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Peak-hour Vehicle Routing for First-Mile Transportation:
Problem Formulation and Algorithms
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Abstract—The first-mile transportation provides a transit ser-
vice using ridesharing based vehicles, e.g. feeder buses, for
passengers to travel from their homes, workplaces or public
institutions to the nearest public transportation depots (rapid-
transit metro or appropriated bus stations) which are located
beyond comfortable walking distance. This paper studies the
vehicle routing problem (VRP) for the first-mile transportation,
which aims at finding the optimal travel routes for a vehicle
fleet to deliver passengers from their doorstep to the depots,
where the passengers can continue their journeys using fixed-
route buses or trains. We focus on the Peak-Hour VRP (PHVRP)
for a limited vehicle fleet capacity to serve a large volume of
travel requests, with the aim of maximizing the number of served
passengers. The PHVRP generalizes the VRP with time window
by considering multiple alternative depots for each travel request,
such that a request is satisfied if the passenger is taken to one
of his/her nearest depots. We formally formulate the PHVRP
with constraints on vehicle capacity, pickup time windows, and
quality of service regarding riding time, where a novel trip-based
constraint model is used. We proposed an ant-colony optimization
algorithm for the PHVRP, which is initialized with pheromone
information that jointly considers the temporal-spatial distance
as well as depot similarity among different travel requests.
We introduced a novel scheme (called trip-by-trip scheme) to
construct the travel routes by repeatedly forming a single trip
for the vehicle with earliest end time until no vehicle can accept
any more trips. In constructing a single trip, the algorithm
intelligently decides whether or not to end the trip instead
of taking more passengers. The effectiveness of the proposed
methods is evaluated by comparing with optimal solutions on
small size instances and with heuristic solutions on large size
instances, using road network in Singapore and synthetic travel
requests that are generated based on real bus travel demands.

Index Terms—First-mile problem, peak-hour VRP, alternative
depot, trip-based constraint model, trip-by-trip routing scheme.

I. INTRODUCTION

The provision of first-mile last-mile connections is mo-
tivated by the need for increased accessibility to public
transportation depots (rapid-transit metro or bus stations) in
urban areas, which are typically geographically located beyond
comfortable walking distance from/to the passengers’ homes,
workplaces or public institutions. These depots are typically
positioned a mile apart on average to achieve high speed travel,
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and hence most of the urban area is beyond easy walking
distance to a transit station.

It is envisioned that the availability of an efficient first-
mile, last-mile transportation system will increase the public
transport’s share of urban trips which would lead to reduced
road congestion and air pollution [1]. The enhanced mobility
service will also benefit the aging population as well as school-
children and those with physical disabilities [2]. Even bus
stops are densely deployed in some cities, each of the bus
stops typically belong to only a few bus lines whose direction
and coverage areas are fixed. Our work addresses the first-
mile transportation needs for passengers to commute from
their homes, workplaces or public institutions to the nearest
transportation depots so that they can continue their journeys
using the necessary fixed-route transports. In particular, we
focus on the vehicle routing problem for an urban first-
mile transportation system, which aims at finding the optimal
travel routes for a fleet of vehicles to deliver passengers to
the nearest depots during peak hours. Middle-sized vehicles,
such as feeder buses with capacity ranging from 10 to 20
passengers, are used to offer point-to-point services while
enhancing efficiency by supporting ridesharing. The routes of
the vehicles are flexible and can be changed based on the
travel requests. The pickup points are spatially distributed in
the urban area and are not fixed (i.e. they emerged when
the passenger makes a travel requests through a smartphone
application). The locations of these pickup points may include
existing bus stops, vehicle pick-up points or loading areas at
hotels, office buildings, shopping complexes, and crossroads
near residential buildings or complexes.

We focus on the Peak Hour Vehicle Routing Problem
(PHVRP) that is characterized by a limited vehicle fleet
capacity to serve a large volume of travel requests, with the
aim of maximizing the number of served passengers. To the
best of our knowledge, this is the first work that addresses the
PHVRP to support the first-mile transportation. Throughout
the paper, the concept of ‘destination’ indicates the final point
of the passenger’s journey, while ‘depot’ indicates the transit
points (rapid-transit metro or alternative bus stations), where
the passenger switches from the feeder buses to the fixed-
route transports (trains or buses) to continue his/her journey.
Due to the limited vehicle capacity and a large volume of
travel requests during peak hours, the PHVRP is addressed by
selectively visiting the request nodes (pickup points) with the
aim of maximizing the number of served passengers.

In addition to the above-mentioned optimization objective,
i.e. maximizing the service capability (number of served
passengers) for the limited vehicles during peak hours, the
PHVRP extends the well-known Vehicle Routing Problem
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(VRP) with Time Window (VRPTW) by accommodating the
willingness of public commuters to accept alternative travel
routes through various depots in order to reduce their overall
travel time, waiting time or walking distance. We assume
that multiple alternative depots are associated with each travel
request, which is supported by the fact that the existing
travel planners (e.g. google map1) often provide multiple
routes with alternative transit points. This opens up new
opportunities to maximize service capacity (number of served
passengers) through vehicle routing. While the PHVRP bears
some similarity with existing vehicle routing problem variants
such as Multi-Depot VRP (MDVRP) [3], multi-trip VRP
(MTVRP) [4], [5] and Selective VRP (SVRP) [6], [7], it
also exhibits significant differences. A detailed comparison
between PHVRP and MDVRP, MTVRP as well as SVRP will
be presented in Section II, where we discussed and highlighted
the differences between the proposed ant-colony optimization
(ACO) algorithm and the existing ACO-based algorithms for
VRP problems.

The main contributions of this paper are as follows:
(1) To the best of our knowledge, our work is the first to

investigate the PHVRP, where the number of travel requests
exceeds the service capability of the limited vehicles. As
such, each vehicle performs successive trips to serve as many
passengers as possible during peak hours. The PHVRP aims
at maximizing the number of served passengers by leveraging
multiple alternative depots. This enables passengers to take
alternative travel routes if they do not differ much from the
optimal travel route in terms of travel time.

(2) We formally formulate the PHVRP under the constraints
of vehicle capacity, time windows of travel requests, and
quality of service regarding riding time. Since the objective
of PHVRP problem is to maximize total served passen-
gers instead of the number of passengers in each trip, we
characterize the riding time of each vehicle trip (trip-based
constraint) instead of each passenger. This may decrease the
number of passengers in a trip but can potentially increase the
total number of served passengers. We demonstrate through
extensive experiments that this formulation can significantly
improve the computation efficiency while slightly improving
the solution quality for the PHVRP problem.

(3) We propose a novel demand graph consisting of travel
request nodes and depot nodes which enables efficient search
of routing solutions. We develop an efficient ACO algorithm
for the PHVRP, which relies on a novel solution construction
scheme to iteratively produce solutions that can maximize
the number of served passengers. The proposed algorithm
incorporates the following: i) a novel pheromone initialization
information that jointly considers the temporal-spatial distance
as well as depot similarity among different travel requests,
ii) a solution construction scheme, called trip-by-trip (TBT)
scheme, to construct a complete solution by iteratively forming
a trip for the vehicle with earliest end time until no more trips
can be formed for any vehicle, and iii) within the procedure
of forming a single trip, efficient techniques are employed to
construct CNM (candidate next move) set and choose the next

1https://www.google.com/maps/dir/

move from the CNM set. These techniques enable each vehicle
to intelligently decide whether to visit a depot and start a new
trip from that depot or serve as many passengers as possible
in a single trip.

II. LITERATURE REVIEW

A. Existing Works on Similar VRP Variants

The VRP problem has been the subject of intensive research
ever since it was proposed by Dantzig and Ramser in 1959
[8]. The broad range of applications has spurred numerous
VRP variants, such as capacitated VRP (CVRP) [9], [10],
VRP with heterogeneous fleet of vehicles [11], VRP with time
windows [12], VRP with pickup and delivery [13], dynamic
VRP [14], periodic VRP [15], multi-trip VRP (MTVPR) [5],
[16], split delivery VRP [17], multi-depot VRP (MDVRP)
[18], selective VRP (SVRP) [19], etc. In contrast to general
studies in VRP, there are also many existing works that address
practical problems in urban mobility [20]. This includes traffic
regulations, traffic congestion [21], road condition, parking
space, air pollution [22], noise pollution, emergencies [23], etc.
The objects to be delivered in these studies include consumer
goods, materials, mails/packages, waste products as well as
passengers. Recently, research in urban mobility for passenger
movements is gaining wide attention. Aim at encouraging the
use of public transport, many researchers studied the first
(last)-mile transit problem, which is now recognized by urban
transport planners as a key barrier to better public-transit
utilization. Solutions to the first (last)-mile transit problem
include the usage of feeder buses [1], autonomous vehicles
[24], bicycle sharing systems [25], cybercars [26], car sharing
programs [27] etc. The work in [28] proposed to boost ride-
sharing opportunities with alternative destination of passengers
to reduce the number of circulating vehicles, by developing an
activity-based ride matching (ABRM) algorithm to match ride
requests with ride offers.

These existing works related to the PHVRP can be grouped
in the following three categories: 1) Multiple Depots Vehicle
Routing Problem (MDVRP), which targets multiple depots
such that a request can be satisfied by any of the depots,
2) Multiple-Trip Vehicle Routing Problem (MTVRP) which
enables each vehicle to perform successive trips during the
same work shift, and 3) Selective Vehicle Routing Problem
(SVRP) which does not impose that all clients need to be
visited by the vehicles.

(1) MDVRP. The MDVRP problem [3] aims to determine
a set of vehicle routes with the objective of minimizing the
number of vehicles or total travel distance/costs, where there
are multiple depots and a solution is feasible if each route
satisfies the standard VRP constraints and begins and ends
at the same depot. Several variants of the model are studied:
time windows [11], [29], split delivery [30], heterogeneous
fleet [29], periodic deliveries [31], and pickup and delivery
[32]. The PHVRP considered in this paper differs from the
existing MDVRP variants in many aspects: 1) the PHVRP
is targeted towards transferring human passengers, and hence
it can only tolerate very short waiting time for the vehicles
(usually few minutes); 2) the PHVRP has insufficient vehicles
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to serve all the passengers, thus its objective is to maximize
the service capability instead of minimizing the overall cost;
3) each travel request in PHVRP can have several alternative
depots (not all) such that a request is regarded as served if
the passenger is taken to any of the preferred depots. In the
existing works for MDVRP, a customer can be served by any
of the depots; 4) each vehicle in PHVRP must be used many
times (i.e. multi-trip) in order to serve more people.

(2) MTVRP. MTVRP generalizes the traditional VRP prob-
lem such that a vehicle can perform successive trips during
the same working shift to serve a set of customers. In this
category, many works have been reported for the variant called
cumulative capacitated vehicle routing problem (mt-CCVRP)
[4], where the goal is to minimize the sum of arrival times
at demand nodes. The time constraints, which involve the
time windows and time horizons on each customer, has also
been taken into consideration [5]. It has also been jointly
considered with vehicle scheduling [16], where the objectives
are to minimize the number of vehicles and the total travel
time/cost while satisfying constraints on vehicle capacity as
well as delivery time windows. However, 1) existing MTVRP
variants target at delivering goods, and hence they usually
have slack (or none) time window for pickups; 2) They have
different objectives from PHVRP, e.g. minimizing the number
of vehicles and the total travel overhead (time/cost). As such,
existing methods for MTVRP problem do not tend to benefit
the PHVRP problem; 3) The existing MTVRP methods seldom
consider multiple depots, thus they do not consider the fact that
a customer can be served by multiple depots.

(3) SVRP. The SVRP problem generalizes the traditional
VRP problem to which not all clients need to be visited by
the vehicles. Variants such as single vehicle routing problem
with deliveries and selective pickups (SVRPDSP) [19], and
selective multi-depot VRP problem with pricing [33] have
been studied. The selective VRP problem has also been
applied to post-disaster needs assessments [6], and mobile
blood collection system [7]. The PHVRP considered in this
paper has significant differences with the above-mentioned
works. First, since it targets at serving passengers during peak
hours, there are a large number of passengers with tightly
pickup time windows, leading to extremely hard problems
on large-scale. The PHVRP problem assumes that individual
passengers have equal chance of being picked up and should
not be distinguishable simply based on individual request
information, thus it does not assign a profit revenue to each
individual passenger. Hence it is not possible to achieve
the pickup selection simply based on the benefit of visiting
each individual passenger. In addition, passengers in PHVRP
usually have multiple acceptable depots as alternative choices
which helps improve the chances of being picked up during
the peak hours.

B. Ant Colony Optimization for VRP Problems

Many efforts have been undertaken to find the optimal
solutions for a variety of VRP variants [34], [35]. The major
drawback of the exact solutions is that computing the optimal
solutions requires intolerable computation time, e.g., few hours

or even days for a small case with less than one hundred
requests. In addition, they usually consider simplified versions
of VRP variants and make ideal assumptions on criteria such
as sufficient depot/vehicles, vehicle capacity, etc. As such,
these approaches cannot be directly applied to real-world
problems.

Many reported works have attempted to solve the classical
VRP and its variants using the ACO method, due to its
powerful adaptation capabilities for addressing hard combina-
torial optimization problems [36], [37]. The general ACO for
VRP problems includes three main components: pheromone
initialization, solution construction and pheromone updating.
Existing algorithms typically initialize the pheromone on links
based on the length of the link (or travel cost, travel time),
or simply set them to equal pheromone [36]. For pheromone
updating, three different strategies have been used in existing
works: local pheromone update, global pheromone update,
and best solution strengthening [37], [38]. To prevent early
convergence, the value of pheromone trails on each solution is
confined to a predefined interval [39]. In solution construction,
the ants rely on the pheromone information to construct
vehicle routes. However, due to the capacity constraint, each
ant cannot visit all the customers, thus a feasible solution needs
to be constructed based on several ants’ paths. To tackle this,
researchers generally employ the following steps: 1) each ant
travels in the road network and visits some customers (not
all) to form a path, 2) construct feasible solutions using the
paths of all ants by modeling it as a set cover problem [38].
However, the set cover problem is also NP-Hard and it is
possible that no feasible solution can be found. The work
in [40] first constructs a ”big” trip and then divides it into
capacity-feasible vehicle trips. Then the resultant trips are
served one by one by multiple vehicles following the order
in the ”big” trip. However, vehicle capacity has a direct effect
on the final solutions, and thus should be considered when
constructing the paths by the ants. To overcome this problem,
the work in [36] proposes to allow each ant to set out again
after returning to the depot, until it has visited all customers.
In this way, each ant will return a feasible solution, while the
capacity constraint is taken into account during construction of
each sub-trip. In addition, the existing methods also differ from
each other in terms of design strategies for adjusting adaptive
parameters [41], search space reduction [42], multi-type ants-
usage [36], utilizing hybrid models (e.g. with genetic algorithm
[43], particle swarm optimization [44], Tabu search[45]), etc.

Our approach differs from the existing works in optimiza-
tion objective, methods for constructing solution, initializing
and updating pheromone. We focus on the PHVRP problem
which has not been considered in the existing works. To
fully capture the characteristics of the PHVRP problem, we
develop novel strategies for constructing solution, initializing
and updating pheromone. Specifically, we carefully designed
our strategies for initializing and updating pheromone, by
jointly take into account the temporal-spatial distance as well
as depot similarity among different travel requests. Different
from existing methods, we propose a solution construction
scheme, called trip-by-trip (TBT) scheme, which constructs a
complete solution by iteratively forming a trip for the vehicle
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with earliest end time until no more trips can be formed for
any vehicle. The scheme does not try to maximize the number
of request visited by each trip, and is shown to be efficient
for VRP variants whose objective is to maximize the rate of
service rather than system efficiency (e.g. the total travel cost).

In this paper, we focus on the PHVRP problem which
has not been considered in previous works. The PHVRP
problem has unique characteristics in comparison to other
VRP variants. For example, customers are passengers with
a much tighter bound on pickup time and waiting time. In
addition, each request may specify multiple acceptable depots
while different requests have different depots, etc. To fully
capture the characteristics of the PHVRP, our proposed method
differs from existing approaches in many aspects, including
initializing the pheromone as well as constructing the solution.
Specifically, our algorithm initializes the pheromone by jointly
taking into account the temporal-spatial distance as well as
depot similarity among different travel requests, while the
existing works typically rely on only travel distance or travel
time between two request nodes. We propose a trip-based
constraint to model the maximum riding time constraint which
is specially designed for the PHVRP problem (whose objective
is maximizing the number of served passengers), while the ex-
isting works use request-based model. Based on the trip-based
constraint model, we develop a trip-by-trip (TBT) scheme
which constructs a solution by iteratively forming a trip
for inclusion into current route, while other existing routing
algorithms typically add a single node into a travel route each
time. In addition, we propose an efficient technique to impose
routing constraints (e.g. vehicle capacity, pickup time window)
by constructing a CNM set during route planning. This can
be easily extended to simultaneously impose more constraints
considered in other VRP variants.

III. PROBLEM DESCRIPTION AND FORMULATION

A. Road Network and Request Model

The region served by our system is modeled as an undi-
rected graph RN = (V,E), where V is a set of locations
(pickup points or depots) and E refers to the road segments
connecting the locations. The set V can be partitioned into
two parts: a subset P of pickup points, and a subset D of
depots where travellers will continue their journey using bus
or train. The link (i, j) ∈ E connecting locations vi and vj
(vi, vj ∈ V ) indicates a shortest path between vi and vj . Each
edge (i, j) ∈ E is associated with a distance di,j , calculated
as the length of the shortest path between vi and vj .

It is worth noting that commuters contribute a major part
of travel request, which means that the travel demands exhibit
periodical similarity among different days. In this work, the
travel requests of all customers are known in advance and
denoted by R, where each element ri ∈ R is a 5-tuple
< si, Di, [ei, li], qi >. si ∈ P represents the passenger pickup
point. Di is the set of alternative depots that can meet ri’s
requirement, meaning that ri is regarded as served if the
passenger is taken to any location in D. [ei, li] refers to the
pickup time window, where ei and li are the earliest and latest
pickup timec. qi denotes the number of seats needed by ri.

Fig. 1 shows an PHVRP instance. There are 8 pickup
locations for passengers, i.e. P = {1, 2, · · · , 8}, and 2 al-
ternative destinations, i.e. D = {d1, d2}, and these locations
are connected via a set of road segments. Travel requests
continuously appear at those pickup locations, and a pickup
time window is associated with each request. To illustrate this,
we assume that D={d1, d2} is the set of alternative depots of
each request, meaning that any request can be satisfied if the
passenger is taken to either d1 or d2. Two vehicles, ve1 and
ve2, travel among all the pickup locations as well as the depots
with the objective of maximizing the number of passengers
served by the limited vehicle capacity during peak-hour. To
this end, all the vehicles cooperatively perform pickup tasks,
and each vehicle decides whether to end its current trip and
start a new one or take more requests in the current trip.

Each location in P may have many requests with different
time windows, thus each location should be visited multi-
ple times by different vehicle at different time slots. This
increases the complexity of problem formulation as well as
the algorithm design. Therefore, we construct a demand graph
DG = (V ′, L) based on the travel request set R and the road
network RN to solve the PHVRP problem more efficiently.
The node set V ′ is constructed as: (1) For each request ri ∈ R,
we create a node vi located at pickup point si, and vi has all
the properties of request ri. (2) For each depot dj ∈ D, we
create a node vj located at depot dj . The other properties of
vj will be set to empty. The set of links, L, is constructed as
follows: For any node pair vi and vj in V ′ we add a link (i, j)
to L and the length of the link dist(i, j) is set to the length
of the shortest path between vi and vj on network RN .

B. Vehicle Trip Model
The system coordinates a fleet of homogeneous vehicles

denoted by V E = {ve1, ve2, . . . , veκ}, where κ is the number
of vehicles and the vehicle vei is associated with capacity
εi. We define a vehicle trip as a travel path/route where a
vehicle starts from a depot (or its original parking location)
to pick up passengers and return to a final depot (may be
different from the start depot) after all the onboard passengers
have alighted at their acceptable depots. Each trip may contain
multiple depots if a single depot cannot meet the requirement
of all travel requests assigned to the trip. Each vehicle will
stay at the last node (a depot) of a trip after finishing the trip.

Fig. 1 shows an example of the PHVRP problem, where
there are 8 pickup points, 2 depots and 29 travel requests. For
the simplicity of demonstration, each of the requests can be
satisfied by both of the two depots (i.e. d1 and d2). The pickup
time window of each request is illustrated via the length in
x-axis. We omit the information on the number of required
seats per request, the travel time and distance of each road
in the network, due to the limit on the page length. In this
instance, 6 trips are constructed based on the constraints of
vehicle capacity, pickup time window, and the bound on the
maximum travel time of each trip. Three of them will be served
by vehicle 1 in sequential order and the others will be served
by vehicle 2. Due to the fact that the total travel requests
exceed the service capacity of all the available vehicles during
peak hours, some of the travel requests will not be served.
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Fig. 1. An instance of PHVRP

We assume that any vehicle will not wait for passengers
at a pickup location. This means that a request r can only
be served by vehicle ve if ve arrives at r’s location within
r’s pickup time window. The rational is that waiting for
passengers will frustrate onboard passengers thus lowering
the users’ experience. In addition, waiting for passengers will
lead to performance loss in terms of the number of served
passengers. However, if there are passengers waiting at the
pickup location, the vehicle will wait until all the passengers
are on board, no matter how long time the boarding process
takes. For the case when a vehicle with no onboard passengers
stops at a depot, the vehicle can wait for a certain period before
starting the next trip. Also, as shown in Fig. 1, vehicles will
not wait any passengers at any pickup point. However, when
vehicle 1 completes its first trip, there is no feasible next move
(request node) from the depot d1, thus it waits at the depot
d1 for a certain period before starting its 2nd trip.

We assume that the number of required seats in any request
is no larger than the vehicle capacity,

qi ≤ εj , ∀ri ∈ R, vej ∈ V E (1)

Let TRi,j be the j-th trip of the i-th vehicle for 1 ≤ i ≤
κ, 1 ≤ j ≤ ni, where κ is the number of vehicles and ni is the
number of trips assigned to the vehicle vei. The notation TRi
= {TRi,1, TRi,2, . . . , TRi,ni

} is utilized to denote the set of
trips of vei. Formally, assume TRi,j =< v0, v1, · · · , vni,j >
(vk ∈ V ′ for 0 ≤ k ≤ ni,j), where ni,j is the number of nodes
that vei needs to visit after leaving depot v0, and vei needs to
stop for τvk time at node vk for passengers to alight or board.
For vk ∈ TRi,j ,

τvk = τ0 + τu · qk + τu · q′k (2)

where τ0 is the extra time taken due to vehicle acceleration,
deceleration, door opening and closing at a pickup point or
depot, τu is the time required for a passenger to alight or
board, qk and q′k is the number of passengers at node vk that
need to board and alight respectively. Middle-sized vehicles
such as feeder buses with capacity ranging only from 10 to
20 passengers, are used to offer point-to-point services (e.g.

deliver passengers to the nearest depots) [1]. These vehicles
typically have a single door, and hence boarding and alighting
cannot happen simultaneously.

As mentioned earlier, this model allows a vehicle to wait at
the depot for a certain period before starting its next trip. Since
there are no passengers onboard the bus, this is acceptable.
Therefore, the waiting time at the first node, v0, of the trip
can be calculated as

τv0 = max{0, e1 − t(v0, v1)} (3)

where t(v0, v1) indicates the travel time from node v0 to node
v1, v0 is the current node before starting a new trip, v1 is the
next node to visit from node v0, e1 is the earliest pickup time
of request node v1. e1−t(v0, v1) > 0 indicates that the vehicle
will arrive earlier than the earliest pickup time if it starts the
next trip immediately thus needs to wait for passengers at v1.
To avoid that, the vehicle will wait at v0 for e1 − t(v0, v1)
seconds before making a new trip. In this way, the vehicle
will arrive at node v1 at time e1 and need not to wait the
passengers at v1.

In addition, it is clear that the equation
∑
vk∈TRi,j

qk =∑
vk∈TRi,j

q′k. Thus, the overall riding time τi,j of trip TRi,j
(for 1 ≤ i ≤ κ, 1 ≤ j ≤ ni), which is defined as the period
from the time that an empty vehicle leaves its depot to the
time that the vehicle has taken all the visited passengers to
their depots and be ready for the next trip (after completing
the trip), can be calculated as

τi,j =

ni,j−1∑
k=0

t(vk, vk+1) +

ni,j∑
k=0

τvk

=

ni,j−1∑
k=0

t(vk, vk+1) + τv0 +

ni,j∑
k=1

(τ0 + τ1 · qk + τ1 · q′k)

=

ni,j−1∑
k=0

t(vk, vk+1) + τv0 +

ni,j∑
k=1

(τ0 + 2τ1 · qk) (4)

where t(vk, vk+1) indicates the travel time from node vk to
node vk+1, ni,j is the number of nodes the vehicle needs to
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visit in trip TRi,j , and qk is the number of required seats
corresponding to node vk.

Since we are not aiming at maximizing the number of
passengers for each single trip, we use a stronger constraint
by restricting the riding time of the whole trip instead of
restricting the ride time of each single request (passengers),
in order to reduce the overall computation overhead. It is
worth noting that in the formulation of the existing works,
it may not be possible to partition a vehicle’s travel route into
several trips such that any travel request only belong to a single
trip. Restricting the ride time of each single request is usually
effective for optimizing other objectives, such as minimizing
the overall/average travel cost/time of all the requests etc., and
it tends to assign much more passengers in a single trip as
long as the ride time of each request is not violated. However,
the generated vehicle routes produce longer average ride time
which is not helpful for maximizing the number of served
passengers in the PHVRP problem. In PHVRP, we use a
stronger constraint which is not only computationally efficient
but it also reduces the average ride time of all travel requests
leading to more people served during peak hours. In our
formulation, each trip is time-constrained by an upper bound
τqos which guarantees the quality of service for travellers, and
exceeding this by τqos will lead to customer dissatisfaction.

τi,j ≤ τqos, 1 ≤ i ≤ κ, 1 ≤ j ≤ ni. (5)

Similarly, we also adopted a stronger constraint on the
vehicle capacity, such that all the passengers assigned to the
same trip must not exceed the vehicle capacity ε. Formally,
for trip TRi,j =< v0, v1, · · · , vni,j

>,
ni,j∑
k=0

qk ≤ ε, 1 ≤ i ≤ κ, 1 ≤ j ≤ ni. (6)

For the trip TRi,j =< v0, v1, · · · , vni,j >, let tavk be the
time by which a vehicle arrives at node vk (vk ∈ TR), which
can be calculated as

tavk = tavk−1
+ τvk−1

+ t(vk−1, vk)

= tavk−2
+ τvk−2

+ t(vk−2, vk−1) + τvk−1
+ t(vk−1, vk)

= ... = tav0 +

ni,j−1∑
k=0

(τvk + t(vk, vk+1)) (7)

Since not all requests can be served, a binary vector A =<
a1, a2, . . . , an > is defined as decision variables, such that
ak = 1 if request rk is selected to be served, otherwise ak is
set to be 0. For a request node vk whose pickup time is tavk ,
the constraint on pickup time window must be satisfied.

ek · ak ≤ tavk ≤ lk · ak + (1− ak) · τpk, 1 ≤ k ≤ n (8)

where [ek, lk] indicate the time window of pickup for request
rk, and τpk indicates the peak hour period (planning period).
On one hand, if ak = 1, then ek ≤ tavk ≤ lk must hold,
otherwise, 0 ≤ tavk ≤ τpk must hold.

For each request node vk in TRi,j , the TRi,j must also
contain at least one of rk’s alternative depots,

|Dk ∩D(TRi,j)| > 0, vk ∈ TRi,j (9)

where Dk is the set of alternative depots of request rk,
D(TRi,j) is the set of depots that the vehicle will visit during
the trip. In addition, each request can only be served by at
most one trip,

|TRi,j ∩ TRk,l ∩R| < 1, i 6= k or j 6= l (10)

where TRi,j∩TRk,l∩R indicates the set of requests contained
in both TRi,j and TRk,l.

C. Problem Formulation

Problem PHVRP. Given the set R of n travel requests, the
set V E of κ vehicles (with parameters ν, ε) and the pickup
point set P and depot set D in the form of road network RN ,
determine a subset of R to serve and produce a set of trips
for each vehicle in V E to maximize the serving of requests
during the peak hour period τpk, with consideration of the trip
constraints including vehicle capacity, maximum riding time
τqos as well as the pickup time window. Formally,

max
∑

1≤k≤n

ak · qk (11)

s.t. (5), (6), (8), (9), (10)

tavi ≤ τpk , vk ∈ DG , (12)
ak ∈ {0, 1} , 1 ≤ k ≤ n , (13)

where equations (5), (6), (8) are constraints on each single
trip with respect to QoS, vehicle capacity and time window
of the travel requests. Constraint (9) guarantees that any
selected passenger will be taken to their alternative depots,
and constraint (10) indicates that a request will be served by
at most one trip. Constraint (12) imposes that any trip cannot
exceed peak hour period.

IV. PROPOSED APPROACH

This section presents the proposed Ant Colony Optimiza-
tion (ACO) algorithm based on a trip-by-trip (TBT) routing
scheme, denoted as TBT-ACO, to solve the PHVRP problem.

A. Preliminary on ACO Method

The ACO method is a population-based approach, which
searches the solutions by simulating food-seeking behaviors
of ant colonies in nature. Real ants find a short path to a food
source in the following way. Initially, ants wander randomly,
and upon finding food return to their colony while laying
down pheromone trails on the path traveled. If other ants find
such a path, they are likely to follow the trail, returning and
reinforcing it if they eventually find food. The pheromone trail
also evaporates over time if no new pheromone is added. In
this way, a short path gets marched over more frequently, and
the pheromone density becomes higher on shorter paths than
longer ones. This results in many ants following a single path.

The idea of the ant colony algorithm is to mimic this
behavior with “simulated ants” walking around the graph that
represents the problem to solve. Artificial ants locate optimal
solutions by moving through a parameter space representing
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all possible solutions, where better solutions correspond to
short paths in the natural world. The artificial ants record
their positions and the quality of their solutions via simulated
pheromone so that in the subsequent simulation iterations,
more ants locate better solutions. The ACO algorithm works in
an iterative way, and it generally includes three main steps in
each iteration, namely, initializing, solution construction and
pheromone updating. In our problem, the roadways connecting
consecutive pickups are the solution components to construct
the travel routes. The first step initializes the amount of
pheromone associated with each solution component. In the
second step, ants utilize solution components to construct fea-
sible solutions (i.e. the travel routes) based on the pheromone
trails such that roadways with more pheromone are more likely
to be used by ants in constructing their feasible solutions in
the next iteration. In the third step, the ants with good solu-
tions will update the pheromone to the solution components
included in their solutions.

B. Main Algorithm

The proposed TBT-ACO starts by constructing a demand
graph DG = (V ′, L) using travel requests and depots. With
the demand graph DG, the algorithm TBT-ACO solves the
problem in several iterations. α solutions (by α ants) are gen-
erated in each generation population based on the pheromone
distribution, and each solution consists of κ feasible sets of
trips (for κ vehicles). At the end of each iteration, after
α solutions are generated, the algorithm chooses some ants
with good performance and allows these ants to deposit some
pheromone on the corresponding links. Solution components
(links) with larger amount of pheromone are more likely to
be used by ants in constructing their feasible solutions in the
next iteration.

As shown in Algorithm 1, TBT-ACO first builds the de-
mand graph, then initializes the pheromone based on spatial-
temporal distance information as well as the destinations infor-
mation of different travel requests (line 3). Next, it performs
λ iterations of operations during which λ generations of ant
populations are generated (lines 5-16). In each generation,
a complete solution is constructed for each of the α ants,
resulting in a population of α solutions that are generated
using the TBT scheme based on the pheromone information.
Specifically, the entire inner while-loop (lines 10-13) is the
process for an ant to construct one complete solution for κ
vehicles, using the trip-by-trip (TBT) scheme, i.e. iteratively
constructs a trip for the vehicle with earliest finish time, as
shown in Fig. 2. In Fig. 2(a), vehicle ve2 has the earliest finish
time t1 (t1 < peakRange meaning ve2 can serve more trips
during the peak hour period), thus algorithm TBT-ACO forms
a trip TR2,2 for vehicle ve2; then ve3 has the earliest finish
time t2 as in Fig. 2(b), thus TBT-ACO forms a trip TR3,2 for
vehicle ve3. At this stage, ve1 has the earliest finish time t3
as in Fig. 2(c), thus TBT-ACO forms a new trip TR1,2 for
vehicle ve1. The construction of a new trip is achieved by the
procedure SubTrip (line 12), which constructs a trip using
TBT scheme for the vehicle with earliest finish time. After
each of the α ant has obtained their corresponding solutions,
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Fig. 2. Illustrative example of the solution construction based on TBT
scheme

TBT-ACO evaluates all the solutions and updates the historical
best solution if better results are found. Then, the TBT-ACO
chooses some ants with good performance and lets these ants
deposit more pheromone on the corresponding links which are
used for constructing their solutions (trips). The whole process
will repeat λ times.

Algorithm 1: TBT-ACO
Input: Travel request set R, road network RN connecting all pickup

points and destinations, vehicle set V E, parameters
τpk, τqos, ν, q, λ

Output: Decision vector A, set TRi of travel trips for each
vei ∈ V E, the arrival time tavk of a vehicle at the node vk
(vk ∈ DG).

1 begin
2 Construct demand graph DG = (V ′, L);
3 Initialization(); /* Pheromone Initialization */
4 iter ← 1;
5 while (iter < λ) do
6 for (ant← 1 to α) do
7 TRi ← ∅, for each vehicle vei;
8 /* Construct a solution based on TBT scheme */
9 while (true) do

10 k ← arg min
1≤i≤κ

{vei.ft}; /* vehicle with earliest

finish time */
11 if vek.ft ≥ τpk then break;
12 TR← SubTrip();
13 TRk ← TRk ∪ {TR};
14 Solution quality evaluation;
15 updata historical best solution if applicable;
16 pheromoneUpdate();

17 end

C. Pheromone Initialization

In the algorithm, the links in L are components for con-
structing solutions, and each link is initialized with certain
amount of pheromone. A larger amount of pheromone on a
link, (i, j), indicates a higher probability that the link will be
used (i.e. moving to node vj from current node vi) by ants
in constructing their respective routes. Existing approaches
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usually consider the distance between vi and vj . In this paper,
we jointly consider the spatial-temporal distance information
as well depot similarity information, between the two request
nodes. The new initialization method helps to optimize the
pheromone distribution in the early stage. The initialization
strategy aims to let the link connecting two requests, which
are close to each other in spatial-temporal dimension or have
similar dest depots, to have more pheromone so that the two
requests will have higher chance to be included into the same
trip.

1© For a link (i, j) connecting two request nodes vi and vj :
Note that requests ri and rj have locations si and sj , depot
set Di and Dj , time windows [ei, li] and [ej , lj], respectively.
We use set CD to denote the common set of the depot set Di

and Dj , i.e. CD = Di∩Dj . The similarity of destination sets
between ri and rj is calculated as

sim dest = (
|CD|
|Di|

+
|CD|
|Dj |

)/2. (14)

The distance factor, denoted as close fact, which charac-
terizes the spatial-temporal distance between two requests ri
and rj , is calculated as follows.

• If ri and rj are located at the same position (i.e. si = sj)
and their time window overlaps with each other (ei ≤ lj
and ej ≤ li), then

close fact =
max{0,min{li, lj} −max{ei, ej}}

δτ

where δτ = ((li−ei)+(lj−ej))/2 is the average length
of the time windows of the two requests.

• If si 6= sj and a vehicle can reach sj at a time instance
in [ej , lj] after picking up request ri or vice versa, then

close fact =
MAX − dist(si, sj)
MAX −MIN

where MAX and MIN are the maximum and minimum
length of direct links in the road networks RN .

• If si 6= sj and a vehicle cannot reach sj without violating
time window constraint after picking up request ri or vice
versa, then

close fact = 0

Based on the above sim dest and close fact, the amount
of initial pheromone for the link connecting two requests is
calculated as

phei,j = sim dest/2 + close fact/2. (15)

2© For a link (i, j) connecting two depot nodes or con-
necting a request node and a depot node: The pheromone is
initialized based on the distance between the two nodes, i.e.,
the sim dest is calculated as 1, and close fact is calculated
as MAX−dist(si,sj)

MAX−MIN .

D. Trip Construction

This section introduces how an ant intelligently constructs
the travel route for κ vehicles based on pheromone infor-
mation. Since TBT-ACO iteratively constructs a trip for the

vehicle with earliest finish time, in the following we only
introduce how to construct a trip TRi,j for vehicle vei.

During the trip construction, the trip TRi,j can be parti-
tioned into two segments: the first part only contains request
nodes (request-segment denoted as TRreq) and the second
part only contains depots (depot-segment denoted as TRdep).
Initially, the vehicle ve is located at a depot (end of last
trip), and both TRreq and TRdep are empty. At any time
instance, TRi,j = TRreq ∪ TRdep and each node v ∈ TRreq
has an acceptable depot in TRdep. The procedure SubTrip
(i.e. Algorithm 2) repeatedly adds a request node (and its
depot when necessary) into TRi,j , by performing the two
procedures, i.e., 1) identify the candidate set, CNM , of nodes
for next move, and 2) select a candidate from CNM for
inclusion into TRi,j as the next move. The last node in TRreq,
say u, is called the current node in TRreq , and the algorithm
repeatedly searches a next move/node for u, by performing the
above mentioned two procedures. The first procedure finds
all valid nodes that can be inserted after node u without
violating the capacity, time-window and QoS constraints. Then
the second procedure chooses one node from the candidate set
CNM based on pheromone information. We next explain the
two procedures in detail, i.e. how to construct the set CNM
of candidate next moves for the current node u and how to
select a node from CNM as u’s subsequent node.

Algorithm 2: SubTrip()
1 TRi,j , TRreq, TRdep ← ∅; /* initialize as empty */
2 while true do
3 CNM ← CNM_Construction();
4 nm← Next_Move_from_CNM();
5 if nm is a request node then
6 put nm to the end of TRreq;
7 update ve.ft and ve.load;
8 if TRdep ∩Depot(nm) = ∅ then
9 nd← choose a depot from Depot(nm);

10 if nd is the MRT station; then
TRdep ← {nd};

11 else insert nd into TRdep with minimum
trip-length increase.

12 else if nm is a depot node then
13 update ve.ft and ve.load based on TRdep;
14 return TRi,j ;

1) CNM Construction: Suppose we are constructing a trip
TRi,j for the vehicle vek. Initially, both TRreq and TRdep
are empty, and the current node u of TR is the last node of
vek’s previous trip. The TRreq , TRdep and current node u
will be iteratively updated as the algorithm progresses. Given
the current node u, the procedure CNM_Construction
constructs the set CNM consisting of all valid candidate next
moves of u. It checks each of the unserved request nodes,
say vi, to see if capacity constraint, time window constraint
and QoS constraint are met. If any of the three constraints is
violated, the node vi will not be considered.
• The capacity constraint (lines 3-4) requires that the cur-
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rent load (from requests in TRreq) plus the amount of
vi’s request should not exceed the vehicle’s capacity ε.

• The time window constraint (lines 5-9) requires that the
vehicle currently located at u should be able to arrive at
node vi within vi’s time window [ei, li]. The arrival time
can be calculated as ta(vi) ← ta(u) + t(u, vi) + τ(u),
where ta(u) is the arrival time at u, t(u, vi) is the travel
time from node u to node vi and τ(u) is the stopping time
at node u which have been previously defined. There are
two cases: 1). If u is a depot, it only needs to check
whether ta(vi) exceeds li, as the vehicle can wait for a
certain period at the depot if ta(vi) < ei. 2). Otherwise
if u is a request node, then it requires that the ta(vi) falls
into [ei, li], since the vehicle cannot wait for passengers
at the request node.

• The QoS constraint (lines 10-15) requires that the resul-
tant trip travel time which includes node i and its dest
depot (if Di ∩ TRdep = ∅) should not exceed the QoS
limit. If Di ∩ TRdep = ∅, the node that is closest to the
last node of TRdep, say ln, will be selected and inserted
in TRdep after node ln.

Algorithm 3: CNM_Construction()
Input: current node u, request-segment TRreq , depot-segment

TRdep, vehicle capacity ε, trip start time ts, vehicle ve.
Output: CNM .

1 CNM ← ∅; /* initialize CNM as empty set */
2 for each unserved request node vi do
3 /* (1): Capacity constraint */
4 If ve.load+ qi > ε then continue;
5 /* (2): Time-window constraint */
6 if u ∈ D /*vehicle locates at a depot*/ then
7 If ta(u) + t(u, vi) + τu > li then continue;

8 else
9 If ta(u) + ta(u) + t(u, vi) + τu > li or

ta(u)+ ta(u)+ t(u, vi)+ τu < ei then continue;
10 /* (3): QoS constraint */
11 d← null;
12 if Di ∩ TRdep = ∅ then
13 ln← last node of TRdep;
14 d← argminvj∈Di{ dist(vj , ln) };
15 If τ({vi, d} ∪ TRreq ∪ TRdep) > τqos then continue;
16 CNM ← CNM ∪ {vi};

2) Next Move Selection: As mentioned before, the al-
gorithm is capable of allowing a vehicle to end a trip
TRi,j without including more nodes, even when there are
many valid candidate nodes to visit from u without violating
any constraints. To achieve this, we develop an algorithm
Next_Move_from_CNM, which regards the set TRdep as
a special candidate node of the set CNM , the |CNM |+1-th
node. Different candidates have different probabilities of being
chosen based on the pheromone distribution. The probability
that the i-th node in CNM , denoted as CNM(i), will be
chosen is calculated as follows.

pi ←
phu,CNM(i)

tp+ tp dest
(16)

where CNM(i) is the i-th node in CNM , phu,CNM(i) is the
pheromone on the link (u,CNM(i)), tp =

∑
v∈CNM phu,v is

the total pheromone of links connecting u and nodes in CNM ,
and tp dest =

∑
v∈TRdep

phu,v is the total pheromone of
links connecting u and nodes in TRdep. The probability that
the special node (i.e. TRdep) will be chosen, meaning no more
request node will be added into current trip, is calculated as
pdep ← tp dest

tp+tp dest . The algorithm selects the next move using
algorithm 4.

Algorithm 4: Next_Move_from_CNM
Input: candidate set CNM , current node u, depot-segment TRdep of

current trip, pheromone matrix phi,j .
Output: node for next move nm.

1 tp←
∑
v∈CNM phu,v; /* total pheromone of all links

connecting u and nodes in CNM */
2 tp dest←

∑
v∈TRdep

phu,v; /* total pheromone of all links
connecting u and nodes in TR|CNM|+1 */

3 pi ←
phu,CNM(i)

tp+tp dest , 1 ≤ i ≤ |CNM |; /* chance of choosing vi */

4 Pi ←
∑

1≤j≤i pj , 1 ≤ i ≤ |CNM |; /* accumulated probability */

5 p|CNM |+1 ← tp dest
tp+tp dest ; P|CNM |+1 ← 1; /* set TRdep

will be treated as a special node */
6 ra ← random(0, 1);
7 vi ← argmin1≤j≤|CNM |+1{Pj |Pj ≥ ra};
8 if i ≤ |CNM | then nm← CNM(i);
9 else nm← the first node in TRdep;

E. Pheromone Update

At the end of each iteration, the pheromone trail will
be updated after all ants obtained their respective solutions.
Let phavg = (

∑
(u,v)∈TR phu,v)/(|TR| − κ) be the average

pheromone of trajectory TR, where κ is the number of
vehicles and |TR| − κ is the number of links in TR. To
simulate the pheromone evaporation, the pheromone on each
link is multiplied by a residual concentration factor (1− ρ0),
where ρ0 is the evaporation coefficient (0 6 ρ0 6 1).

Pheromone update consists of two parts: 1) best solution
strengthening and 2) historical update. In part 1), for the
best solution in the current iteration, the pheromone along
the trajectory will be strengthened by phavg . In part 2), any
solution that is better than the historical best solution, the
historical updating rule is applied, with the increase of phavg
for each link along the trajectory. At the beginning of the
algorithm, the historical best solution is not good enough,
thus many ants can produce solutions better than the historical
best solution, leading to pheromone updating over a large
number of links (by many ants). As the algorithm continues,
the historical best solution improves. Hence, fewer ants can
produce better solutions, leading to pheromone updating over
relatively fewer links. In this way, the convergence speed is
relatively faster at the early stage and then gradually slow
down as the algorithm advances.

Runtime analysis: 1© We can easily derive that both
pheromone initialization and updating run in O((n + |D|)2),
where n + |D| is the number of nodes in the demand graph.
2© Algorithm 3 runs in O(n) time, and Algorithm 4 runs
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in O(|CNM |) < O(n) time. 3© During the procedure
Solution_by_TBT, the number of CNM constructions
(Algorithm 3) and next move selection (Algorithm 4) will
repeat at most n + |D| times. 4© Based on 3© and 4©, each
ant requires O(n · (n + |D|)) time to produce a complete
solution, thus each generation requires O(α · (n2+n · |D|)) =
O(α · n2) time, as |D| is much smaller than n. 5© The
overall time running time consists of pheromone initialization
(O((n + |D|)2)) at the beginning, producing λ generations
(O(λ · (α ·n2+(n+ |D|)2))), and update the pheromone trail
after each generation (O(λ ·((n+ |D|)2))). Therefore, the time
complexity is O((n+ |D|)2) + O(λ · (α ·n2 +(n+ |D|)2)) +
O(λ·((n+|D|)2)) = O(λ·(α·n2+(n+|D|)2)) = O(λ·α·n2),
where λ is the iteration bound of algorithm TBT-ACO, α is
the number of ants, and n is the number of travel requests.

V. PERFORMANCE EVALUATION

A. Datasets

Road Network: We construct the road network covering the
area as shown in Fig. 3, which is exported from Open-
StreetMap2. Singapore has relatively dense deployment of
bus stops, with an average distance of 300 meters between
two consecutive stops. Thus, the bus demand information
can well reflect the distribution of travel requests. As such,
in the experiments, we use bus stop location to simulate
pickup points to test the performance of our vehicle routing
algorithms. To distinguish the pickup points from depots, we
select 37 bus stops to simulate the pickup points and choose
10 different bus stops to be the candidates of passengers’
acceptable alternative depots.

Fig. 3. Road network used for experiments, which contains 37 pickup
points (set P ), 10 alternative depots (set D) and one MRT station
(i.e. pioneer station).

Travel requests: The travel requests are generated based on
real-world bus travel demand information, which is publicly
available at DataMall, LTA, Singapore3. With the bus demand
data (the total passenger volume at each bus stop in each
hour), we are able to generate reasonable request dataset

2https://www.openstreetmap.org/export
3https://www.mytransport.sg/content/mytransport/home/dataMall.html

to evaluate our proposed vehicle routing algorithm. Fig. 4
shows the passenger volumes (departure) of different bus
stops at different hours of the day. Each curve illustrates the
passenger volume of an individual bus stop. The figure shows
that different bus stops have significant different patterns of
passenger volumes. During different hours of the day, the
average passenger volume of all the bus stops is 22.49 with
variation of 374.06. For each individual bus stop, the average
passenger volume ranges from 1.61 to 98.88, with the variation
ranging from 1.81 to 9892.51.

0 5 10 15 20
hour of the day

0

50

100

150

200

250

300

350

400

pa
ss
en

ge
r v

ol
um

e

Fig. 4. Passenger volumes at different bus stops

Given the total number of passengers at the pickup point
pj , i.e. mj , we generate ρ ·mj/SPR travel requests, where
ρ ∈ [0, 1] (e.g. demand ratio ρ = 0.5 means that the generated
requests equal to 50% of the real bus demand), SPR is the av-
erage seats per request. Thus for pickup point pj , we generate
a set of travel requests {ri} such that

∑
qi = ρ ·mj/SPR.

Specifically, ri =< si, Di, [ei, li], qi > is generated in the
following way: 1) origin stop si is set as pj ; 2) qi is randomly
generated in [1, 2 ∗ SPR]; 3) the earliest pickup time ei
is randomly generated in the time period following uniform
distribution, while li is set to be ei + θ where θ (size of
pickup time-window) is set to 10 minutes; 4) Each request
ri has a set Di consisting of multiple alternative depots. In
real-world scenario, the alternative depots will be provided by
the passengers. In the experiment, the Pioneer metro station
is included in each ri’s Di. In addition, each request has
|Di| − 1 extra alternative depots, which are selected from set
D (as shown in Fig. 3) as those have minimum distance for
connecting the origin si and the metro station. 5) If there are
multiple requests of the same ei and Di, we merge them into
a single request.

All the methods use the same inputs, i.e. road network,
request set, vehicle configurations and constraint parameters.
If not specified, the experiment parameters are set as follows:
1) In request generation, ρ = 0.5, the number of alternative
depots of each request is randomly generated in range [1,3],
the number of required seats of each request is randomly
selected from [1, 5]. 2) In algorithm TBT-ACO, the population
size α is set to 20, iteration bound λ is set to 50, evaporation
coefficient ρ0 = 0.2. 3) Without loss of generality, we
assume that each vehicle is with capacity of 20 seats in the
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experiments. The travel time between node vi and vj , i.e.
t(vi, vj), is calculated dist(vi,vj)

ν where travel speed ν is set
to 5 m/s. Note that our approach can be easily extended to
the scenario with heterogeneous traffic situations by replacing
the method for calculating t(vi, vj). Existing machine learning
based methods (e.g. deep learning based method) showed
promising performance for travel time prediction and thus
can be used to provide accurate estimation of t(vi, vj) based
on historical vehicle travel data. In comparison with optimal
solution on small-scale instances, κ = 2 vehicles are used for
experiment; and there are κ = 20 vehicles in total when testing
on large-scale instances. 4) The QoS constraint of trip riding
time τqos is set to 15 minutes. 5) In equation (2) for calculating
vehicle dwell time at a pickup point, τ0 = 5 seconds, and
τu = 1.5 seconds [46].

B. Baseline Methods and Evaluation Metrics

Since there is no existing work on the same problem,
we compare the proposed method with optimal solutions for
small size instances, and with heuristic solutions for large-
scale instances. First, the optimal solutions are obtained using
CPLEX [47]. For large-scale instances, it is not possible to
obtain optimal solution in short time (e.g. 24 hours). Thus
we develop the following baseline methods to evaluate the
proposed ant colony algorithm TBT-ACO as well as the TBT
routing scheme. The baseline method is also an ACO based
algorithm, denoted as ACO-Base, which simultaneously con-
structs κ travel route for the κ vehicles. Similar to TBT-ACO,
the ACO-Base repeatedly selects a vehicle that has the earliest
finish time of current route and then chooses a next stop
to include into the route, until no route can accept more
requests. There are two main differences between TBT-ACO
and ACO-Base: 1) When identifying the next candidate stops,
ACO-Base uses the request-based QoS constraint, i.e. the
total in-vehicle riding time for any passenger is bounded by
τqos. In contrast, the TBT-ACO uses trip-based constraint
(formula (5)). 2) The ACO-Base does not use the TBT
scheme, such that only a single request is included into a
vehicle’s route in each iteration, while in TBT-ACO a trip is
formed for a selected vehicle in each iteration. In addition, we
also adapt the GRASP Algorithm [48] as a baseline method,
which is designed to solve the VRP with time windows and
multiple vehicles. Similar to ACO-Base, GRASP also uses
the request-based QoS constraint.

The performance metrics include: 1) the number of served
passengers #.served =

∑n
i=0 aiqi; 2) service efficiency η,

i.e. the served passengers by travelling one kilometer, η =
1000 · #.served∑

(u,v)∈TR dist(u,v)
; 3) average in-vehicle riding time

travg of passengers; and 4) algorithm running time.

C. Results and Analysis

1) Comparison with optimal solutions on small-size instances.
The CPLEX program runs in parallel on a workstation with
56 cores (Intel(R) Xeon(R) CPU E5-2660 v4@2.00GHz) and
128G RAM. The other methods run on the same server but use
a single core. We test the instances with request number no
more than 200, as the CPLEX method cannot find the optimal
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Fig. 5. Comparison of CPLEX, ACO-Base and the proposed TBT-ACO in
terms of number of served passengers (#.served) and service efficiency (η).
Each record is averaged over 2 random instances.

solution within 20 hours for larger instances. The running time
of CPLEX method ranges from 7.8 to 18.7 hours when the
number of travel requests ranges from 100 to 200.

Fig. 5 compares the results obtained by the CPLEX, the
TBT-ACO and other baselines in terms of the number of
served passengers (#.served) and service efficiency (η). On
relatively smaller problem instances, ACO-Base obtains good
results that are close to the optimal solutions, with deviation
ranging from 5.87% to 13.97% for all the cases evaluated. The
results of TBT-ACO are better than ACO-Base as TBT-ACO
adopts trip constrained problem formulation and TBT scheme
to intelligently decide whether to end current trip or take
more passengers. We also observe from Fig. 5 (a) and (b)
that all methods tend to obtain higher #.served and η with
the increasing number of travel requests. This is because in the
PHVRP problem, the vehicles do not have sufficient capacity
to serve all requests. As such, they can only selectively serve
as much as possible. More requests provide more opportunities
to enable the algorithms to strategically select better pickup
points to visit, which helps to improve the number of served
passengers and system efficiency. Fig. 5 (c) and (d) evaluate
the results with respect to increasing seats per request (SPR).
All the methods tend to obtain higher #.served and η with
increasing SPR. This is because higher SPR increases the
travel demands at each pickup point, which indirectly reduces
the number of stops a trip need to visit. Hence, the vehicles
have more freedom to select beneficial pickup points to visit.

Fig. 6 illustrates the algorithm running time of algorithm
TBT-ACO on relatively smaller instances, in comparison with
ACO-Base, GRASP, and the optimal method CPLEX. In
this figure, the experiment setting is the same with that in
Fig. 5. From the figure, we observe that the CPLEX method
needs nearly 19 hours to obtain the optimal solution when the
number of travel requests is 200. The runtime exceeds 24 hours
when the requests exceed 200. The other heuristic methods,
i.e. our TBT-ACO, ACO-Base, and GRASP, use much less
time. Specifically, the runtimes of TBT-ACO, ACO-Base and
GRASP range from 21 to 72 seconds, from 22 to 76 seconds,
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Fig. 6. Comparison on algorithm running time

and from 0.7 to 5.2 seconds, respectively.
2) Comparison on Large-size Instances. Fig. 7 compares
TBT-ACO with the baseline methods in terms of the number of
served passengers #.served, efficiency η, the average riding
time travg and the algorithm running time. All the algorithms
tend to achieve higher #.served and η with increasing ρ
(corresponding to increasing travel requests), as shown in Fig.
7 (a) and (b), due to the same reasons discussed in the previous
section. Fig. 7 (c) shows that the average passenger riding time
travg slightly decreases with the increasing ρ, because larger ρ
enables the vehicles to visit lesser stops to pickup passengers.
This reduces the trip distance leading to the reduction in travg .
The comparison between TBT-ACO and ACO-Based also
indicates that the trip based constraint does not necessarily
lead to short passenger trip. Fig. 7 (d) compares the algo-
rithm runtime. All the algorithms spend more time when the
number of requests increases. Algorithm GRASP uses the
least time but the resultant results are not good. TBT-ACO
runs slightly faster than ACO-Base while achieving better
#.served and η at the same time. This indicates that, for
the PHVRP problem, it is necessary to utilize the proposed
trip-based route constraint and the TBT scheme to search
for solutions. Note that the algorithm runtime of TBT-ACO
and the baselines is obtained using a single processor, and it
can be significantly accelerated as each stage of ACO based
algorithm (e.g. pheromone initialization and update, solution
construction for all ants, etc.) can be implemented in parallel.
3) Impacts of System Parameters. Fig. 8 illustrates the impacts
of parameters on the algorithms. The investigated parameters
include the Size of pickup Time Window (STW), the max-
imum ride time τqos of a single trip, the seats per request
(SPR) and the number of alternative depots of the requests
(ADR). Fig. 8 (a) and (e) indicate that larger window of pickup
time leads to higher #.served and η, because it increases the
chance for a passenger to be picked up. On the other hand,
from the vehicle’s perspective, it increases the choice of next
stops from the current pickup point. Fig. 8 (b) and (f) show
that the #.served and η first decrease with the increasing
τqos, and then becomes relatively stable when τqos exceeds
20 minutes. This is because when τqos is small, increasing
τqos results in taking more passengers in a single trip, which
reduces the number of trips each vehicle can make. After a
certain point, τqos cannot significantly affect #.served and η
due to the limited capacity of each vehicle. Fig. 8 (c) and (g)
show that larger SPR results in higher #.served and η, due to

the same reasons as we discussed in previous sections. Fig. 8
(d) and (h) demonstrate that the increase in ADR can increase
#.served and η, as this potentially reduces the number of
depots to visit in order to satisfy all the onboard passengers.
This saves time for the vehicle and enables it to make more
trips.

VI. CONCLUSIONS

This paper studied the PHVRP problem to plan the travel
routes for a vehicle fleet to deliver passengers from their
doorstep to the depots, from where the passengers can continue
their journeys using fixed-route buses or trains. We formulated
the PHVRP problem with the objective of maximizing the
number of served passengers under constraints on vehicle
capacity, pickup time windows, and QoS in terms of riding
time. In particular, we characterized the riding time constraint
for each vehicle trip instead of for each passenger request,
which led to significantly lower computation cost. We pro-
posed a TBT scheme which constructs a vehicle travel route by
repeatedly forming a single trip for the vehicle until it cannot
accept any more trips. Based on the TBT routing scheme,
we proposed a novel ant-colony optimization algorithm which
can intelligently decide whether to end its current trip or take
more passengers. We demonstrated the effectiveness of the
proposed method through extensive experiments by compar-
ing with optimal solutions on small size instances and with
heuristic solutions on large size instances, using road network
in Singapore and synthetic travel requests that are generated
based on real bus travel demands.
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