

Abstract—The combination of FAST corners and BRIEF

descriptors provide highly robust image features. We present a
novel detector for computing the FAST-BRIEF features from
streaming images. To reduce the complexity of the BRIEF
descriptor, we employ an optimized adder tree to perform
summation by accumulation on streaming pixels for the smoothing
operation. Since the window buffer used in existing designs for
computing the BRIEF point-pairs are often poorly utilized, we
propose an efficient sampling scheme that exploits register reuse
to minimize the number of registers. Synthesis results based on 65-
nm CMOS technology show that the proposed FAST-BRIEF core
achieves over 40% reduction in area-delay product compared to
the baseline design. In addition, we show that the proposed
architecture can achieve 1.4x higher throughput than the baseline
architecture with slightly lower energy consumption.

Index Terms—Feature descriptor, embedded vision, VLSI,
hardware acceleration

I. INTRODUCTION

OMPUTER vision algorithms such as Simultaneous
Localization and Mapping (SLAM), object detection,

object matching and image correspondence, rely on image
features [1]. The features are used for object representation, or
directly matched and tracked across multiple frames. Due to the
real-time nature of these applications [2], the computational
complexity for detecting the features must be kept low.

The Features from an Accelerated Segment Test (FAST)
algorithm was introduced to detect reasonable corners at high
speed. The Binary Robust Independent Elementary Feature
(BRIEF) descriptor is computed by performing binary tests of
n point-pairs on a square image patch. The combination of
FAST and BRIEF (FAST-BRIEF) [3][4] has been shown to
outperform other image features in many applications [5].
FAST-BRIEF features provide a good trade-off between
robustness and compute efficiency. However, it still contributes
to a significant portion of the overall application runtime. For
example, the FAST-BRIEF detector contributes to over a third
of the total runtime of a real-time tracking process [5]. This has
motivated several hardware implementations for the FAST-
BRIEF detector. Existing hardware realizations can be
categorized into non-stream and stream processing.

Non-stream processing architectures such as [6]-[9] assumes
the availability of a frame buffer that stores the image frame.

S.-K. Lam, G. Jiang, M. Wu, and B. Cao are with School of Computer

Science and Engineering, Nanyang Technological University, 50 Nanyang
Avenue, Singapore (e-mail: siewkei_lam@pmail.ntu.edu.sg).

This enables the BRIEF descriptors to be computed only for
patches that are centered on the detected FAST corners. The
work in [6][7] presented a FPGA implementation of an object
recognition system that relies on FAST-BRIEF features, which
are detected at multiple scales in parallel [6]. The 256-bit
BRIEF descriptor of each corner is computed by performing
sequential binary test on the corresponding 256 point-pairs. The
FAST-BRIEF implementation in [6] achieves a frame rate of
about 55 FPS for a 640x480 image at a clock operating
frequency of 100MHz. A FAST architecture using a string
matching algorithm was proposed in [8]. This implementation
requires an external memory for frame buffering and a
mechanism for sequencing the input data in the form of a 1D
text for string matching. Non-stream processing architectures
such as [6]-[9] suffer from the need of large memory resources.

On the contrary, stream processing architectures (e.g. [10]-
[13]) are extremely attractive as they do not require external
memories for storing input video frames and can achieve high
throughput (since the memory fetch and store latencies are
avoided). However, in stream processing architectures where
the incoming pixels are processed on-the-fly without being
stored in frame buffers, the BRIEF descriptors need to be
computed for all pixel locations. This is performed in parallel
with the FAST corner detection, and only the BRIEF
descriptors corresponding to detected corners are used as
outputs. Stream-based architectures for computing the BRIEF
descriptor need many parallel processing elements to keep up
with the rate of incoming pixel streams. For example, the work
in [10] employs a 33x33 register file for storing the patch and
utilizes 256 parallel comparators to compute the 256-bit
descriptor of each patch in a single clock cycle. The FPGA
implementation of the BRIEF descriptor in [10] achieves 325
FPS for a 640x480 image at a clock frequency of 100MHz. The
stream architectures in [11]-[13] also utilizes parallel
comparators for computing the BRIEF descriptors as in [10].

II. MAIN CONTRIBUTIONS

Our work focuses on stream processing architecture for
FAST-BRIEF detector. Existing stream processing
architectures rely on large computational resources for parallel
processing of the smoothing operations and binary tests. We
present two novel hardware design strategies that reduces the
hardware complexity for computing the BRIEF descriptor:

This research project is funded by the National Research Foundation
Singapore under its Campus for Research Excellence and Technological
Enterprise (CREATE) programme.

Area-Time Efficient Streaming Architecture for
FAST and BRIEF Detector

Siew-Kei Lam, Member, IEEE, Guiyuan Jiang, Meiqing Wu, and Bin Cao

C

 An optimized adder tree for the smoothing operation that
significantly reduces the number of adders through
summation by accumulation of continuous input pixels.

 An optimized sampling scheme that takes advantage of
register reuse for computing the BRIEF point-pairs, which
led to significant reduction in the number of registers.

III. ALGORITHM AND BASELINE IMPLEMENTATION

A. FAST-BRIEF Algorithm

The FAST corner detector uses an efficient method to classify
a pixel as a corner by considering pixels on the surrounding
circle. The BRIEF descriptor is computed on an image patch P
(centered at a FAST corner) of size ݉ ൈ݉ with n (where n is
typically 128, 256, or 512) number of ሺݏ, ݀ሻ point pairs, where
a binary test is performed on each of the point-pairs. The binary
test ߬ is shown in Eq. (1), where ܲሺݏሻ is the pixel intensity in P
at location ݏ ൌ ሺݔ, ሻ். The resulting BRIEF descriptor forݕ
patch P is a n-dimensional bit-string as shown in (2).

߬ሺܲ; ,ݏ ݀ሻ ൌ ቄ	1					݂݅	ܲሺݏሻ ൏ ܲሺ݀ሻ
							݁ݏ݅ݓݎ݄݁ݐ݋						0

 (1)

ሺܲሻܤ ൌ ∑ 2௜ିଵ ∙ ߬ሺܲ; ,௜ݏ ݀௜ሻଵஸ௜ஸ௡ (2)

ሻݏሺܣ ൌ
ቀ∑ ∑ ூሺ௫ା௜,௬ା௝ሻ

ۂೝ/మہ
ೕసషہೝ/మۂ

ۂೝ/మہ
೔సషہೝ/మۂ ቁ

௥మ
 (3)

The choice of the n binary test locations in Eq. (2) (i.e.

ሺݏ௜, ݀௜ሻ) can be customized or learned from the image scenes of
the application. Fig. 1 shows four approaches (GI to GIV) for
choosing the test locations [3]. Since intensity comparison is
sensitive to noise, a smoothing step is performed on the image
patch P prior to computing the BRIEF descriptor. The
smoothing operation is typically achieved using a box filter of
size ݎ ൈ Eq. (3) shows the smoothing (averaging) operation .ݎ
at location ݏ ൌ ሺݔ, .ሻ் in image Iݕ

Fig. 1. Different approaches for choosing the test locations [3].

B. Baseline	Implementation	
We have adapted the FAST-BRIEF design in [10] as our

baseline since it is the only stream processing architecture in the
literature that provided sufficient implementation details. The
baseline implementation relies on a patch size of 33x33 (i.e. m
= 33) to compute a 256-bit BRIEF descriptor (i.e. n = 256). A
7x7 box filter (i.e. r = 7) is used to smooth the pixel intensities
in the patch prior to performing the binary tests. We have relied
on the more commonly-used box filter for the smoothing
operation (which is consistent with the original BRIEF
algorithm) while [10] employs a circular averaging filter.

Fig. 2 shows an overview of the FAST-BRIEF architecture of
the baseline and proposed implementation, which consists of

the FAST-BRIEF core and row buffers. Under the assumption
that the image is read sequentially using a raster scan mode at a
rate of one pixel per clock cycle, the incoming pixels need to be
cached locally using a set of row buffers. 6 row buffers are
concatenated in the form of FIFO (First-In, First-Out) delay
buffers to cache the incoming pixels. The size of each row
buffer is equivalent to the horizontal resolution of the image L
(for example L = 640 for 640x480 image), and hence each row
buffer effectively delays the input by one row.

Fig. 2. Overview of FAST-BRIEF architecture.

Fig. 3(a). Averaging filter (AF) of the baseline implementation, (b)
Descriptor computation (DC) of the baseline implementation.

In the baseline implementation, the k-bit (k = 8 for grayscale

images) pixels at the tail end of each row buffer are shifted into
a set of registers, called the window buffer (see Fig. 3(a)). These
pixels will be simultaneously processed by the FAST corner
detector and averaging filter (AF). The hardware
implementation of the FAST corner detector is same as [10].
Note that the FAST corner detector requires another 6 row
buffers to perform the Non-Maximal Suppression (NMS).

The AF performs the smoothing operation, which requires a
6-level adder tree (݃݋݈ڿଶሺ49ሻۀ) and a divider. Note that [10] did
not provide the detail implementation of AF and hence, we have
used the box filter design in [14]. The average value is then
shifted into another set of row buffers as shown in Fig. 2. Since
the BRIEF descriptor is computed on a 33x33 patch, we require
another 32 FIFO delay buffers to cache the average pixel

One incoming
pixel at every
clock cycle Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

8

Bright Score
Unit with
4‐stage

adder tree

Dark Score
Unit with
 4‐stage

adder tree

Max
Contiguity
Check

FAST Corner Detector

Averaging Filter
(AF)

Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

NMS
7x7 Window

Buffer

Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

Row buffer

16 Bresenham points + center pixel

…..

Descriptor
Computation

(DC)

One
Descriptor
At each

clock cycle

256

FAST‐BRIEF Core

One
Corner at

each
clock
cycle

Row Buffers

Average pixel intensity

6
 R
o
w
 B
u
ff
e
rs

3
2
 R
o
w
 B
u
ff
e
rs

6
 R
o
w
 B
u
ff
e
rs

….. …..

33x33 Window buffer

8
8
8

8

256

8

8

8

8

8

8

8

8

8

8

(a) (b)

7x7 Window buffer

8
8
8

8

x/49

8

8

8

8

8

8

8

7x8

To FAST Corner Detector

values. The tail end of these buffers is shifted into the 33x33
window buffer which enables the BRIEF Descriptor
Computation (DC) module to perform the 256 binary tests in
parallel using 256 comparators (see Fig. 3(b)). The operations
in the architecture are pipelined to maintain maximum
throughput. The outputs of the FAST, AF and DC modules are
registered. A new FAST corner and a 256-bit BRIEF descriptor
will be produced at the rate of the incoming pixel. The critical
path delay of the baseline BRIEF core lies in the divider in AF.

IV. PROPOSED ARCHITECTURE

The proposed architecture adopts the same computational
blocks and row buffers as shown in Fig. 2. Like the baseline
implementation, a new FAST corner and a 256-bit BRIEF
descriptor will be produced at the rate of the incoming pixel.
The FAST implementation is the same as the baseline. Next, we
describe the proposed designs for AF and DC.

A. Proposed Averaging Filter (AF)

The AF in the baseline implementation performs a 7x7 box
filter operation that requires the accumulation of 49-pixel
intensities before they are divided by a constant. Instead of
relying on a large adder tree, the proposed AF uses minimal
resources to accumulate continuous pixel stream in the 7x7
window patch in two steps as shown in Fig. 4. First, a pipelined
4-level adder tree is employed to accumulate the row pixel
values in the input register (Row Add). Due to the continuous
input pixel stream, a new accumulated row pixel value is
produced in each clock cycle. In the second step, the
accumulated row pixel values are summed using a single adder
(Column Add). Since the final accumulated value of 7 columns
are required, a FIFO is used to delay the values that will be
subtracted from the current accumulated row pixel value at each
clock cycle. The proposed AF leads to 2x lesser registers and
more than 4x lesser adders that the implementation in [14].

Fig. 4. Architecture of proposed AF.

Finally, the proposed AF utilizes a pipelined Single Constant

Multiplication (SCM) that multiplies the final accumulated
value by 1/49 to compute the average value of 7x7 pixels. The
SCM design is based on [15] with 15 fractional bit precision.
The critical path delay of the proposed AF is only one adder
delay. Compared to the baseline AF, the proposed design leads
to lower number of hardware resources and critical path delay.

B. Proposed Descriptor Computation (DC)

The baseline DC employs a 33x33 window buffer to enable
256 binary tests in parallel. However at any one time, only 512
of the 1089 (33x33) elements of the window buffer are used for
computations which results in high redundancy. The proposed
sampling scheme takes advantage of the pre-determined BRIEF
sample patterns to customize the storage, computational
resources and interconnectivity in DC, such that maximal
utilization is achieved while maintaining the required

throughput. We will describe the proposed DC based on
example in Fig. 5(a) with an 8x8 image patch and 6 BRIEF
point-pairs. Let’s denote the 6 BRIEF point-pairs in Fig. 5(a) as
N1, N2, …, N6.

Fig. 5. (a) An 8x8 image patch with 6 BRIEF point-pairs (i.e. m = 8
and n = 6, where the arrow denotes s → d), (b) Proposed DC.

The proposed DC (Fig. 5(b)), comprises of four stages:
 Input Registers: Unlike the baseline implementation, the

BRIEF computation is performed on the averaged pixel
values as soon as they are available from the row buffers.
Only a single column of input registers (i.e. A0, B0, …, G0)
is required. Note that each input register can be used in the
binary tests of more than one BRIEF point pair. For
example, A0 can be simultaneously used for the binary tests
of N1and N2 (for different image patches). Only 7 input
registers are required (instead of 8) as none of the averaged
pixel values in the last row of Fig. 7 is used for binary tests.
Compared to the 8x8 window buffer in the baseline
implementation, the input registers in the proposed DC are
more efficiently utilized for BRIEF computation.

 Shift Registers: The purpose of the shift registers is to delay
the averaged pixel values such that the correct pair of P(s)
and P(d) values are used in the binary tests. For example,
for the binary test of N3, the corresponding P(d) that arrives
at A0 must be delayed by 3 clock cycles (via shift registers
A1 - A3) before the corresponding P(s) is available at C0.
Only when both P(s) and P(d) of N3 are available, the
binary test (Eq. (1)) can be performed. The number of shift
registers required for each binary test therefore depends on
the column offset of each s-d pair. Note that we have
employed register sharing to further reduce the number of
shift registers. For example, G1 is used to delay P(s) of N4
and P(d) of N6.

 Compare: In this stage, the corresponding BRIEF point-
pair values (P(s) and P(d)) are available, and the binary test
(Eq. 1) can be performed. Like the baseline
implementation, 6 comparators are used to perform the 6
binary tests in parallel.

 Bit Shifters: Unlike the baseline implementation, the
BRIEF point-pairs that are being evaluated at the Compare
stage may not belong to the same image patch. This is
because each averaged pixel value in the Input Registers
could be used to simultaneously compute multiple binary
tests of different image patches. As such, the output of the
Compare stage must be synchronized to produce the
BRIEF descriptor that corresponds to each image patch.
This is achieved by using bit shifters (since the output of
each binary test is a bit). The number of bit shifters depends
on the column offset from the leftmost column of the image

Row Add Column Add

Fr
om

 7
x7

W
in
d
ow

 B
uf
fe
r SCM

<<7

<<5

<<3

>>13

‐

8

8

8

8

8

8

8

9

9

9

10

10

11 11

8

14 14

8

patch to the column that s or d (whichever comes first)
resides on. For example, there are two bit-shifters for N6,
since s of N6 resides on the 3rd column of the image patch
in Fig. 5(a).

The number of registers required by the proposed DC for the
example in Fig. 5(a) is about 23 (normalized to 8-bit registers)
compared to 64 which is required by the baseline DC. It is
evident that the proposed design can lead to significantly lower
number of registers, however this depends on the configuration
of the BRIEF point-pairs. Specifically, the number of required
shift registers depends on n (size of the descriptor), the total
column offsets between the BRIEF point pairs, and the
opportunities for register sharing. In addition, the number of bit
shifters depends on n and the distance of s or d from the leftmost
column of the image patch. We will show that the proposed DC
leads to notably lesser area utilization in most cases.

V. RESULTS AND DISCUSSION

Table 1 shows the resource analysis for the baseline and
proposed AF (Baseline-AF and Proposed-AF). For the
Baseline-AF, the number of registers and adders required by the
6-level adder tree with 49 inputs is 52 and 48 respectively. In
addition, Baseline-AF requires a divider. As can be observed
from Fig. 4, Proposed-AF requires only 26 registers (including
output register) and 11 adders. Note that we have not considered
the registers for the 7x7 window buffer that is required for both
the baseline and proposed method. It is evident that the
resources that are required by the proposed implementation is
lesser than the baseline as the accumulation of the 49-pixel
values is achieved in two stages, Row Add and Column Add (see
Fig. 4), to accumulate the row and column values separately.

Table 2 shows the number of registers for the proposed DC
modules (Proposed-DC-GI to Proposed-DC-GIV). The number
of registers for the baseline design is fixed at 1121 (i.e. 33x33
+ 256/8), while the number of registers for the proposed design
is dependent on the BRIEF point-pair configurations. GI - GIV
refers to the different BRIEF point-pair configurations in Fig.
1. We implemented a software program to automatically
generate optimized sampling scheme for the various BRIEF-
point-pair configurations. In particular, the program generates
the shift registers with resource sharing, the bit shifters, and the
custom interconnect as described earlier.

TABLE 1: RESOURCE FOR BASELINE AND PROPOSED AF

 Baseline-AF Proposed-AF

REG 52 26
Adder 48 11
Divider 1 -

TABLE 2: REGISTERS FOR PROPOSED DC (NUMBER OF REGISTERS FOR

BASELINE DC IS FIXED AT 1121)
 Input

Registers
Shift

Registers
Bit

Shifters
Total

Proposed-DC-GI 33 773 392 1198
Proposed-DC-GII 33 433 416 882
Proposed-DC-GIII 33 170 529 732
Proposed-DC-GIV 33 478 406 917

We only report the number of registers in Table 2 as both the
baseline and proposed design require the same number of
comparators (i.e. 256). Note that the registers in Table 2 are
normalized to 8-bit registers. It can be observed that apart from
the GI configuration, the proposed design requires notably
lesser number of registers. Proposed-DC-GI has slightly more
registers than the baseline due to the need for larger number of
shift registers to accommodate the BRIEF point-pairs with
larger column distances (see Fig. 1). These results demonstrate
that in general, the proposed optimized sampling scheme can
effectively take advantage of register reuse and reduce the
overall registers for computing the BRIEF point-pairs.

The baseline and proposed architectures were implemented
using Verilog and synthesized with Synopsys DC targeting the
65-nm CMOS technology library. The designs were
synthesized to achieve maximum clock frequency. Table 3
shows the area-delay synthesis results for the baseline and
proposed AF and DC modules. The area utilization of the
proposed AF module is about 36% lower than the baseline AF.
In addition, as discussed in the previous section, the critical path
delay of the baseline AF is governed by the latency of the
divider, which is larger than the critical path delay of the
proposed AF (i.e. latency of one adder).

The baseline DC implementation for GI – GIV BRIEF point-
pair configurations have similar critical path delay and area
utilization. This is expected as the baseline DC design is the
same for all the configurations. The critical path delay of the
baseline and proposed DC is similar as they are both governed
by the latency of the comparator. However, unlike the baseline
implementation, the proposed DC exhibits differing area
utilization for the various BRIEF point-pair configurations.
These results are consistent with our resource analysis in Table
2, where the area utilization of Proposed-DC-GI is slightly
higher than the baseline DC, but for the rest of the BRIEF point-
pair configurations, we can observe a significant reduction in
area utilization. The proposed DC implementation for GI – GIV
BRIEF point-pair configurations achieves -2.5%, 20.4%, 30%,
and 17.4% area reduction when compared to the corresponding
baseline implementation. These results clearly show the
effectiveness of the proposed pipelining approach for DC.

Table 4 reports the synthesis results for the FAST-BRIEF
core (FAST, AF and DC) of the baseline and proposed designs.
It can be observed that the proposed design achieves an average
reduction of 17% in area utilization over the baseline design.
The last column of Table 4 shows the percentage Area-Delay
Product (ADP) reduction of the proposed FAST-BRIEF core
over the baseline. On average, the ADP reduction of the
proposed design over the baseline design is over 40%.

Table 5 shows the power consumption and energy per pixel
of the baseline and proposed streaming FAST-BRIEF
architecture for 640x480 images. This requires 44 row buffers,
where the size of each row buffer is 640. Energy per pixel is
computed as the product of power (mW) and minimum clock
period (ns). Although the power consumption of the baseline
architecture is lower than the proposed (due to the lower
operating frequency), the energy per pixel of both architectures
have marginal difference.

TABLE 3: AREA-DELAY SYNTHESIS RESULTS OF AF AND DC BASED ON 65-NM CMOS TECHNOLOGY LIBRARY

Design

Baseline Proposed

Delay (ns)

Area (sq um) Area x
Delay

Delay (ns)

Area (sq um) Area x
Delay Comb Non-Comb Total Comb Non-Comb Total

FAST 1.3 8022 6421 14443 18775.9 Same as Baseline
AF 2.1 4703 2822.4 7525.4 15803.3 0.7 2124.36 2645.28 4769.64 3338.7
DC-GI 0.7 13311.0 65100.9 78411.9 54888.3 0.7 12686.8 67720.3 80407.1 56284.9
DC-GII 0.7 14492.5 65179.1 79671.6 55770.1 0.7 12854.9 50528.9 63383.8 44368.7
DC-GIII 0.7 12355.2 64907.6 77262.8 54083.9 0.7 11923.9 42154.9 54078.8 37855.1
DC-GIV 0.7 12817.1 65009.5 77826.6 54478.6 0.6 11850.5 52460.6 64311.1 38586.7

TABLE 4: AREA-DELAY SYNTHESIS RESULTS OF FAST-BRIEF CORE BASED ON 65-NM CMOS TECHNOLOGY LIBRARY

 Baseline Proposed
 Delay (ns) Area (sq um) Area x Delay Delay

(ns)
Area (sq

um)
Area x Delay Area

Reduction
(%)

ADP
Reduction

(%)
FAST-BRIEF (GI)

2.1
100403.7 210847.7

1.5
97352.7 146029.0 3.0 30.7

FAST-BRIEF (GII) 100578.7 211215.2 80617.7 120926.5 19.8 42.7
FAST-BRIEF (GIII) 99957.7 209911.1 72455.7 108683.5 27.5 48.2
FAST-BRIEF (GIV) 100674.7 211416.8 82574.7 123862.0 18.0 41.4

TABLE 5: POWER, ENERGY-PER-PIXEL AND THROUGHPUT (FPS) OF

FAST-BRIEF ARCHITECTURE FOR 640X480 IMAGES
 Baseline Proposed

Power
(mW)

Energy/
Pixel

FPS
(640x480)

Power
(mW)

Energy/
Pixel

FPS
(640x480)

GI 823.5 1729.35
1550

1150 1725
2170 GII 823.6 1729.56 1137 1705.5

GIII 823.5 1729.35 1131 1696.5
GIV 823.6 1729.56 1138 1707

The proposed architecture achieves about 1.4X higher

throughput in terms of frame per seconds (FPS) over the
baseline architecture. Note that the FPS for both the baseline
and proposed architectures remain the same for different
BRIEF configurations, as the critical path delays are the same
(see Table 4).

We have also performed accuracy evaluation based on the
repeatability criterion using the image dataset from [16]. The
repeatability criterion is based on the notion that robust
descriptors should be invariant to imaging conditions. The
overall difference in repeatability between the proposed and
baseline architectures is negligible, which demonstrate that the
proposed architecture has similar degree of robustness
compared to the baseline architecture.

VI. CONCLUSION

The proposed FAST-BRIEF architecture incorporates hardware
optimizations for the smoothing operations and binary tests of
the BRIEF point pairs. A novel pipelining approach was
introduced to compute the binary tests of multiple BRIEF point
pairs from each incoming pixel, and then using bit shifters to
synchronize the outputs of the BRIEF descriptors. The
proposed design achieves significant area-delay and throughput
benefits over the conventional design.

REFERENCES
[1] S. Gauglitz, T. Hollerer, and M. Turk, "Evaluation of interest point

detectors and feature descriptors for visual tracking", International
Journal of Computer Vision, Vol. 94, pp. 335-360, 2011.

[2] J. Soh and X. Wu, “An FPGA-Based Unscented Kalman Filter for
System-On-Chip Applications”, IEEE Transactions on Circuits and
Systems II, Vol. 64, No. 4, pp. 447-451, April 2017.

[3] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust
Independent Elementary Features”, European Conference o Computer
Vision, pp. 778-792, 2010.

[4] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua,
“BRIEF: Computing a Local Binary Descriptor Very Fast”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No.
7, July 2012, pp. 1281-1298.

[5] R. Mur-Artal, J.M.M. Montiel, and J.D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System”, IEEE Transactions
on Robotics, Vol. 31, No. 5, October 2015, pp. 1147-1163

[6] H. Heo, J.-Y. Lee, K.-Y. Lee, and C.-H. Lee, “FPGA-based
Implementation of FAST and BRIEF Algorithm for Object Recognition”,
IEEE TENCON, 2013.

[7] C.-S. Seo, S.-Y. Kim, J.-P. Ko, H.-J. Chung, Y.-H. Lee, “Feature Point
Detection Hardware Based on Fast and Brief Algorithm”, International
Journal of Management and Applied Science (IJMAS), Vol. 3, No. 1,
2015, pp. 81-84.

[8] J.S. Park, H.E. Kim, and L.S. Kim, “A 182mW 94.3 f/s in full HD pattern-
matching based image recognition accelerator for an embedded vision
system in 0.13-μm CMOS technology”, IEEE Trans. Circuits and
Systems for Video Technology, Vol. 23, No. 5, pp. 832-845, 2013

[9] W. Farhat, H. Faiedh, and C. Souani, “Real-time Embedded System for
Traffic Sign Recognition based on ZedBoard”, Journal of Real-Time
Image Processing, April 2017, pp. 1-11.

[10] M. Fularz, M. Kraft, A. Schmidt and A. Kasinski, "A High-Performance
FPGA-based Image Feature Detector and Matcher based on the FAST and
BRIEF Algorithms", International Journal of Advanced Robotic Systems,
Vol. 12, 2015.

[11] F. Brenot, J. Piat, and P. Fillatreau, “FPGA-based Hardware Acceleration
of a BRIEF Correlator Module for a Monocular SLAM Application”,
Proceedings of the 10th International Conference on Distributed Smart
Camera, 2016, pp. 184-189.

[12] W. Fang, Y. Zhang, B. Yu, and S. Liu, “FPGA-based ORB Feature
Extraction for Real-Time Visual SLAM”, Available:
https://arxiv.org/abs/1710.07312.

[13] R. de Lima, J. M-Carranza, A. M-Reyes, and R. Cumplido, “Improving
the Construction of ORB through FPGA-based Acceleration”, Machine
Vision and Applications, Vol. 28, pp. 525-537.

[14] R. Shenghui, Z. Huixin, W. Zhigang, Q. Hanlin, Q. Kun, and C.
Kuanhong, “An Improved Non-Uniformity Correction Algorithm and its
Hardware Implementation on FPGA”, Infrared Physics and Technology,
85, 2017, pp. 410-420.

[15] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant
Multiplication”, ACM Transactions on Algorithms, Vol. 3, No. 2, 2007.

[16] Affine Covariant Features. Available: http://www.robots.ox.ac.uk/
~vgg/research/affine/

