
ORIGINAL RESEARCH PAPER

Data-path unrolling with logic folding for area-time-efficient
FPGA-based FAST corner detector

Siew-Kei Lam1
• Teck Chuan Lim1

• Meiqing Wu1 • Bin Cao1 • Bhavan A. Jasani1

Received: 20 April 2017 / Accepted: 2 October 2017

� Springer-Verlag GmbH Germany 2017

Abstract Corner detection plays an essential role in many

computer vision applications, e.g., object recognition,

motion analysis and stereo matching. Several hardware

implementations of corner detection algorithms have been

previously reported to meet the real-time requirements of

such applications. However, most of the reported imple-

mentations adopt similar computational flow which limit

their potential for further area-time optimizations. In this

paper, we propose a novel hardware design for the FAST

corner detector, which unrolls the data-path to perform

partial evaluation of multiple corners in a pipelined man-

ner. We then apply logic folding that maximizes the design

regularity of the unrolled data-path for resource sharing of

the combinational operations. We show that the proposed

design on FPGA leads to 20% reduction in critical path

delay and about 39% reduction in area-delay product

compared to a previously reported architecture. The real-

time capability of the proposed FAST corner detectors is

demonstrated on the TERASIC DE2i-150 FPGA develop-

ment kit.

Keywords Corner detector � FPGA � Area-time

optimization � Data-path transposition � Resource sharing

1 Introduction

Real-time computer vision algorithms are extensively used

in a wide range of applications such as vision-based nav-

igation of unmanned vehicles [1] and robots [2], video

encoding [3], object tracking [4] and visual SLAM (Si-

multaneous Localization and Mapping) [5]. While end-to-

end deep learning methods such as using CNN (Convolu-

tional Neural Network) have shown impressive results in

recent years, the power budgets of embedded applications

are expected to limit the maximum achievable accuracy

and runtime of these methods on platforms with restricted

computational resources [35]. As such, classical computer

vision algorithms with lower computational complexity are

still viable solutions for deployment in embedded vision

applications with tight computational constraints to meet

real-time requirements.

A fundamental step in these applications is the detection

of corners which represent identifiable anchor points in the

image. Corners are used for matching between images

(e.g., image registration), object tracking, and as robust

image representation when combined with feature

descriptors for object recognition. It is well recognized that

corner detection is a computing intensive step. For exam-

ple, the FAST (Features from Accelerated Segment Test)

corner detector [16–18] is used to compute the ORB

(Oriented FAST and Rotated BRIEF) feature descriptor for

visual SLAM [34]. The runtime of ORB computation

contributes to over a third of the real-time tracking process.

Hence, it is critical to accelerate the corner detection

operations to meet real-time application requirements.

& Siew-Kei Lam

siewkei_lam@pmail.ntu.edu.sg

Teck Chuan Lim

TLIM023@e.ntu.edu.sg

Meiqing Wu

meiqingwu@ntu.edu.sg

Bin Cao

jamescao@ntu.edu.sg

Bhavan A. Jasani

bhavan.jasani@gmail.com

1 School of Computer Science and Engineering, Nanyang

Technological University, 50 Nanyang Avenue, Singapore,

Singapore

123

J Real-Time Image Proc

DOI 10.1007/s11554-017-0725-0

http://orcid.org/0000-0002-8346-2635
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0725-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0725-0&domain=pdf

Generally, there are two approaches for increasing the

computation efficiency of corner detection. The first

approach employs algorithmic techniques to reduce the

computational complexity, usually with some accuracy

trade-offs. For example, the work in [6] approximates the

complex corner measure of the Harris corner detector [7] to

rapidly prune away non-corners before selecting corners

from the reduced set of candidates. While such methods

have demonstrated significant speedup in corner detection

on software-based platforms, they may not be amenable to

efficient hardware implementations since large memories

are typically required to store the image frames and

intermediate results.

The second approach, which is the focus of this paper,

accelerates corner detection through custom hardware

accelerators using Application Specific Integrated Circuits

(ASICs) or Field Programmable Gate Arrays (FPGAs).

Several hardware designs have been recently proposed for

real-time corner detection [8–15]. These techniques often

exploit the inherent parallelism in the corner detectors and

find a reasonable trade-off between the number of line

buffers and the computational resources in order to manage

the resource utilization while ensuring high throughput and

acceptable result quality. However, the computational flow

of these architectures remains largely unchanged and there

has been little effort undertaken to investigate data-path

optimizations for achieving further architectural gains.

In this paper, we present a novel hardware design

strategy using data-path unrolling to realize an area-time

efficient, pipelined FAST (Features from Accelerated

Segment Test) corner detector [16–18] architecture that

does not require intermediate full frame buffering. Instead

of employing a large 7� 7 convolution buffer for exam-

ining a single pixel at each clock cycle, which is the typical

method adopted in existing works [8, 11, 12], we propose

to use a 7� 3 convolution buffer and unroll the data-path

to enable multiple pixels to be examined concurrently. This

effectively reduces the number of registers for the convo-

lution buffer. Logic folding [19, 20] is then applied to

merge the unrolled data-paths and substantially reduce the

combinational operations. The proposed logic folding

approach also exploits regularity to reduce the multiplexing

overhead (which is typically introduced during resource

sharing). This contributes to lowering the delay and area

overhead that are often incurred as a result of resource

sharing. Synthesis results on FPGA show that the proposed

architecture leads to 20% critical path delay reduction and

about 24% area reduction compared to an existing archi-

tecture. The proposed architecture can achieve over 60

frames per second for 1920 9 1080 HD video. We also

implemented the proposed architecture on a FPGA proto-

typing platform to demonstrate its real-time capability.

The paper is organized as follows. In Sect. 2, we discuss

the existing work in accelerating corner detection algo-

rithms. We then describe the FAST algorithm and an

existing hardware implementation in Sect. 3. Section 4

presents the proposed design. The synthesis results are

shown in Sect. 5 to demonstrate the area-time benefits of

our approach. Section 6 concludes the paper.

2 Related work

As corner detectors play a fundamental role in many

computer vision applications, several corner detection

algorithms have been proposed over the last 30 years

[21, 22]. Motivated by the increasing demand for high-

performance, a number of hardware architectures have

been presented for well-known corner detection algo-

rithms, e.g., ShiTomasi [23], Harris [7], SUSAN [24], and

FAST [16–18].

Hardware implementations for Harris have been pro-

posed on ASIC [25], FPGA [13–15], cell processor [26],

and SIMD architecture [27]. The ShiTomasi and Harris

corner detectors compute an autocorrelation matrix using

the first-order derivatives of the intensity values, and this

matrix represents the degree of intensity variations in dif-

ferent directions around a pixel. A complex corner measure

computation is then performed for every pixel in the image.

This step is highly computing intensive, requiring floating-

point arithmetic and becomes a bottleneck for real-time

vision tasks. In [28], a simpler floating-point format is used

by customizing instructions on the Nios-II processor. In

[29], a hardware implementation that performs Harris

corner detection on a rank transform image instead of the

original image is presented. FPGA implementation for

ShiTomasi in [30] employs an alternative corner measure

that uses only integer arithmetic consisting of additions and

multiplications, and avoids the transcendental operations.

The SUSAN detector operates directly on the image

intensity by computing the fraction of pixels within a

neighborhood that have similar intensity as the center

pixel. FPGA implementation for SUSAN has been pre-

sented in [31]. The work in [14] proposed a flexible

hardware implementation for computing both the Harris

and SUSAN detectors from gray-level images.

The FAST algorithm was introduced as a compromise

between the quality and the speed of corner detection. It

extends the SUSAN detector by considering only pixels on

a circle around the center pixel and uses an efficient

method to classify the center pixel as a corner. The FAST

algorithm was first presented in [16] and later improved in

[17, 18]. The improved version employs machine learning

to build a decision tree from a set of training images for

J Real-Time Image Proc

123

classifying corners on future images. The work in [9]

presented a FPGA implementation of the machine learned

FAST algorithm that is based on a binary look-up table,

while the work in [8] presented a FPGA implementation of

the original FAST algorithm. The work in [11] presented

an architecture of the original FAST algorithm, which runs

on a FPGA at 50 MHz operating frequency, and showed

that significant performance gain can be achieved over the

software implementation running on a 1 GHz mobile

phone.

FAST has also been utilized as a preliminary step for

computing feature descriptors such as ORB (Oriented

FAST and Rotated BRIEF) [32] and BRISK (Binary

Robust Invariant Scalable Keypoints) [33], which are used

for a wide range of applications, e.g., object recognition,

visual SLAM, image representation, 3D scene reconstruc-

tion, motion tracking. Recently, the work in [12] presented

an architecture of the FAST feature detector and BRIEF

feature descriptor which can process the input images of

1920� 1080 resolution at 48 frames per second.

Since many computer vision applications employing

corner detectors run on tightly constrained embedded sys-

tems, e.g., mobile robots, mobile devices, UAVs, there is a

need to investigate design techniques that not only leads to

real-time computation but also area-efficient solutions,

which results in lower cost. This is important as these

embedded systems need to be affordable for mass volume

deployment. However, existing hardware implementations

of corner detectors often optimize for speed only, and there

are very few reported attempts to realize area-time-efficient

hardware corner detectors.

3 Baseline architecture of FAST corner detector

The implementations of the original FAST algorithm pre-

sented in [8, 11, 12] adopt similar computational blocks

which will be used as our baseline architecture. The orig-

inal FAST algorithm proposed in [16] tests for a corner at

each pixel pi in an image frame by examining the Bre-

senham circle.

A 7 9 7 convolution buffer centered on pi is used to

enable parallel examination of the 16 surrounding pixels to

facilitate the testing of one pixel per clock. Let xij, where

j ¼ 1; 2; 16, be the pixels on the Bresenham circle that are

used in the corner test of pixel pi.

Figure 1 shows the convolution buffer (light gray) for

corner testing of pixel pi and the corresponding xij pixels

(dark gray) at time t, t þ 1 and t þ 2. Each pixel xij in the

convolution buffer is evaluated in parallel with pixel pi to

generate two 16-bit member vectors, one for bright mem-

bers (mi
B) and one for dark members (mi

D):

mi
B ¼

xi1 [Ti
H

xi2 [Ti
H

..

.

xi16 [Ti
H

2
66664

3
77775

ð1Þ

mi
D ¼

xi1\Ti
L

xi2\Ti
L

..

.

xi16\Ti
L

2
66664

3
77775

ð2Þ

where Ti
H ¼ pi þ t, Ti

L ¼ pi � t, and t is a predefined

threshold. Each element in the member vector is set to ‘1’

if the corresponding condition is true, otherwise it is set to

‘0’. The scores for the bright and dark members are then

calculated as shown in Eqs. (3) and (4).

scoreiB ¼ ðmi
BÞ

T �

xi1 � Ti
H

xi2 � Ti
H

..

.

xi16 � Ti
H

2
66664

3
77775

ð3Þ

scoreiD ¼ ðmi
DÞ

T �

Ti
L � xi1

Ti
L � xi2

..

.

Ti
L � xi16

2
66664

3
77775

ð4Þ

A final score value is calculated for each pi as shown in

Eq. (5). A contiguity check [Eq. (6)] is used to determine if

there are at least c contiguous elements in mi
B or mi

D that

are true. In [8, 11, 12], c ¼ 9 (hence the algorithm is called

FAST-9). The check for the contiguous elements of each

mi
B and mi

D is implemented using sixteen 9-input logical

AND operation, where the outputs are ORed. A corner is

detected if the output of the OR operation is ’1’ for either

mi
B or mi

D. Finally, non-maximum suppression is applied to

determine whether a pixel is a corner or a non-corner. A

pixel is a corner if it has a maximal score among the scores

of its adjacent neighbors.

scorei ¼ max scoreiB; score
i
D

� �
� Ci ð5Þ

Ci ¼ _16
j¼1 ^jþ8

k¼jm
i
Bðk � 1Þmod16þ1

� �� �
_

� _16
j¼1 ^jþ8

k¼jm
i
Dðk � 1Þmod16þ1

� �� �
ð6Þ

Figure 2 shows the baseline architecture. Similar to exist-

ing implementations in [8, 11, 12], we assume a single

input pixel of n-bit (in our implementation n ¼ 8 for

grayscale image) arrives at each clock cycle. Seven row

buffers as shown in Fig. 3 are concatenated in the form of

FIFO delay buffers to cache the incoming pixels. The size

J Real-Time Image Proc

123

of each row buffer is equivalent to the horizontal resolution

of the image, and hence each row buffer effectively delays

the input by one row. The pixels at the tail end of each row

buffer are shifted into the 7 9 7 convolution window as

shown in Fig. 2.

The Bright Score Unit (BSU) and Dark Score Unit

(DSU) determine the 16-bit member vectors mi
B, m

i
D and

scoreiB, score
i
D in parallel. A 4-level adder tree is employed

for computing the score values. The LSB of the score

values are truncated to n bits. The architecture of BSU and

DSU is shown in Fig. 4. Member vectors mi
B, m

i
D are used

by the contiguity check to compute Ci. The Max unit

computes the score of pi based on the bright score, dark

score and contiguity check.

Finally, the Non-Maximal Suppression (NMS) unit

determines if a pixel is a corner or not by comparing its

score value to the score values of its eight adjacent pixels.

To achieve this, two row buffers are used in the NMS unit

to produce a 1-bit output that denotes whether the corre-

sponding pixel is a corner or non-corner (see inset of

Fig. 2). Note that all the outputs of each module in Fig. 2

are registered, creating a pipelined design with one input

x116 x11 x12

x13

x14

x15

x16

x17

x110 x19 x18

x111

x114

x113

x112

x115

p1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

x216 x21 x22

x23

x24

x25

x26

x27

x210 x29 x28

x211

x214

x213

x212

x215

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C1

x316 x31 x32

x33

x34

x35

x36

x37

x310 x39 x38

x311

x314

x313

x312

x315

C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

(a) (b) (c)

p2 p3

Fig. 1 Testing for corners at pixel a: p1 at time t, b p2 at time t þ 1, and c p3 at time t þ 2. The dotted lines show that at time t, the pixels in

column C8 of the convolution buffer (light gray) can be used for partial examination of pixels p1, p2, and p3

7x7
Convolution
Buffer

p

t

p

p

n

n

x1
x2
x3

x16

.

.

.

8

8

Brig ht
Score Unit (BSU)

Dark
Score Unit (DSU)

n+2

n+2

16(n+2)

x1-x16

Contig uity
Check

16

16

Max

n

n

n Non Maximal
Suppression

Unit
corner

x1-x16

16(n+2)

score

score

TH

TL

mB

mD

scoreB

scoreD

score

t

C

n

n

sreffub
wor

morF

score

n

n

n

>

>

.

.

.
corner

Non Maximal Suppression Unit

p

scorep

scorep

AND
Tree

Fig. 2 Baseline architecture and NMS unit (inset)

Row buffer

Row buffer

Row bufferInput pixel
stream

n

n

nn

Row buffer

Row buffer

Row buffer

n

n

n

Row buffer
n

Fig. 3 Row buffer for caching seven rows

J Real-Time Image Proc

123

and one output per clock cycle without the need of an input

or intermediate frame buffer.

The critical path of the baseline architecture lies in BSU/

DSU, i.e., Tb
cp ¼ 5 � TADD þ TMUX, where TADD and TMUX

is the time required by the adder and multiplexer,

respectively.

4 Proposed architecture

In this section, we present three area-time optimization

techniques for the FAST corner detector. The first tech-

nique effectively reduces the number of comparators in the

BSU/DSU by employing two’s complement adders to

compute the scores and exploiting the sign bit to determine

the members (Sect. 4.1). The second technique unrolls the

data-path of the baseline architecture to reduce the con-

volution buffer size (Sect. 4.2). The third technique

employs logic folding to enable resource sharing while

minimizing the multiplexing overhead (Sect. 4.3).

4.1 Modified BSU/DSU

The architecture of the BSU and DSU can be easily sim-

plified by adopting two’s complement adders to compute

scoreiB, score
i
D, and using the sign bits of the scores to

determine the member vectors as shown in Fig. 5. This

effectively eliminates 16 comparators in each of the BSU

and DSU without introducing much additional critical path

delay. The critical path of the modified BSU/DSU is Tbm
cp ¼

5 � TADD þ TINV ? TMUX, where TINV is the delay of an

inverter.

4.2 Data-path unrolling

The baseline architecture in Fig. 2 utilizes a 7 9 7 con-

volution buffer to enable the 16 pixels xij in the Bresenham

circle to be evaluated in parallel with pixel pi. As illus-

trated in Fig. 1, only one pixel pi is tested for a corner at

each time step. This approach results in under-utilization of

the other 33 ð7� 7� 16Þ pixels in the convolution buffer

which could be used for partial evaluations of multiple pi’s.

This is clearly illustrated with the red dotted lines in Fig. 1

which shows at time t, all the pixels in column C8 of the

convolution buffer can be used for partial examination of

pixels p1, p2, and p3. A closer examination will reveal that

the pixels in a single column of the convolution buffer can

be utilized for simultaneous partial examination of 7 pi’s

(i.e., top/bottom pixels contribute to the evaluation of 3

pi’s, second/sixth pixels contribute to the evaluation of 2

pi’s, and the middle three pixels contribute to the evalua-

tion of 2 pi’s).

In order to maximize the utilization of the convolution

buffer, we propose to unroll the data-path of BSU/DSU.

Note that x1; x2; . . .; x16 in Fig. 6 are from a single column

of the convolution buffer. It can be observed from Fig. 6

that the BSU/DSU of the baseline architecture is unrolled

into seven pipeline stages. Each stage performs partial

evaluation of a single pi. The partial results of each pi
(partial member vectors, bright/dark scores) will be passed

to the next pipeline stage after each clock cycle. Except for

the first pipeline stage, the score values of each stage are

added to the score value from the previous pipeline stage.

The full evaluation of a single pi will be completed after

seven clock cycles at the final pipeline stage.

>

X1 / TL

TH / x1

n+2

n+2

0

m1

>

X16 / TL

TH / x16

n+2

n+2

0

m16

4-Level
Adder
Tree

n+2

n+2

.

.

.

score16

score1.
.
.

BSU/DSU

scoreB /
scoreDn

Fig. 4 BSU/DSU in the baseline architecture

+

X1 / TL

TH / x1

n+2

n+2

0

m1

+

X16 / TL

TH / x16

n+2

n+2

0

m16

4-Level
Adder
Tree

n+2

n+2

.

.

.

score16

score1.
.
.

BSU/DSU

scoreB /
scoreDn

Fig. 5 Modified Bright/Dark Score Unit

J Real-Time Image Proc

123

We can use the example in Fig. 1 to describe the pro-

posed computational flow. Lets assume that at time t, the

content of the single column buffer is C8. At time t, the

partial results of p1 is computed using x14, x
1
5, x

1
6 in the first

pipeline stage of BSU/DSU. In the next clock cycle at time

t þ 1, the partial results p1 are computed using x13, x
1
7 in the

second pipeline stage and the new score values are added to

the previously computed score values from the first stage.

At the same time, new member vectors are generated and

concatenated with the previously identified member vec-

tors. This is repeated until the last pipeline stage at t þ 6

computes the partial results of p1 using x112, x
1
13, x

1
14 and

concatenates/adds the partial results in the previous pipe-

line stage to obtain m1
B=m

1
D and score1B=score

1
D. Similar to

the baseline architecture, a single output is produced at

each clock cycle. The critical path of the unrolled BSU/

DSU is Tdt
cp ¼ 3 � TADD þ TINV ? TMUX, which is lesser

than the baseline since only 2-level adder tree is used in a

pipeline stage.

In our proposed architecture (shown in Fig. 7), the 7� 7

convolution buffer is replaced by a 7� 3 convolution

buffer. While a single column of the convolution buffer is

sufficient for the partial evaluation of seven pixel centers

(as discussed above), three convolution buffer columns are

required to cache the incoming pixels before the center

pixel is read from the FIFO delay buffers (Fig. 3). For

example, it can be observed in Fig. 1a that we need to

cache the pixels in columns C6, C7 and C8 before we can

obtain the center pixel p1 from the FIFO delay buffer.

4.3 Logic folding with maximal design regularity

It can be observed that each pipeline stage of the BSU and

DSU in Fig. 6 consists of two parts: (1) Score Unit (SU)

and (2) adder tree. The SUs of the BSU and DSU perform

similar operations, i.e., they compute the members and

partial score terms. In particular, the SU for BSU computes

mi
B and mi

B � ðxij � Ti
HÞ, while the SU for DSU computes

mi
D and mi

D � ðTi
L � xijÞ. As such, the SUs for the corre-

sponding BSU and DSU can be merged for further resource

savings. Figure 7 shows the architecture of the proposed

architecture where the SUs for computing the bright and

dark score terms are merged as Merged Score Units

(MSUs) in the Shared Score Unit (SSU). Each SSU stage

consists of either two or three MSUs. The outputs of the

MSUs in each pipeline stage are passed to the respective

Bright Score Adder Tree (BSAT) and Dark Score Adder

Tree (BSAT). Similar to the architecture in Fig. 6, each

pipeline stage computes the partial evaluations of a single

pi (i.e., bright member vectors, bright score, dark member

vectors, and dark score). As mentioned earlier, the last

pipeline stage produces the final score values of pi. The

difference lies in that the same logic resources in the MSUs

are used to compute both the bright and dark score values

(and member vectors) at a higher clock frequency. The

values of TH=TL are also shifted through the SSU stages in

a pipelined manner, i.e., the MSUs in a particular stage

makes use of the shifted TH=TL values from the previous

stage.

Fig. 6 Unrolled BSU/DSU

J Real-Time Image Proc

123

In the proposed architecture, the input pixels arrive at

the rising edge of the 1� system clock. TH=TL and the

score values scoreiB=score
i
D are passed from one pipeline

stage of the SSU to the next at the rising edge of the 1�
system clock. The membership vectors are also shifted

through the pipeline registers based on the 1� clock fre-

quency. This is similar to the data-flow of the architecture

in Fig. 6. Logic folding [19, 20] is performed on BSU and

DSU to obtain the MSU which operates at 2� the operating

frequency of the system clock. This enables the bright and

dark scores for pixel pi to be computed in each pipeline

stage using the samelogic resources without compromising

on the throughputof the architecture. Figure 8 shows the

architecture of a single SSU pipeline stage, which consists

n n+2

n+2

n+2

n+2

TL

n+2

n+2

n+2

n+2

n

t

Max
n

NMS corner
score

n n+2

Contig uity
Check

p
Fr

om
 ro

w
 b

uff
er

s

MSU
MSU

2-Level
Add-Tree

2-Level
Add-Tree

2

2
sb

9 sb
1 -sd

9 -sd
1

MSU
MSU

2-Level
Add-Tree

2-Level
Add-Tree

2

2
sb

8 sb
2 -sd

8 -sd
2

MSU
MSU

2-Level
Add-Tree

2-Level
Add-Tree

2

2
sb

16 sb
10 -sd

16

MSU
MSU

2-Level
Add-Tree

2-Level
Add-Tree

2

2
sb

7 sb
3 -sd

7 -sd
3

MSU
MSU

2-Level
Add-Tree

2-Level
Add-Tree

2

2
sb

15 sb
11 -sd

15 -sd
11

MSU
MSU

2-Level
Add-Tree

2-Level
Add-Tree

2

2
sb

6 sb
5 -sd

6 -sd
5

-sd
10

MSU
2

sb
4

-sd
4

MSU
MSU

2-Level
Add-Tree

2-Level
Add-Tree

2

2
sb

14 sb
13 -sd

14
-sd

13

MSU

sb
12

-sd
12

2x3

mbd
4-6

mbd
3-7

mbd
2-8

2x5

mbd
1-9

mbd
1-10,16

mbd
1-11,15-16

mbd
1-16

2x7

2x9

2x11

2x13

score’B

score’B

score’B

score’B

score’B

score’B

-score’D

-score’D

-score’D

-score’D

-score’D

-score’D

16 16

mb
1-16 md

1-16

n

score’B -score’D

TH

2(n+2)

BSAT DSATSSU

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

7x3
Convolution
Buffer

Fig. 7 Proposed architecture

J Real-Time Image Proc

123

of three or two MSUs. A 2� clock, which is exactly twice

the frequency of the 1� system clock drives the registers in

the SSU stage to enable both the bright and dark score

terms and membership vectors to be computed within one

clock period of the 1� system clock (equivalent to two

pipeline stages of the 2� clock frequency). The operation

of the SSU pipeline is as follows. When the 1� clock

follower (which matches the 1� system clock) is high, TH
from the previous SSU pipeline stage will be selected as

inputs (via the multiplexer) to the first stage of the MSUs

for computation. When the 1� clock follower is low, TL
from the previous SSU pipeline stage will be selected as

inputs instead. After two clock cycles (with respect to the

2� clock), the new bright and dark score terms (and

member vectors) will be available. This will be used by the

BSAT and DSAT to compute the cumulative score values

from previous pipeline stages. Hence, at the rising edge of

the next system clock, both the score values scoreiB=score
i
D

and membership vectors mi
B=m

i
D will be available and

shifted to the subsequent SSU pipeline stage. Similar to the

previous architectures, a single output is produced at each

cycle of the 1� system clock.

computed in each pipeline stage using the same logic

resources without compromising on the throughput of the

architecture.

Generally, applying logic folding leads to reduced

overall combinational logic area but may introduce addi-

tional synchronizing registers and multiplexing overhead.

In order to lower the multiplexing overhead, the logic

regularity for computing the bright and dark scores must be

maximized to reduce the fan-ins and fan-outs of the folded

architecture [19]. This will lead to a more simplified

interconnect structure that avoids the need of multiplexers

for resource sharing. In the proposed architecture, regu-

larity is exploited by using the same MSU logic resources

for computing both the bright and dark score terms without

time-multiplexing. As such, the computed dark score is

�scoreiDð�ðxij � Ti
LÞÞ and the polarity of the final dark

score value can be inverted using a simple sign inversion

circuit (implemented in the Max unit). In addition, the

XNOR gate (with one of inputs tied to the 1� clock fol-

lower) is used to replace the inverter for determining the

member vectors as well as selecting between the score

value and 0.

+

n+2

n+2

0

mb
j

n+2

+

n+2

n+2

0

mb
j+1

n+2

+

n+2

n+2

0

n+2

Merged Score
Unit (MSU)Xj

Xj+1

Xj+2

TL

1

0

TH

1x Clock
Follower

2x Clock

mb
j+2

sb
j

sb
j+1

sb
j+2

-sd
j

md
j

md
j+1

-sd
j+1

md
j+2

-sd
j+2

Merged Score
Unit (MSU)

Merged Score
Unit (MSU)

Fig. 8 Single pipeline stage of

Shared Score Unit (SSU)

J Real-Time Image Proc

123

The critical path of the proposed architecture (with

reference to the 1� system clock) lies in the pipeline stage

of SSU, i.e., Tdtl
cp ¼ TADD þ TXNOR þ 2 � TMUX þ TREG,

where TXNOR and TREG is the delay of an XNOR gate and

register, respectively. This is evidently lower than the

critical path delay of the baseline architecture (see Sect. 3).

5 Results and discussion

In this section, we provide experimental results for the

proposed implementation in terms of accuracy and hard-

ware synthesis results.

5.1 Accuracy evaluation

We used the repeatability criteria [22] to compare the accu-

racy of the baseline and proposed implementations. The

repeatability criterion is based on the notion that detection of

corners should be invariant of imaging conditions, e.g., blur-

ring, zooming, and rotation of the scene. An accurate feature

detector should be robust to the changes in imaging conditions

and hence should be able to detect features at close proximity

between images with changes in viewpoint. The repeatability

rate is defined as the ratio of the number of repeated features

between two images within certain pixel allowance, to the

minimumnumber of features that are in common region of the

two images of the same scene but with changes in imaging

condition(s).Wehave used the image dataset from [36] for the

accuracy evaluation. These challenging datasets contain four

image sets (Boat, Trees, UBC and Wall) with various image

transformation sequences such changes in viewpoint, zoom,

rotation and illumination. An example of the image sequence

for ’Boat’ is shown in Fig. 9.

The difference in the repeatability rate (a pixel allowance

of 1.5 pixels is used in the evaluations) of the proposed and

the baseline architectures is computed using Eq. (7). Table 1

reports the minimum, maximum and average difference in

repeatability rate for the four image sets.

It is evident that the overall difference in repeatability

between the proposed and baseline architectures is mar-

ginal for the image sets considered, i.e., only 0.0588

average difference in repeatability rate. These results

demonstrate that the proposed architecture has similar

degree of robustness compared to the baseline architecture.

dr ¼ repeatabilityproposed � repeatabilitybaseline ð7Þ

5.2 Hardware synthesis results

Table 2 shows the required resources for the baseline

(Fig. 2) and proposed (Fig. 7) architectures. The resources

for Contiguity Check, Max and NMS are not shown since

they do not vary notably among the two architectures. The

number of registers (REG) is normalized to 8-bit registers,

and a, b, c indicate the register contributions from the SSU,

member vectors, and synchronization registers for the input

pixels and TH=TL.

It can be observed from Table 2 that the proposed

architecture has lesser combinational resources compared

to the baseline architecture due to: (1) elimination of the

comparators that are used to determine the member vectors

(see Fig. 5), and (2) resource sharing of the score units (see

Fig. 8). In particular, the proposed SSU has about 4� lesser

adder equivalent resources than the BSU and DSU, due to

the above-mentioned optimizations. The number of

required multiplexers in the SSU is also lesser due to

resource sharing and the proposed logic folding strategy

that minimizes multiplexing overhead. The proposed SSU

requires additional 16 XNOR gates which is insignificant

compared to the overall combinational resource savings.

In addition, the proposed architecture employs a smaller

convolution buffer (7 9 3) compared to the baseline which

requires a 7 9 7 convolution buffer. This leads to

notable register savings in the proposed architecture. While

the total number of registers required for logic folding and

pipelining in the proposed architecture is larger than that

required for the baseline architecture, the delay analysis in

Sects. 3 and 4.3 shows that the proposed optimizations

have resulted in significantly lesser critical path delay.

The two corner detector architectures were implemented

using Verilog and synthesized using Quartus II Version

13.0.1 and targeting the Altera FPGA Cyclone IV GX

(EP4CGX150DF31C7) device. The designs were synthe-

sized to achieve minimum clock period. It can be observed

from columns 2 and 3 in Table 3 that the proposed method

has lesser combinational resources than the baseline, but

more registers. This is consistent with our resource analy-

sis. The proposed architecture achieves an overall 24%

reduction in area utilization (in terms of logic elements)

compared to the baseline architecture, mainly due to the

large savings in combinational resources as discussed

above.

The critical path of the proposed architecture is 20%

lower than the baseline, which is also consistent with our

delay analysis. While it is possible to further pipeline the

BSU/DSU of the baseline architecture to reduce critical

path delay, this will also increase the area utilization. As

shown in Table 3, the area utilization of the current base-

line architecture is already notably higher than the pro-

posed architecture. Note that the critical path delay of the

proposed architecture in Table 3 refers to the 1� system

clock. In particular, the proposed architecture can achieve

over 60 frames per second for 1920 9 1080 HD video.

Column 6 of Table 3 shows the area-delay product (ADP)

J Real-Time Image Proc

123

of the two architectures. The proposed architecture

achieved about 38.9% area-delay product reduction over

the baseline architecture. The proposed architectures are

implemented on the TERASIC DE2i-150 FPGA

development kit that captures 640 9 480 video frames as

shown in Fig. 10. The operating frequency of the FAST

architecture in the FPGA demonstration is 25 MHz due to

the camera and display constraints, although the proposed

architecture can achieve a maximum operating frequency

of 125 MHz (based on 1� system clock).1

6 Conclusion

This paper presents a novel architecture for the FAST

corner detector that relies on a unrolled data-path structure

to compute the score values of multiple corners concur-

rently. The proposed architecture eliminates the need for a

large convolution buffer by using a significantly smaller

convolution buffer to cache the incoming pixels. The pixels

in the last column of the reduced convolution buffer are

Fig. 9 Image set boat; the top left image is the original and subsequent images have increasing viewpoint changes

Table 1 Absolute difference in repeatability rate

Image Min Max Average

Boat 0.0676 0.0884 0.0773

Trees 0.0276 0.0763 0.0563

UBC 0.0348 0.0747 0.0251

Wall 0.0522 0.0990 0.0766

Table 2 Resource comparison

Baseline Proposed

Convolution Buffer

REG 49 21

SU/SSU

ADD 64 16

MUX 32 23

XNOR 0 16

REG 0 34a þ 16b þ 30c

Adder Tree

ADD 30 32

REG 2 14

Table 3 FPGA synthesis results

Method Comb Reg Total LE Delay (ns) ADP (LE.ns)

Baseline 1294 618 1530 10.0 15,300

Proposed 796 987 1169 8.0 9352

1 Realizing the proposed method using a 1� clock frequency of

125 MHz may not be possible on some of the existing FPGA systems.

J Real-Time Image Proc

123

utilized simultaneously for computing the partial corner

score values. In addition, the proposed architecture

employs logic folding with maximal regularity to reduce

the combinational logic while at the same time avoiding

the multiplexing overhead. Synthesis results show that the

proposed architecture leads to 20% critical path delay

reduction and about 24% area reduction compared to an

existing architecture reported in the literature.

References

1. Ehsan, S., McDonald-Maier, K.D.: On-board vision processing

for small UAVs: time to rethink strategy. In: Proceedings of the

NASA/ESA Conference on Adaptive Hardware and Systems,

pp. 75–81 (2009)

2. Schmidt, A., Kraft, M., Kasinski, A.: An evaluation of image

feature detectors and descriptors for robot navigation. In: Inter-

national Conference on Computer Vision and Graphics,

pp. 251–259 (2010)

3. Bhaskaranand, M., Gibson, J.D.: Low-complexity video encoding

for UAV reconnaissance and surveillance. Mil. Commun. Conf.

6375, 251–259 (2011)

4. Gauglitz, S., Hollerer, T., Turki, M.: Evaluation of interest point

detectors and feature descriptors for visual tracking. Int. J.,

Comput. Vis. 94, 335–360 (2011)

5. Gil, A., Mozos, O., Ballesta, M., Reinoso, O.: A comparative

evaluation of interest point detectors and local descriptors for

visual SLAM. Mach. Vis. Appl. 21, 905–920 (2010)

6. Ramakrishnan, N., Wu, M., Lam, S.-K., Srikanthan, T.: Enhanced

low complexity pruning for corner detection. J. Real Time Image

Process. 12(1), 197–213 (2011)

7. Harris, C., Stephens, M.: A combined corner and edge detector.

In: Proceedings of the Fourth Alvey Vision Conference,

pp. 147–151 (1988)

8. Kraft, M., Schmidt, A., Kasinski, A.J.: High-speed image feature

detection using FPGA implementation of FAST algorithm. In:

Proceedings of the Third International Conference on Computer

Vision Theory and Applications (VISAPP 2008), Funchal, Por-

tugal, 22–25 January 2008, pp. 174–179 (2008)

9. Dohi, K., Yorita, Y., Shibata, Y., Oguri, K.: Pattern compression

of fast corner detection for efficient hardware implementation. In:

International Conference on Field Programmable Logic and

Applications, pp. 478–481 (2011)

10. Amaricai, A., Gavriliu, C.E., Boncalo, O.: An FPGA sliding

window-based architecture Harris corner detector. In:

International Conference on Field Programmable Logic and

Applications (2014)

11. Soberl, D., Zimic, N., Leonardis, A., Krivic, J., Moskon, Miha:

Hardware implementation of FAST algorithm for mobile appli-

cations. J. Signal Process. Syst. 79(3), 247–256 (2015)

12. Fularz, M., Kraft, M., Schmidt, A., Kasinski, A.: A high-perfor-

mance FPGA-based image feature detector and matcher based on

the FAST and BRIEF algorithms. Int. J. Adv. Robot. Syst. 12,
141 (2015). doi:10.5772/61434

13. Orabi, H., Shaikh-Husin, N., Ullah Sheikh, U.: Low cost pipe-

lined FPGA architecture of Harris Corner Detector for real-time

applications. In: International Conference on Digital Information

Management, pp. 164–168 (2015)

14. Hernandez-Lopez, A., Torres-Huitzil, C., Garcia-Hernandez, J.J.:

FPGA-based flexible hardware architecture for image interest

point detection. Int. J. Adv. Robot. Syst. 12, 93 (2015). doi:10.

5772/61058

15. Chao, T.L., Wong, K.H.: An efficient FPGA implementation of

the Harris corner feature detector. In: 2015 14th IAPR Interna-

tional Conference on Machine Vision Applications (MVA),

pp. 89–93. IEEE (2015)

16. Rosten, E., Drummond, T.: Fusing points and lines for high

performance tracking. In: International Conference on Computer

Vision, pp. 1508–1515 (2005)

17. Rosten, E., Drummond, T.: Machine learning for high speed

corner detection. In: European Conference on Computer Vision,

pp. 430–443 (2006)

18. Rosten, E., Porter, R., Drummond, T.: Faster and better: a

machine learning approach to corner detection. IEEE Trans.

Pattern Anal. Mach. Intell. 32, 105–119 (2010)

19. Mehra, R., Rabaey, J.: Exploiting regularity for low-power

design. In: IEEE/ACM International Conference on Computer-

Aided Design, pp. 166–172 (1996)

20. Canis, A., Anderson, J.H., Brown, S.D.: Multi-pumping for

resource reduction in FPGA high-level synthesis. In: Proceedings

of the Conference on Design, Automation and Test in Europe,

pp. 194–197 (2013)

21. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors:

a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280

(2008)

22. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point

detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)

23. Jianbo, S., Tomasi, C.: Good features to track. In: Computer

Vision and Pattern Recognition, pp. 593–600 (1994)

24. Smith, S.M., Brady, J.M.: SUSAN—a new approach to low level

image processing. Int. J. Comput. Vis. 23, 45–78 (1997)

25. Chih-Chi, C., Chia-Hua, L., Chung-Te, L., Chang, S.C., Liang-

Gee, C.: iVisual: an intelligent visual sensor SoC with 2790fps

CMOS image sensor and 205GOPS/W vision processor. In:

Design Automation Conference, p. 9095 (2008)

26. Saidani, T., Lacassagne, L., Bouaziz, S., Khan, T.: Parallelization

strategies for the points of interests algorithm on the cell pro-

cessor. Parallel Distrib. Process. Appl. 4742, 104–112 (2007)

27. Hosseini, F., Fijany, A., Fontaine, J.-G.: Highly parallel imple-

mentation of Harris Corner detector on CSX SIMD architecture.

In: Guarracino, M.R., et al. (eds.) Euro-Par 2010 Parallel Pro-

cessing Workshops. Euro-Par 2010. Lecture Notes in Computer

Science, vol. 6586, pp. 137–144. Springer, Berlin, Heidelberg

(2011)

28. Piskorski, S., Lacassagne, L., Bouaziz, S., Etiemble, D.: Cus-

tomizing CPU instructions for embedded vision systems. In:

Proceedings of the 2007 IEEE International Conference on

Application-Specific Systems, Architectures and Processors,

pp. 59–64 (2007)

Fig. 10 FPGA evaluation platform

J Real-Time Image Proc

123

http://dx.doi.org/10.5772/61434
http://dx.doi.org/10.5772/61058
http://dx.doi.org/10.5772/61058

29. Tippetts, B., Lee, D.-J., Archibald, J.: An on-board vision sensor

system for small unmanned vehicle applications. Mach. Vis.

Appl. 23(2), 113 (2012)

30. Benedetti, A., Perona, P.: Real-time 2-D feature detection on a

reconfigurable computer. In: IEEE Conference on Computer

Vision and Pattern Recognition, pp. 586–593 (1998)

31. Claus, C., Huitl, R., Rausch, J., Stechele, W.: Optimizing the

SUSAN corner detection algorithm for a high speed FPGA

implementation. In: Field Programmable Logic and Applications,

pp. 138–145 (2009)

32. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an

efficient alternative to SIFT or SURF. In: ICCV 2011,

pp. 2564–2571 (2011)

33. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust

invariant scalable keypoints. In: IEEE International Conference

on Computer Vision, pp. 2548–2555 (2011)

34. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a

versatile and accurate monocular SLAM system. IEEE Trans.

Robot. 31(5), 1147–1163 (2015)

35. Canziani, A., Paszke, A., Culurciello, E.: An Analysis of Deep

Neural Network Models for Practical Applications. arXiv:1605.

07678 (2017)

36. Affine Covariant Features. http://www.robots.ox.ac.uk/*vgg/

research/affine/

Siew-Kei Lam received his

BA.Sc., M.Eng. and Ph.D. from

School of Computer Science

and Engineering (SCSE),

Nanyang Technological

University, Singapore. He is

currently an Assistant Professor

in SCSE, and his research

investigates methods for realiz-

ing custom computing solutions

in embedded systems. His cur-

rent projects include developing

architecture-aware algorithms

for vision-enabled sensing, and

design methodologies for secure

and reliable embedded systems.

Teck Chuan Lim is currently

pursuing his Bachelor of Engi-

neering (Computer Engineer-

ing) in School of Computer

Science and Engineering

(SCSE), Nanyang Technologi-

cal University, Singapore. His

research interest lies in hard-

ware and software design of

embedded systems.

Meiqing Wu received M.S.

degree in Computer Engineer-

ing from Peking University,

China, in 2009, and her Ph.D.

degree from the School of

Computer Science and Engi-

neering (SCSE), Nanyang

Technological University, Sin-

gapore, in 2017. Her current

research interests include stereo

vision, motion analysis, object

detection and tracking for urban

traffic scene understanding

Bin Cao received the Bache-

lor’s and Master’s degrees from

Wuhan University of Technol-

ogy and Zhejiang University in

China. He received his Ph.D.

degree from Nanyang Techno-

logical University in 2006. Prior

to current assignment, he

worked in Seagate International

as a Staff Engineer, and

Research Scientist in the Insti-

tute for Infocomm Research,

A*STAR. He is currently a

Senior Research Fellow in

Hardware and Embedded Soft-

ware Lab (HESL), School of Computer Science and Engineering

(SCSE), Nanyang Technological University, Singapore. Cao Bin’s

research interest lies in the areas of hardware acceleration for the

embedded vision and stereo vision.

Bhavan A. Jasani received a

dual degree consisting of B.E.

(Hons.) Electrical and Elec-

tronics Engineering and M.Sc.

(Hons.) Physics from Birla

Institute of Technology and

Science, Pilani, India, in 2016.

Since then, he has been working

as a research staff at Hardware

and Embedded Systems Lab at

School of Computer Science

and Engineering, Nanyang

Technological University, Sin-

gapore. He has been working on

developing real-time, low-

power and hardware-efficient pedestrian detection systems based on

FPGAs and embedded GPUs. He’s research interest lies in computer

vision, machine learning and embedded systems.

J Real-Time Image Proc

123

http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
http://www.robots.ox.ac.uk/%7evgg/research/affine/
http://www.robots.ox.ac.uk/%7evgg/research/affine/

	Data-path unrolling with logic folding for area-time-efficient FPGA-based FAST corner detector
	Abstract
	Introduction
	Related work
	Baseline architecture of FAST corner detector
	Proposed architecture
	Modified BSU/DSU
	Data-path unrolling
	Logic folding with maximal design regularity

	Results and discussion
	Accuracy evaluation
	Hardware synthesis results

	Conclusion
	References

