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Abstract—The combination of FAST corners and BRIEF 

descriptors provide highly robust image features. We present a 
novel detector for computing the FAST-BRIEF features from 
streaming images. To reduce the complexity of the BRIEF 
descriptor, we employ an optimized adder tree to perform 
summation by accumulation on streaming pixels for the smoothing 
operation. Since the window buffer used in existing designs for 
computing the BRIEF point-pairs are often poorly utilized, we 
propose an efficient sampling scheme that exploits register reuse 
to minimize the number of registers. Synthesis results based on 65-
nm CMOS technology show that the proposed FAST-BRIEF core 
achieves over 40% reduction in area-delay product compared to 
the baseline design. In addition, we show that the proposed 
architecture can achieve 1.4x higher throughput than the baseline 
architecture with slightly lower energy consumption.     
 

Index Terms—Feature descriptor, embedded vision, VLSI, 
hardware acceleration 

I. INTRODUCTION 

OMPUTER vision algorithms such as Simultaneous 
Localization and Mapping (SLAM), object detection, 

object matching and image correspondence, rely on image 
features [1]. The features are used for object representation, or 
directly matched and tracked across multiple frames. Due to the 
real-time nature of these applications [2], the computational 
complexity for detecting the features must be kept low.   

The Features from an Accelerated Segment Test (FAST) 
algorithm was introduced to detect reasonable corners at high 
speed. The Binary Robust Independent Elementary Feature 
(BRIEF) descriptor is computed by performing binary tests of 
n point-pairs on a square image patch. The combination of 
FAST and BRIEF (FAST-BRIEF) [3][4] has been shown to 
outperform other image features in many applications [5]. 
FAST-BRIEF features provide a good trade-off between 
robustness and compute efficiency. However, it still contributes 
to a significant portion of the overall application runtime. For 
example, the FAST-BRIEF detector contributes to over a third 
of the total runtime of a real-time tracking process [5]. This has 
motivated several hardware implementations for the FAST-
BRIEF detector. Existing hardware realizations can be 
categorized into non-stream and stream processing.  

Non-stream processing architectures such as [6]-[9] assumes 
the availability of a frame buffer that stores the image frame. 
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This enables the BRIEF descriptors to be computed only for 
patches that are centered on the detected FAST corners. The 
work in [6][7] presented a FPGA implementation of an object 
recognition system that relies on FAST-BRIEF features, which 
are detected at multiple scales in parallel [6]. The 256-bit 
BRIEF descriptor of each corner is computed by performing 
sequential binary test on the corresponding 256 point-pairs. The 
FAST-BRIEF implementation in [6] achieves a frame rate of 
about 55 FPS for a 640x480 image at a clock operating 
frequency of 100MHz. A FAST architecture using a string 
matching algorithm was proposed in [8]. This implementation 
requires an external memory for frame buffering and a 
mechanism for sequencing the input data in the form of a 1D 
text for string matching. Non-stream processing architectures 
such as [6]-[9] suffer from the need of large memory resources.  

On the contrary, stream processing architectures (e.g. [10]-
[13]) are extremely attractive as they do not require external 
memories for storing input video frames and can achieve high 
throughput (since the memory fetch and store latencies are 
avoided). However, in stream processing architectures where 
the incoming pixels are processed on-the-fly without being 
stored in frame buffers, the BRIEF descriptors need to be 
computed for all pixel locations. This is performed in parallel 
with the FAST corner detection, and only the BRIEF 
descriptors corresponding to detected corners are used as 
outputs. Stream-based architectures for computing the BRIEF 
descriptor need many parallel processing elements to keep up 
with the rate of incoming pixel streams. For example, the work 
in [10] employs a 33x33 register file for storing the patch and 
utilizes 256 parallel comparators to compute the 256-bit 
descriptor of each patch in a single clock cycle. The FPGA 
implementation of the BRIEF descriptor in [10] achieves 325 
FPS for a 640x480 image at a clock frequency of 100MHz. The 
stream architectures in [11]-[13] also utilizes parallel 
comparators for computing the BRIEF descriptors as in [10]. 

II. MAIN CONTRIBUTIONS 

Our work focuses on stream processing architecture for 
FAST-BRIEF detector. Existing stream processing 
architectures rely on large computational resources for parallel 
processing of the smoothing operations and binary tests. We 
present two novel hardware design strategies that reduces the 
hardware complexity for computing the BRIEF descriptor: 

This research project is funded by the National Research Foundation 
Singapore under its Campus for Research Excellence and Technological 
Enterprise (CREATE) programme. 

Area-Time Efficient Streaming Architecture for 
FAST and BRIEF Detector 

Siew-Kei Lam, Member, IEEE, Guiyuan Jiang, Meiqing Wu, and Bin Cao 

C 



 An optimized adder tree for the smoothing operation that 
significantly reduces the number of adders through 
summation by accumulation of continuous input pixels. 

 An optimized sampling scheme that takes advantage of 
register reuse for computing the BRIEF point-pairs, which 
led to significant reduction in the number of registers. 

III. ALGORITHM AND BASELINE IMPLEMENTATION 

A. FAST-BRIEF Algorithm 

The FAST corner detector uses an efficient method to classify 
a pixel as a corner by considering pixels on the surrounding 
circle. The BRIEF descriptor is computed on an image patch P 
(centered at a FAST corner) of size ݉ ൈ݉ with n (where n is 
typically 128, 256, or 512) number of ሺݏ, ݀ሻ point pairs, where 
a binary test is performed on each of the point-pairs. The binary 
test ߬ is shown in Eq. (1), where ܲሺݏሻ is the pixel intensity in P 
at location ݏ ൌ ሺݔ,  ሻ். The resulting BRIEF descriptor forݕ
patch P is a n-dimensional bit-string as shown in (2). 

 

߬ሺܲ; ,ݏ ݀ሻ ൌ ቄ	1					݂݅	ܲሺݏሻ ൏ ܲሺ݀ሻ
							݁ݏ݅ݓݎ݄݁ݐ݋						0

   (1) 

 
ሺܲሻܤ ൌ ∑ 2௜ିଵ ∙ ߬ሺܲ; ,௜ݏ ݀௜ሻଵஸ௜ஸ௡   (2) 

 

ሻݏሺܣ ൌ
ቀ∑ ∑ ூሺ௫ା௜,௬ା௝ሻ

ۂೝ/మہ
ೕసషہೝ/మۂ

ۂೝ/మہ
೔సషہೝ/మۂ ቁ

௥మ
  (3) 

 
The choice of the n binary test locations in Eq. (2) (i.e. 

ሺݏ௜, ݀௜ሻ) can be customized or learned from the image scenes of 
the application. Fig. 1 shows four approaches (GI to GIV) for 
choosing the test locations [3]. Since intensity comparison is 
sensitive to noise, a smoothing step is performed on the image 
patch P prior to computing the BRIEF descriptor. The 
smoothing operation is typically achieved using a box filter of 
size ݎ ൈ  Eq. (3) shows the smoothing (averaging) operation .ݎ
at location ݏ ൌ ሺݔ,  .ሻ் in image Iݕ

 

 
Fig. 1. Different approaches for choosing the test locations [3]. 

B. Baseline	Implementation	
We have adapted the FAST-BRIEF design in [10] as our 

baseline since it is the only stream processing architecture in the 
literature that provided sufficient implementation details. The 
baseline implementation relies on a patch size of 33x33 (i.e. m 
= 33) to compute a 256-bit BRIEF descriptor (i.e. n = 256). A 
7x7 box filter (i.e. r = 7) is used to smooth the pixel intensities 
in the patch prior to performing the binary tests. We have relied 
on the more commonly-used box filter for the smoothing 
operation (which is consistent with the original BRIEF 
algorithm) while [10] employs a circular averaging filter.  

Fig. 2 shows an overview of the FAST-BRIEF architecture of 
the baseline and proposed implementation, which consists of 

the FAST-BRIEF core and row buffers. Under the assumption 
that the image is read sequentially using a raster scan mode at a 
rate of one pixel per clock cycle, the incoming pixels need to be 
cached locally using a set of row buffers. 6 row buffers are 
concatenated in the form of FIFO (First-In, First-Out) delay 
buffers to cache the incoming pixels. The size of each row 
buffer is equivalent to the horizontal resolution of the image L 
(for example L = 640 for 640x480 image), and hence each row 
buffer effectively delays the input by one row. 

 

 
Fig. 2. Overview of FAST-BRIEF architecture. 

 

 
Fig. 3(a). Averaging filter (AF) of the baseline implementation, (b) 
Descriptor computation (DC) of the baseline implementation. 

 
In the baseline implementation, the k-bit (k = 8 for grayscale 

images) pixels at the tail end of each row buffer are shifted into 
a set of registers, called the window buffer (see Fig. 3(a)). These 
pixels will be simultaneously processed by the FAST corner 
detector and averaging filter (AF). The hardware 
implementation of the FAST corner detector is same as [10]. 
Note that the FAST corner detector requires another 6 row 
buffers to perform the Non-Maximal Suppression (NMS).  

The AF performs the smoothing operation, which requires a 
6-level adder tree (݃݋݈ڿଶሺ49ሻۀ) and a divider. Note that [10] did 
not provide the detail implementation of AF and hence, we have 
used the box filter design in [14]. The average value is then 
shifted into another set of row buffers as shown in Fig. 2. Since 
the BRIEF descriptor is computed on a 33x33 patch, we require 
another 32 FIFO delay buffers to cache the average pixel 
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values. The tail end of these buffers is shifted into the 33x33 
window buffer which enables the BRIEF Descriptor 
Computation (DC) module to perform the 256 binary tests in 
parallel using 256 comparators (see Fig. 3(b)). The operations 
in the architecture are pipelined to maintain maximum 
throughput. The outputs of the FAST, AF and DC modules are 
registered. A new FAST corner and a 256-bit BRIEF descriptor 
will be produced at the rate of the incoming pixel. The critical 
path delay of the baseline BRIEF core lies in the divider in AF. 

IV. PROPOSED ARCHITECTURE 

The proposed architecture adopts the same computational 
blocks and row buffers as shown in Fig. 2. Like the baseline 
implementation, a new FAST corner and a 256-bit BRIEF 
descriptor will be produced at the rate of the incoming pixel. 
The FAST implementation is the same as the baseline. Next, we 
describe the proposed designs for AF and DC. 

A. Proposed Averaging Filter (AF) 

The AF in the baseline implementation performs a 7x7 box 
filter operation that requires the accumulation of 49-pixel 
intensities before they are divided by a constant. Instead of 
relying on a large adder tree, the proposed AF uses minimal 
resources to accumulate continuous pixel stream in the 7x7 
window patch in two steps as shown in Fig. 4. First, a pipelined 
4-level adder tree is employed to accumulate the row pixel 
values in the input register (Row Add). Due to the continuous 
input pixel stream, a new accumulated row pixel value is 
produced in each clock cycle. In the second step, the 
accumulated row pixel values are summed using a single adder 
(Column Add). Since the final accumulated value of 7 columns 
are required, a FIFO is used to delay the values that will be 
subtracted from the current accumulated row pixel value at each 
clock cycle. The proposed AF leads to 2x lesser registers and 
more than 4x lesser adders that the implementation in [14]. 

 

 
Fig. 4. Architecture of proposed AF. 

 
Finally, the proposed AF utilizes a pipelined Single Constant 

Multiplication (SCM) that multiplies the final accumulated 
value by 1/49 to compute the average value of 7x7 pixels. The 
SCM design is based on [15] with 15 fractional bit precision. 
The critical path delay of the proposed AF is only one adder 
delay. Compared to the baseline AF, the proposed design leads 
to lower number of hardware resources and critical path delay. 

B. Proposed Descriptor Computation (DC) 

The baseline DC employs a 33x33 window buffer to enable 
256 binary tests in parallel. However at any one time, only 512 
of the 1089 (33x33) elements of the window buffer are used for 
computations which results in high redundancy. The proposed 
sampling scheme takes advantage of the pre-determined BRIEF 
sample patterns to customize the storage, computational 
resources and interconnectivity in DC, such that maximal 
utilization is achieved while maintaining the required 

throughput. We will describe the proposed DC based on 
example in Fig. 5(a) with an 8x8 image patch and 6 BRIEF 
point-pairs. Let’s denote the 6 BRIEF point-pairs in Fig. 5(a) as 
N1, N2, …, N6.  

 
Fig. 5. (a) An 8x8 image patch with 6 BRIEF point-pairs (i.e. m = 8 
and n = 6, where the arrow denotes s → d), (b) Proposed DC. 
 

The proposed DC (Fig. 5(b)), comprises of four stages:  
 Input Registers: Unlike the baseline implementation, the 

BRIEF computation is performed on the averaged pixel 
values as soon as they are available from the row buffers. 
Only a single column of input registers (i.e. A0, B0, …, G0) 
is required. Note that each input register can be used in the 
binary tests of more than one BRIEF point pair. For 
example, A0 can be simultaneously used for the binary tests 
of N1and N2 (for different image patches). Only 7 input 
registers are required (instead of 8) as none of the averaged 
pixel values in the last row of Fig. 7 is used for binary tests. 
Compared to the 8x8 window buffer in the baseline 
implementation, the input registers in the proposed DC are 
more efficiently utilized for BRIEF computation. 

 Shift Registers: The purpose of the shift registers is to delay 
the averaged pixel values such that the correct pair of P(s) 
and P(d) values are used in the binary tests. For example, 
for the binary test of N3, the corresponding P(d) that arrives 
at A0 must be delayed by 3 clock cycles (via shift registers 
A1 - A3) before the corresponding P(s) is available at C0. 
Only when both P(s) and P(d) of N3 are available, the 
binary test (Eq. (1)) can be performed. The number of shift 
registers required for each binary test therefore depends on 
the column offset of each s-d pair. Note that we have 
employed register sharing to further reduce the number of 
shift registers. For example, G1 is used to delay P(s) of N4 
and P(d) of N6.  

 Compare: In this stage, the corresponding BRIEF point-
pair values (P(s) and P(d)) are available, and the binary test 
(Eq. 1) can be performed. Like the baseline 
implementation, 6 comparators are used to perform the 6 
binary tests in parallel.  

 Bit Shifters: Unlike the baseline implementation, the 
BRIEF point-pairs that are being evaluated at the Compare 
stage may not belong to the same image patch. This is 
because each averaged pixel value in the Input Registers 
could be used to simultaneously compute multiple binary 
tests of different image patches. As such, the output of the 
Compare stage must be synchronized to produce the 
BRIEF descriptor that corresponds to each image patch. 
This is achieved by using bit shifters (since the output of 
each binary test is a bit). The number of bit shifters depends 
on the column offset from the leftmost column of the image 
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patch to the column that s or d (whichever comes first) 
resides on. For example, there are two bit-shifters for N6, 
since s of N6 resides on the 3rd column of the image patch 
in Fig. 5(a). 
 

The number of registers required by the proposed DC for the 
example in Fig. 5(a) is about 23 (normalized to 8-bit registers) 
compared to 64 which is required by the baseline DC. It is 
evident that the proposed design can lead to significantly lower 
number of registers, however this depends on the configuration 
of the BRIEF point-pairs. Specifically, the number of required 
shift registers depends on n (size of the descriptor), the total 
column offsets between the BRIEF point pairs, and the 
opportunities for register sharing. In addition, the number of bit 
shifters depends on n and the distance of s or d from the leftmost 
column of the image patch. We will show that the proposed DC 
leads to notably lesser area utilization in most cases. 

V. RESULTS AND DISCUSSION 

Table 1 shows the resource analysis for the baseline and 
proposed AF (Baseline-AF and Proposed-AF). For the 
Baseline-AF, the number of registers and adders required by the 
6-level adder tree with 49 inputs is 52 and 48 respectively. In 
addition, Baseline-AF requires a divider. As can be observed 
from Fig. 4, Proposed-AF requires only 26 registers (including 
output register) and 11 adders. Note that we have not considered 
the registers for the 7x7 window buffer that is required for both 
the baseline and proposed method. It is evident that the  
resources that are required by the proposed implementation is 
lesser than the baseline as the accumulation of the 49-pixel 
values is achieved in two stages, Row Add and Column Add (see 
Fig. 4), to accumulate the row and column values separately.  

Table 2 shows the number of registers for the proposed DC 
modules (Proposed-DC-GI to Proposed-DC-GIV). The number 
of registers for the baseline design is fixed at 1121 (i.e. 33x33 
+ 256/8), while the number of registers for the proposed design 
is dependent on the BRIEF point-pair configurations. GI - GIV 
refers to the different BRIEF point-pair configurations in Fig. 
1. We implemented a software program to automatically 
generate optimized sampling scheme for the various BRIEF- 
point-pair configurations. In particular, the program generates 
the shift registers with resource sharing, the bit shifters, and the 
custom interconnect as described earlier.  

 
TABLE 1: RESOURCE FOR BASELINE AND PROPOSED AF 

 Baseline-AF Proposed-AF

REG 52 26 
Adder 48 11 
Divider 1 - 

 
TABLE 2: REGISTERS FOR PROPOSED DC (NUMBER OF REGISTERS FOR 

BASELINE DC IS FIXED AT 1121) 
 Input 

Registers 
Shift 

Registers 
Bit 

Shifters 
Total 

Proposed-DC-GI 33 773 392 1198 
Proposed-DC-GII 33 433 416 882 
Proposed-DC-GIII 33 170 529 732 
Proposed-DC-GIV 33 478 406 917 

 

We only report the number of registers in Table 2 as both the 
baseline and proposed design require the same number of 
comparators (i.e. 256). Note that the registers in Table 2 are 
normalized to 8-bit registers. It can be observed that apart from 
the GI configuration, the proposed design requires notably 
lesser number of registers. Proposed-DC-GI has slightly more 
registers than the baseline due to the need for larger number of 
shift registers to accommodate the BRIEF point-pairs with 
larger column distances (see Fig. 1). These results demonstrate 
that in general, the proposed optimized sampling scheme can 
effectively take advantage of register reuse and reduce the 
overall registers for computing the BRIEF point-pairs. 

The baseline and proposed architectures were implemented 
using Verilog and synthesized with Synopsys DC targeting the 
65-nm CMOS technology library. The designs were 
synthesized to achieve maximum clock frequency. Table 3 
shows the area-delay synthesis results for the baseline and 
proposed AF and DC modules. The area utilization of the 
proposed AF module is about 36% lower than the baseline AF. 
In addition, as discussed in the previous section, the critical path 
delay of the baseline AF is governed by the latency of the 
divider, which is larger than the critical path delay of the 
proposed AF (i.e. latency of one adder).  

The baseline DC implementation for GI – GIV BRIEF point-
pair configurations have similar critical path delay and area 
utilization. This is expected as the baseline DC design is the 
same for all the configurations. The critical path delay of the 
baseline and proposed DC is similar as they are both governed 
by the latency of the comparator. However, unlike the baseline 
implementation, the proposed DC exhibits differing area 
utilization for the various BRIEF point-pair configurations. 
These results are consistent with our resource analysis in Table 
2, where the area utilization of Proposed-DC-GI is slightly 
higher than the baseline DC, but for the rest of the BRIEF point-
pair configurations, we can observe a significant reduction in 
area utilization. The proposed DC implementation for GI – GIV 
BRIEF point-pair configurations achieves -2.5%, 20.4%, 30%, 
and 17.4% area reduction when compared to the corresponding 
baseline implementation. These results clearly show the 
effectiveness of the proposed pipelining approach for DC. 

Table 4 reports the synthesis results for the FAST-BRIEF 
core (FAST, AF and DC) of the baseline and proposed designs. 
It can be observed that the proposed design achieves an average 
reduction of 17% in area utilization over the baseline design. 
The last column of Table 4 shows the percentage Area-Delay 
Product (ADP) reduction of the proposed FAST-BRIEF core 
over the baseline. On average, the ADP reduction of the 
proposed design over the baseline design is over 40%. 

Table 5 shows the power consumption and energy per pixel 
of the baseline and proposed streaming FAST-BRIEF 
architecture for 640x480 images. This requires 44 row buffers, 
where the size of each row buffer is 640. Energy per pixel is 
computed as the product of power (mW) and minimum clock 
period (ns). Although the power consumption of the baseline 
architecture is lower than the proposed (due to the lower 
operating frequency), the energy per pixel of both architectures 
have marginal difference.  



 
TABLE 3: AREA-DELAY SYNTHESIS RESULTS OF AF AND DC BASED ON 65-NM CMOS TECHNOLOGY LIBRARY

 
Design 

Baseline Proposed 
 
Delay (ns) 

Area (sq um) Area x 
Delay  

 
Delay (ns) 

Area (sq um) Area x 
Delay  Comb Non-Comb Total Comb Non-Comb Total 

FAST 1.3 8022 6421 14443 18775.9 Same as Baseline 
AF 2.1 4703 2822.4 7525.4 15803.3 0.7 2124.36 2645.28 4769.64 3338.7 
DC-GI 0.7 13311.0 65100.9 78411.9 54888.3 0.7 12686.8 67720.3 80407.1 56284.9 
DC-GII 0.7 14492.5 65179.1 79671.6 55770.1 0.7 12854.9 50528.9 63383.8 44368.7 
DC-GIII 0.7 12355.2 64907.6 77262.8 54083.9 0.7 11923.9 42154.9 54078.8 37855.1 
DC-GIV 0.7 12817.1 65009.5 77826.6 54478.6 0.6 11850.5 52460.6 64311.1 38586.7 

 
TABLE 4: AREA-DELAY SYNTHESIS RESULTS OF FAST-BRIEF CORE BASED ON 65-NM CMOS TECHNOLOGY LIBRARY

 Baseline Proposed 
 Delay (ns) Area (sq um) Area x Delay Delay 

(ns) 
Area (sq 

um) 
Area x Delay Area 

Reduction 
(%) 

ADP 
Reduction 

(%) 
FAST-BRIEF (GI)  

2.1 
100403.7 210847.7  

1.5 
97352.7 146029.0 3.0 30.7 

FAST-BRIEF (GII) 100578.7 211215.2 80617.7 120926.5 19.8 42.7 
FAST-BRIEF (GIII) 99957.7 209911.1 72455.7 108683.5 27.5 48.2 
FAST-BRIEF (GIV) 100674.7 211416.8 82574.7 123862.0 18.0 41.4 

TABLE 5: POWER, ENERGY-PER-PIXEL AND THROUGHPUT (FPS) OF 

FAST-BRIEF ARCHITECTURE FOR 640X480 IMAGES 
 Baseline Proposed

Power 
(mW) 

Energy/ 
Pixel 

FPS 
(640x480) 

Power 
(mW) 

Energy/ 
Pixel 

FPS 
(640x480)

GI 823.5 1729.35  
1550 

1150 1725  
2170 GII 823.6 1729.56 1137 1705.5 

GIII 823.5 1729.35 1131 1696.5 
GIV 823.6 1729.56 1138 1707 

 
The proposed architecture achieves about 1.4X higher 

throughput in terms of frame per seconds (FPS) over the 
baseline architecture. Note that the FPS for both the baseline 
and proposed architectures remain the same for different 
BRIEF configurations, as the critical path delays are the same 
(see Table 4).  

We have also performed accuracy evaluation based on the 
repeatability criterion using the image dataset from [16]. The 
repeatability criterion is based on the notion that robust 
descriptors should be invariant to imaging conditions. The 
overall difference in repeatability between the proposed and 
baseline architectures is negligible, which demonstrate that the 
proposed architecture has similar degree of robustness 
compared to the baseline architecture. 

VI. CONCLUSION 

The proposed FAST-BRIEF architecture incorporates hardware 
optimizations for the smoothing operations and binary tests of 
the BRIEF point pairs. A novel pipelining approach was 
introduced to compute the binary tests of multiple BRIEF point 
pairs from each incoming pixel, and then using bit shifters to 
synchronize the outputs of the BRIEF descriptors. The 
proposed design achieves significant area-delay and throughput 
benefits over the conventional design. 
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