plicability, and Robustness (CAESAR) in 2013 [6], opening
the call for submissions that should provide advantages over
AES-GCM and suitable for widespread adoption. The call was
responded by 57 submissions in total passing by rounds of
evaluation, resulting in only 15 candidates so far in the third
round. In order to facilitate hardware implementations for the
candidates; a generic hardware Application Programming In-
terface (API) was introduced in [7] to meet the requirements of
all algorithms submitted to the CAESAR competition, as well
as many earlier developed authenticated ciphers, such as AES-
GCM and AES-CCM. The API consists of: a preprocessor
that handles the input in a standard form and passes it to the
cipher core, a post-processor that handles the output to be
in the standard form, and a FIFO. Apparently, a generic API
would have more area overhead than a specific one, moreover
it could limit the performance of some candidate algorithms,
and may favor one algorithm over another, thus should not be
used solely to decide the winning candidate. However, it is
essential in such competitions to provide a common base for
all candidates and a common testing environment.

In this paper, a new hardware architecture for CLOC [8],
one of the CAESAR third round candidates, is presented.
The new architecture uses a round-based AES implementation
as a primitive. However, only one encryption core is used,
as opposed to the two-core architecture based CLOC in [9].
With many applications that do not require the high speed
provided by the current ASIC fabrication technologies and
AES implementations, such as RFID tags, smart cards and
WSNs, the cost of area and power becomes more vital.
Consequently, the proposed design has been implemented and
compared to the existing CLOC architecture in [9]. The design
has been synthesized for both high speed and low power



targets. Table III and Table IV show the summary of results
for both applications with the high speed requirements and
those with low power requirements respectively.

The remaining of the paper is organized as follows: In
Section II a description of the CLOC scheme and its functions
is presented as well as an illustration of the existing hardware
implementation of CLOC in [9]. In Section III we present
the proposed implementation, illustrating its architecture and
differentiating between it and the existing design. Section IV
represents the results of both designs using Synopsys Design
Compiler tool with TSMC 65nm technology. And finally we
conclude our work in Section V.

II. CLOC AUTHENTICATED ENCRYPTION SCHEME

Notation: M: Unencrypted Message, C: Encrypted Mes-
sage, T, T∗: Tag, N: Nonce, V: Temporary Tag, A: Associated
Data, ⊥: Error.

CLOC [8] is a block cipher mode of operation for authenti-
cated encryption with associated data (AEAD). The design
of CLOC aims at being provably secure and optimizing
the implementation overhead beyond the block cipher, the
precomputation complexity, and the memory requirement. The
main advantage for CLOC is how it handles short input data
efficiently, and is suitable for use with embedded processors.
CLOC has two variations: one based on AES and the other
is based on TWINE [10] ciphers with the same components
remaining. In this context, we adopt the AES version of
CLOC.

The two main algorithms CLOC-E for encryption and
CLOC-D for decryption use four subroutines, HASH, PRF,
ENC, and DEC, and could be described as follows:

• CLOC-E(N, A, M):
1) V ← HASH(N,A)
2) C ← ENC(V,M)
3) T ← PRF(V,C)
4) return (C, T)

• CLOC-D(N, A, C, T)
1) V ← HASH(N,A)
2) T* ← PRF(V,C)
3) If T != T* then return ⊥
4) M ← DEC(V,C)
5) return M

Beside AES as the main function in CLOC, there are other
functions to be defined as follows:

• Fix0 / Fix1: assigns the first bit of the data block to be
0 or 1 respectively.

• H / F1 / F2 / G1 / G2 : are simple linear functions of
XORs and permutations.

• OZP: pads blocks less than 128 bit with 1 and a sequence
of 0s. However this function is handled by the CAESAR
API, so it is not implemented in the proposed design.

There are two existing hardware implementations of CLOC,
the design in [11] is a low area implementation with an 8-
bits datapath using an 8-bits serialized AES core, the main
target of that design was achieving the lowest possible area,

neglecting throughput. The other implementation in [9] is a
high-speed implementation using two regular 128-bit AES
cores to achieve the highest possible throughput, however, at
the expense of large area.

Since the implementation in [9] was intended for maximum
possible throughput, it used two AES cores exploiting the par-
allelism of ENC and PRF subroutines, which in turn increased
the area massively, and reduced the area efficiency due to the
fact that both functions are sequential to the HASH function
leaving one AES core unused for approximately 50% of the
running time assuming long plaintext and long associative data
as well.

III. PROPOSED ARCHITECTURE OF CLOC

The idea of making the proposed design efficient is to
use only one instance of each functional block and reuse
them in a multi-cycle approach. In order to achieve that,
and to have a single configurable datapath accomodating the
four subroutines’ datapaths; a control unit based on a Finite
State Machine was developed to alter the datapath using eight
multiplexers and two registers as shown in Figure 1.

The internal functional blocks shown in Figure 1 could be
detailed as follows:

• The blocks Fix0, Fix1, F1, F2, G1, G2 and H are direct
implementations for the corresponding CLOC primitive
functions described in Section II and detailed in [8].

• The AES core used is an encryption only round-based
AES core described in [9].

• The block ”Conc” is used to concatenate the nonce with
a constant that depends on the parameters of CLOC as
described in [8]. However only the two recommended
sets of parameters are implemented in both designs.

• ”Expand” block operates on bdi valid bytes signal pro-
vided by the API and expands it to its bits equivalent.
The API delivers the bdi valid bytes signal representing
the valid bytes of the input to indicate if the current block
of input is not occupying the whole block.

• AND gates are used to mask signals with 0s reducing
their size to the same size of the input in case of being less
than 128 bits. That is mainly dependent on the expanded
bdi valid bytes signal.

• XOR gate is used by the four subroutines.
• The block ”MSB” is used to extract only the 96 most

significant bits of the output as the size of the tag T.

A. HASH Datapath

The HASH subroutine’s datapath starts with the associated
data A within the API’s bdi signal passing through Mux-
A, applying Fix0 function to it, and encrypts the result with
the help of an AES core after passing through Mux-B. The
most significant bit of the associated data decides whether the
result could be passed to H function or passed as it is through
Mux-C. The result is then XORed with the next block of the
associated data which passes this time through Mux-D, and
the encryption process of the result is repeated again after
passing Mux-E, Mux-F and Mux-B. This process keeps going
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Figure 1: Optimized CLOC implementation architecture.

on until the last block of the associated data, at which the
encrypted data is XORed with the Nonce N stored in Reg-
A concatenated with a constant depending on the parameters
of CLOC. The Nonce is stored in Reg-A due to the fact that
the API delivers the Nonce within the bdi signal before the
associated data, thus needs to be stored. At the end, either F1
or F2 functions applies on the result and passes through Mux-
E depending on the size of the last block of the associated data
resulting in the intermediate tag V which passes through Mux-
H to be stored in Reg-B for further usage by the remaining
subroutines.

B. PRF Datapath
If there is no plaintext M to encrypt nor a ciphertext C

to decrypt, the intermediate tag V is extracted from Reg-B,
passed through Mux-C and Mux-E as it is and G1 function
is applied to it, and passed by Mux-F and Mux-B before
being encrypted by AES producing the tag T. Otherwise the
intermediate tag V passes with the same datapath except for
applying G2 function instead of G1, and the result of the
encryption is passed through Mux-C to be XORed with one
block of the produced ciphertext C stored in Reg-A by ENC
subroutine in case of encryption or the received ciphertext C
passed within the API’s bdi signal in case of decryption, both
passing by Mux-D. The result of the XOR passes through
Mux-E, Mux-F and Mux-B to be encrypted again, then stored
in Reg-B after passing through Mux-H. The result is stored in
Reg-B due to the fact that PRF subroutine uses the ciphertext
blocks produced by the ENC subroutine or the ciphertext
blocks used also by the DEC subroutine, thus stores the current
state in Reg-B, hands over the datapath to either ENC or DEC
subroutines waiting the next ciphertext block and the same
process goes until the last block of the ciphertext, at which the
XORing result is fed to either F1 or F2 functions depending
on the size of the last block of the ciphertext. Then finally
the result passes through Mux-E, Mux-F and Mux-B to be

encrypted for the last time to produce the tag T. To output
the tag within the API’s bdo signal, the result passes through
Mux-E and its most 96 significant bits are extracted through
MSB block and finally output through Mux-G.

C. ENC Datapath

The ENC datapath encrypts the intermediate tag V produced
by the HASH subroutine previously and already stored in Reg-
B after passing through Mux-C, Mux-E, Mux-F and Mux-B.
The encryption result is passed through Mux-C and XORed
with the first block of the plaintext M within the API’s bdi
signal passed through Mux-D, producing the first block of
the ciphertext C. The produced cipher text is stored in Reg-
A through Mux-E, Mux-F and Mux-A, then the datapath is
handed over to the PRF subroutine. After the PRF hands over
the datapath again, the produced ciphertext block is extracted
from Reg-A and fed to Fix1 function, and passes through
Mux-B to be encrypted and XORed with another block of
the plaintext producing another block of the ciphertext. The
process repeats until the last block of the plaintext with only
one difference which is that the encrypted result this time is
ANDed with the bdi valid bits to have an output with the
same length of the last plaintext block to be XORed with. Each
produced ciphertext is passed through Mux-E and ANDed
again with the bdi valid bits to be output finally through Mux-
G within the API’s bdo signal. The bdi valid bits is an internal
signal produced by the Expand block to convert the API’s
bdi valid bytes to its equivalent bits representing the valid
bits of the last block of the input data.

D. DEC Datapath

The DEC subroutine naturally reuses the ENC datapath
but in reverse. At first the intermediate tag V is encrypted,
XORed with the API’s bdi signal which this time represents a
block of the ciphertext C, producing the first block of the
plaintext M. At the same time the delivered ciphertext is



stored in Reg-A through Mux-A and the datapath is handed
over to the PRF subroutine. After the PRF hands over the
datapath again, the ciphertext block is extracted from Reg-A
and fed to Fix1 function and passes through Mux-B to be
encrypted and XORed with another block of the ciphertext
producing another block of the plaintext. Similar to the ENC
subroutine, the process repeats until the last block of the
plaintext which is handled the same way as in ENC subroutine.
Also each plaintext is output through Mux-G passing by the
same datapath as ENC subroutine.

IV. EXPERIMENTAL RESULTS AND COMPARISON

The hardware performance of the proposed hardware im-
plementation of CLOC (also denoted as Optimized CLOC)
is evaluated by comparing against the given hardware imple-
mentation of CLOC in [9]. A comparison against the design
in [11] is not possible due to the unreported throughput of the
design. While the design in [11] targets low area neglecting
performance, our proposed design as well as the design
in [9] target high performance and both are compatible with
CAESAR hardware API, which facilitates a fair comparison.
Thus, only a comparison against the work in [9] is presented.
The Optimized CLOC is described in Verilog language and
functionally verified by given test vectors with the help of
modelsim tool. Both designs are synthesized and mapped to
TSMC 65nm standard cell library by using Synopsys Design
Compiler version J-2014.09. Upon doing synthesis, both de-
signs were constrained for achieving maximum speed along
with their area-constrained. Area is measured in µm, as well as
in kilo gate equivalent (KGE) in order to make it technology
independent. Table I shows synthesis results comparison of
Optimized CLOC and CLOC in [9] in terms of area, critical
path delay and power performance parameters. Based on the
experimental results, it shows that Optimized CLOC is 29.29%
smaller and achieved 21.7% less power requirements when
compared with CLOC. It also requires a clock frequency that
is 21.17% faster. This is because only one AES core was used
in the proposed design rather than using two AES cores, which
in turn reduced the area as well as power of the proposed
design. While the frequency is increased due to the use of
intermediate registers in the Optimized CLOC.

Table I: ASIC synthesis results comparison between our design
and the design from [9]

Design Delay Area Area Power
(ns) (µm2) (KGE) (mW)

[9] 1.70 136,618.6 94.87 25.02
Optimized CLOC 1.34 96,605.3 67.09 19.59

In order to estimate throughput, both designs were examined
with large plaintext and large associated data namely 100 block
for each, which is equivalent to 12800 bits for each. As Table II
shows, the number of cycles for our design is increased due
to using only one AES core, but due to the higher frequency
our design can reach; the decline in throughput is small.

The area efficiency is defined as throughput/area. These
metrics play an important role in judging modern digital

Table II: Comparison of throughput of our design and the
design from [9]

Design Frequency # of Throughput Throughput
(MHz) cycles (bits/cycle) (Mbps)

[9] 588.23 2252 5.68 3341.18
Optimized CLOC 746.26 3352 3.82 2850.75

circuits, including cryptographic accelerators. Table III shows
that the proposed design is 20.6% more area efficient and
21.7% less power consumer.

Table III: Comparison between the proposed architecture of
CLOC and the architecture of CLOC from [9]

Design Area Area Efficiency Power
(KGE) (Mbps/KGE) (mW)

[9] 94.87 35.22 25.03
Optimized CLOC 67.09 42.49 19.59

Improvement 29.29% 20.6% 21.7%

However, the high speed achieved by these implementations
is not required for applications such as smart cards, pas-
sive Radio-Frequency Identification (RFID) tags and Wireless
Sensor Networks (WSNs). For such applications, low power
and small area are more crucial. Hence, the comparison has
also been performed at 100 KHz, leading to smaller area and
power for both implementations. More significantly, the area
and power difference is more significant at 100 KHz, with
the Optimized CLOC operating at only 2.6 µW, as shown in
Table IV.

Table IV: Comparison between the proposed architecture of
CLOC and the architecture of CLOC from [9] at 100 KHz

Design Area Area Efficiency Power
(KGE) (Kbps/KGE) (µW)

[9] 81.53 6,966.8 4.28
Optimized CLOC 46.59 8,199.1 2.60

Improvement 42.85% 17.6% 37.80%

V. CONCLUSION

In this paper, a high-speed and hardware-efficient imple-
mentation for CLOC authenticated encryption cipher is pro-
posed particularly for achieving better throughput per area
performance. In what follows, reduction in area was achieved
by calling the functions sequentially while critical path delay is
reduced by inserting the immediate registers in the optimized
design. Based on ASIC synthesis results, it shows that the
proposed design proved to be less in area by 29.29% and
improved area efficiency (throughput per area) by 20.6% when
compared with its contender.
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