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Abstract 

We examine the problem of computing shortest paths in a transportation network from a set of 
geographically clustered source nodes to a set of target nodes. Such many-to-many shortest path 
computations are an essential and computationally expensive part of many emerging applications that 
involve map matching of imprecise trajectories. Existing solutions to this problem mostly conform to the 
obvious approach of performing a single-source shortest path computation for each source node. We present 
an algorithm that exploits the clustered nature of the source nodes. Specifically, we rely on the observation 
that paths originating from a cluster of nodes typically exit the source region’s boundary through a small 
number of nodes. Evaluations on a real road network show that the proposed algorithm provides a speed-
up of several times over the conventional approach when the source nodes are densely clustered in a region. 
We also demonstrate that the presented technique is capable of substantially accelerating map matching of 
sparse and noisy trajectories. 
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1. INTRODUCTION 

There are certain situations in which it is necessary to efficiently compute shortest paths in a 
transportation network from each of a number of source nodes lying within a bounded area to 
each of a number of target nodes outside it. For instance, a logistics application may need to find 
the optimal routes from a set of depots in a city to a set of customer locations outside the city in 
order to assign appropriate vehicles for delivery. The computation of shortest paths originating 
from a bounded area is also a recurrent step in map matching, which is the process of matching 
a raw trajectory (i.e. a sequence of inaccurate location measurements) to a path in a road network. 
Map matching, in turn, is a crucial step in many trajectory-based applications such as travel time 
estimation [1], route choice modelling [2], route discovery [3] and location prediction [4].  
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In recent years, there has been an increased interest in map matching sparse and noisy 
trajectories such as those generated by smartphones using Wi-Fi-based and cellular-network-
based positioning technologies [5], [6], [7]. Although such positioning technologies are associated 
with large positioning errors, they offer some advantages over the standard option of Global 
Positioning System (GPS) such as  high energy efficiency, availability in GPS-denied 
environments and better privacy protection. A number of successful algorithms based on a variety 
of approaches have been proposed in the literature for map matching sparse and noisy trajectories 
(e.g. [8], [9], [10], [11]). They involve the computation of shortest paths from each candidate point 
inside the error region of a location measurement to each candidate point inside the error region 
of the subsequent location measurement. In the case of highly noisy trajectories, a large number 
of candidate points need to be considered for each location measurement, often resulting in an 
intractable number of shortest path computations [12]. These shortest path computations have 
been identified by several researchers (e.g. [13], [14]) as the computational bottleneck in map 
matching algorithms. Our own analysis indicates that, on average, about 90% of the overall 
computation time in a map matching algorithm is spent on shortest path computations when 
noisy trajectories are used. Since many applications need to map match streaming trajectories on 
the fly, there exists a need for accelerating the shortest path computations involved in map 
matching. 

The problem of computing shortest paths along a road network from a set of source nodes 
within a region to a set of target nodes outside that region is a special case of the many-to-many 
shortest paths (MSP) problem in which the source nodes are geographically clustered. We refer 
to this version of the MSP problem as the clustered MSP problem. The conventional way of 
solving the MSP problem is to perform a single-source shortest path (SSP) computation for each 
source node. This is typically done by repeated executions of Dijkstra’s algorithm [15], which can 
find the shortest paths from a source node to all the target nodes. However, such a solution, which 
we refer to as the baseline algorithm in this paper, requires an unacceptably high computation 
time when the number of source nodes is large [16]. 

A number of techniques have been proposed in the literature to speed up the computation of 
the shortest path between two nodes (i.e. the one-to-one shortest path problem), especially in 
road networks. These include goal-directed techniques that direct the search towards the target 
node (e.g. [17]) and hierarchical techniques that exploit the natural hierarchy present in road 
networks (e.g. [18]). A comprehensive overview of such speed-up techniques has been presented 
in [19]. However, speed-up techniques proposed for the one-to-one case are not directly 
applicable when dealing with the MSP problem. In general, it is inefficient to transform an MSP 
problem between a set of source nodes 𝑆 and a set of target nodes 𝑇 into |𝑆| × |𝑇|  one-to-one 
shortest-path computations, where |𝑆| and |𝑇| are the number of source nodes and target nodes, 
respectively. Even if the one-to-one computations utilize the best speed-up techniques, it is 
generally still faster to perform |𝑆| executions of Dijkstra-based SSP computations. 

While a few papers in the literature have specifically targeted the MSP problem, they have 
certain limitations as explained in the next section. Motivated primarily by the need for speeding 
up clustered MSP computations involved in map matching, we present and evaluate an algorithm 
that is substantially faster than existing solutions when the source nodes are densely clustered in 
a region. The proposed algorithm identifies a relatively small number of exit nodes such that each 
shortest path originating from any of the source nodes passes through one of the exit nodes before 
crossing the boundary of the source region. The algorithm uses the exit nodes to subdivide and 
speed up the MSP computation. 

The rest of the paper is organized as follows. The related work on fast MSP computation is 
described in Section 2. In Section 3, we define the clustered MSP problem and and concisely 
describe some essential basic concepts. The proposed algorithm for clustered MSP computation 
is presented in Section 4. In Section 5, we describe the map matching problem and show how the 
proposed clustered MSP algorithm can be applied to it. Experimental evaluations and results are 
discussed in Section 6. We summarize and conclude the paper in Section 7. 
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2. RELATED WORK 

The MSP problem has not received much research attention as a separate problem. This is 
probably because it is generally seen as being composed of multiple instances of the SSP problem, 
for which Dijkstra’s algorithm remains the standard solution. There have been several decades of 
research efforts dedicated to improving the running time of Dijkstra’s algorithm, mainly through 
the use of efficient data structures to implement the priority queue used by it [19]. 

Researchers who have specifically tackled the MSP problem have generally adapted speed-up 
techniques meant for the one-to-one shortest path problem to fit the MSP problem. Knopp et al. 
[16] proposed a method of applying a hierarchical acceleration technique to the MSP problem. 
Their basic idea involves performing limited backward searches from each target node on a 
hierarchically-organized road network and storing the search spaces so that the stored 
information is accessed during the forward searches from each source node. Delling et al [20] 
applied an algorithm based on contraction hierarchies [18], a state-of-the-art hierarchical 
acceleration technique, to the MSP problem. While the above algorithms are several orders of 
magnitude faster than the baseline algorithm for large problem instances, they have a significant 
drawback: they involve an offline preprocessing step for constructing a hierarchical 
representation of the road network. The dependence on preprocessing makes it impractical to 
apply these solutions to road networks in which the connectivity and edge lengths (e.g. travel 
times) change dynamically. This is because the preprocessing step needs to be repeated, at least 
partially, whenever there is a change in the road network. 

Since the capability to compute shortest paths in a dynamic road network is important for 
many applications, it is necessary to have solutions that do not involve any preprocessing. One 
such solution was presented by Shibuya [21], where goal-directed and bidirectional search 
techniques, usually applied for one-to-one shortest path computations, were adapted for the MSP 
problem. This method first computes a bounded backward search space from all the target nodes 
and then uses a lower-bound estimate of the shortest path length to the set of target nodes to 
accelerate the search from each source node. This produces a reduction in computation time of 
about 30% compared to the baseline algorithm for normal cases and about 70% when the source 
nodes and target nodes are located in two distant clusters. 

The suitability of goal-directed and bidirectional search techniques for the MSP problem was 
also investigated by Knopp [22]. It was found that goal-directed search based on the concept of 
landmarks [23] produces the best result (a speed-up of up to four times) for large problem 
instances when the source nodes and target nodes are confined to two clusters. The landmarks-
based MSP algorithm, which we use for comparisons in this paper, can be briefly described as 
follows: A small number k of source nodes that are farthest from each other are first selected as 
implicit landmarks. Subsequently, Dijkstra’s algorithm is used to find the shortest-path distances 
from each landmark to all the nodes in the network and vice versa. With these distances known, 
the triangle inequality can be applied to obtain a lower bound on the shortest-path distance 
between any node and a target node. This estimate of the distance to the target node is used as a 
potential function to direct the search towards it. For each source node that is not a landmark, a 
modified version of Dijkstra’s algorithm is invoked to find the shortest paths to all the target 
nodes, but the search is directed towards one target node at a time. After the shortest path to the 
current target node is found, a new target node is chosen and the potential function is updated. 

A key insight from the above studies is that goal-directed and bidirectional search techniques 
are effective for the MSP problem only when both the source nodes and the target nodes are 
clustered. The problem that we consider in this paper accommodates this scenario while allowing 
a further degree of flexibility: the target nodes need not necessarily be clustered, they may lie 
anywhere outside the source region. (The converse of this problem, where the target nodes are 
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confined to a region and the source nodes lie outside it, can be transformed into the original 
problem by using a reverse graph representation of the road network.) 

Some researchers working on the map matching problem have substantially accelerated the 
bottleneck step of MSP computation by precomputing shortest paths between all pairs of nodes 
in the road network that lie within a certain distance and storing the results in a hash table [24] 
[25]. However, as in the case of solutions that require the road network to be preprocessed, the 
precomputation approach is also not suitable for dynamic road networks.  

3. PROBLEM DEFINITION AND PRELIMINARIES 

3.1 Problem Definition 

Let 𝐺 = (𝑉, 𝐸)  be a directed and weighted graph representing a road network with a set of nodes 
𝑉 corresponding to endpoints of road segments and a set of edges 𝐸 ⊂ 𝑉 × 𝑉. Each edge 
(𝑢, 𝑣) 𝐸 represents a road segment and has a non-negative length 𝑙(𝑢, 𝑣). Edge lengths may 
represent a measure associated with the road segments such as their physical lengths, travel times 
or tolls. A path in the graph from node 𝑢1 to node 𝑢𝑛 is a sequence of nodes (𝑢1, 𝑢2, … , 𝑢𝑛) such 
that (𝑢𝑖 , 𝑢𝑖+1) 𝐸 for all  𝑖, 0 < 𝑖 < 𝑛. The length of a path is the sum of the lengths of the edges 
in it. The shortest-path distance 𝑑(𝑣, 𝑤) between nodes 𝑣 and 𝑤 is the length of the path with 
the minimum length among all paths between 𝑣 and 𝑤. 

Let us consider a set of source nodes 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚}, 𝑆 ⊂ 𝑉, and a set of target nodes 𝑇 =
{𝑡1, 𝑡2, … , 𝑡𝑛}, 𝑇 ⊂ 𝑉, such that 𝑆 ∩ 𝑇 = ∅. Furthermore, let all the source nodes in 𝑆 lie within a 
bounded area 𝐴, which we refer to as the source region. The source region 𝐴 may be of any closed, 
non-intersecting shape such as a circle, ellipse or a simple polygon. Let all the target nodes in 𝑇 
lie outside the source region 𝐴. The clustered MSP problem is to find the lengths of the shortest 
paths between all pairs of source nodes and target nodes. That is, we need to compute the 
shortest-path distance 𝑑(𝑠𝑖 , 𝑡𝑗) for all (𝑖, 𝑗), 0 < 𝑖 ≤ |𝑆|, 0 < 𝑗 ≤ |𝑇|. 

We are only interested in computing the lengths of the shortest paths and do not need the 
details of the sequences of nodes and links that make up the paths. However, if such details are 
required, it is not difficult to adapt the algorithm to meet the requirement, as explained later in 
this section. 

3.2 Graph Representation 

In this work, it is necessary to represent the graph using a data structure that allows efficient 
computation of shortest paths in both the forward and the reverse directions. For this we use the 
compact forward and reverse star representation [26], which stores the node adjacency 
information in the form of arrays. Data associated with nodes and edges are stored in two separate 
arrays. Nodes and edges in the graph are numbered according to their positions in their respective 
arrays. While nodes can be stored in any arbitrary order, edges are stored in a specific order: 
outgoing edges of node 1 are stored first, those of node 2 are stored next, and so on. For each 
edge, we store its tail node, head node and length. For each node, we store a forward pointer that 
points to the position of that node’s first outgoing edge in the edge array. To facilitate efficient 
retrieval of the incoming edges of a node, we store a reverse pointer pointing to a position in a 
lookup array corresponding to the first incoming edge of that node. The lookup array contains 
the edge numbers sorted according to their head nodes. It is worth noting that the creation of this 
data structure is a one-time process. In the case of graphs with dynamic edge lengths, the changed 
lengths can be directly updated in the edge array without altering the other aspects of the data 
structure. Apart from the graph representation described above, the geographical coordinates of 
the nodes are stored in a separate array. 
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3.3 Dijkstra’s Algorithm 

Dijkstra’s algorithm, in its standard form, finds the shortest paths from a given source node 𝑠 to 
all other nodes in the graph. In this work, we use a variant of Dijkstra’s algorithm that terminates 
once the shortest-path distances from the source node to all the nodes in a given set of target 
nodes 𝑇 are found. (i.e. it finds one-to-many shortest path distances.) 

The pseudo code of the modified Dijkstra’s algorithm that we use is shown in Algorithm 1. For 
each node 𝑖, the algorithm maintains and updates a tentative distance 𝑑𝑖𝑠𝑡[𝑖] , which is an upper 
bound on 𝑑(𝑠, 𝑖), the shortest-path distance from 𝑠 to node 𝑖. At the start of the algorithm, 𝑑𝑖𝑠𝑡[𝑖] 
is set to infinity for each node 𝑖. A node 𝑖 is considered to be settled when the algorithm determines 
that 𝑑𝑖𝑠𝑡[𝑖] cannot be improved further (i.e., 𝑑𝑖𝑠𝑡[𝑖] =  𝑑(𝑠, 𝑖)). The algorithm maintains a 
minimum-priority queue 𝑄, which is initialized to be empty. When any node 𝑖 is added to the 𝑄, 
its key is set equal to the value of 𝑑𝑖𝑠𝑡[𝑖] at that time.  

The source node 𝑠 is first added to 𝑄 after setting 𝑑𝑖𝑠𝑡[𝑠] to be 0. During each iteration of the 
for loop in line 10, one of the target nodes 𝑡 is considered as the current target. If 𝑡 is not already 
settled, the while loop in line 12 is repeatedly executed until a terminating condition is 
encountered. During each iteration of the while loop, a node 𝑢 with the lowest key is removed 
from 𝑄. For each neighbor node 𝑣 of node 𝑢, 𝑑𝑖𝑠𝑡[𝑣] is improved (i.e. reduced) if the path from 𝑠 
to 𝑣 through 𝑢 is shorter than the existing value of the tentative distance 𝑑𝑖𝑠𝑡[𝑣]. In such a case, 
node 𝑣 is added to 𝑄. The while loop terminates when the current target node 𝑡 is removed from 
𝑄 and settled. Thus, at the completion of the for loop in line 10, the shortest-path distances from 
the source node 𝑠 to all the target nodes in 𝑇 are found. 

ALGORITHM 1. Modified Dijkstra’s Algorithm  

1 Dijkstra (V,E,s,T) 
2  Q =  
3   for each i  V: 
4   dist[i] =  
5   settled[i] = false 

6   
7  dist[s] = 0 
8  add s to Q with key equal to dist[s]  

9   

10  for each t  T:  
11   if settled[t] == false:     
12    while Q is not empty: 
13     remove u with minimum key from Q  
14     if settled[u] == false: 
15      for each (u,v)  E: 
16       if (dist[u] + l(u,v)) < dist[v]: 
17        dist[v] = dist[u] + l(u,v) 
18        add v to Q with key equal to dist[v]  

19      settled[u] = true 

20     if u == t: 

21      break 
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It is worth noting that unlike commonly used versions of Dijkstra’s algorithm, the above 
version does not use the decrease-key operation on the priority queue. That is, when a better value 
of 𝑑𝑖𝑠𝑡[𝑣] is found for a node 𝑣 that is already in 𝑄, its key and position in the priority queue are 
not updated. Instead, the node 𝑣 is added again to 𝑄 with a new key. Doing so does not affect the 
correctness of the algorithm. We have adopted this approach because it generally achieves better 
performance compared to using a priority queue with the decrease-key operation [27]. 

As stated before, the version given in Algorithm 1 computes only the shortest-path distances 
and does not store the details of the shortest paths. However, if needed, the tracing of the shortest 
paths can be easily enabled by storing the predecessor node of each node, after the latter’s 
tentative distance is updated in line 17. 

4. THE CLUSTERED MSP ALGORITHM 

Our solution to the clustered MSP problem emanates from a simple observation: Shortest paths 
originating from a source region encompassing a large number of nodes typically cross the source 
region’s boundary through a smaller number of nodes. This is illustrated using an example in 
Figure 1, where the red circle covers a region of 15 km radius containing the road network of 
Malacca City, a coastal city in Malaysia. While there are nearly 12000 nodes within this region, a 
shortest path originating from any of those nodes to target nodes outside the region must pass 
through one of the 37 nodes indicated by the blue dots in the figure. We refer to such nodes as 
potential exit nodes. An exit node is the last node that lies along a path before the path exits the 
source region. 

 

Fig. 1. Potential exit nodes for a source region encompassing the road network of Malacca City in Malaysia. 
Shortest paths originating from the circular region (15 km radius) cross its boundary through one of the 37 
potential exit nodes marked by the blue dots. 

In the clustered MSP problem, the shortest path from a source node to a target node can be 
divided into two parts: the shortest path between the source node and an exit node and the 
shortest path between that exit node and the target node. Our approach towards solving the 
clustered MSP problem consists of the following high-level steps: 

1. Identify the exit nodes in the source region and compute the shortest-path distances 
between each exit node and each target node. 

2. Compute the shortest-path distances between each source node and each exit node. 
3. By optimally combining the distances computed in the above steps, determine the 

shortest-path distances between each source node and each target node. 
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The proposed clustered MSP algorithm implements the above three steps in an efficient 
manner. We give below a detailed and formal description of the algorithm. 

As previously defined, let 𝑆 and 𝑇 be the sets of source and target nodes, respectively. Let 𝐴 
be the source region encompassing all the source nodes. Let 𝑉𝐴 be the set of all nodes lying within 
the source region 𝐴. In Step 1, the algorithm determines the set of exit nodes 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑘}.  
In Step 1 and Step 2, the algorithm incrementally constructs an abstract graph 𝐺′ = (𝑉′, 𝐸′) with 
a set of nodes 𝑉′ = 𝑆 ∪ 𝑇 ∪ 𝑋 and a set of edges 𝐸′ ⊂ 𝑉′ × 𝑉′ such that the length of an edge in 
𝐺′ is equal to the shortest-path distance between its tail node and head node in the original graph 
G. 

 

Fig. 2. The concept of potential exit nodes illustrated using a simple grid network. For the source region 
denoted by the red circle, the blue-shaded nodes are the potential exit nodes. 

Step 1: As the exit nodes are not known at the start of the algorithm, we initialize 𝑋 to be 
empty. We form a set of all potential exit nodes 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑟}. A node 𝑝 is considered a 
potential exit node if there exists an edge (𝑝, 𝑞)  𝐸 such that 𝑝  𝑉𝐴, 𝑞  𝑉𝐴. In other words, a 
potential exit node is a node that lies within the source region and has a connected neighbor node 
that lies outside the source region as shown in the example in Figure 2. It is obvious that any 
shortest path originating from the source region 𝐴 to a target node outside it has to pass through 
one of the potential exit nodes. However, typically, not all of the potential exit nodes are relevant 
and only a subset of them serve as exit nodes for the given source nodes and target nodes. As a 
simple example, consider a potential exit node connected to a neighbor node lying to the west of 
the source region. Such a potential exit node is less likely to be an exit node if all the target nodes 
lie to the east of the source region. The algorithm identifies the exit nodes as described below. 

With each potential exit node 𝑝𝑖   𝑃 as the source, we perform an SSP computation using the 
version of Dijkstra’s algorithm in Algorithm 1 to determine the shortest-path distances to all the 
target nodes in 𝑇. During the SSP computation, for each node 𝑢 settled by Dijkstra’s algorithm, 
we keep track of the last potential exit node (LPEN) in the shortest path between the source and 
𝑢. After a node 𝑢 is settled (line 19 of the pseudocode in Algorithm 1), we update its LPEN value 
as follows: If 𝑢 is a potential exit node, 𝐿𝑃𝐸𝑁[𝑢] is set equal to 𝑢. Else, the previous value of 
𝐿𝑃𝐸𝑁[𝑢] is retained. Since, in this instance of SSP computation, the source is a potential exit node 
𝑝𝑖 , all the nodes settled by Dijkstra’s algorithm are guaranteed to have a valid LPEN value. The 
SSP computation terminates when all the target nodes are settled (i.e. the shortest-path distances 
from 𝑝𝑖  to all the target nodes are found). Subsequently, for each target node 𝑡𝑗 𝑇, we check if 
𝐿𝑃𝐸𝑁(𝑡𝑗) is equal to 𝑝𝑖 . If so, we perform the following actions: 
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 Identify 𝑝𝑖  as an exit node and add it to 𝑋, if it is not already in it. 
 If 𝑝𝑖  and 𝑡𝑗, respectively, are not already in the set of nodes 𝑉′ in the abstract graph 𝐺′, 

add them to 𝑉′. 
 Create an edge (𝑝𝑖 , 𝑡𝑗) in 𝐺′ with edge length 𝑙′(𝑝𝑖 , 𝑡𝑗) set equal to 𝑑(𝑝𝑖 , 𝑡𝑗), the shortest-

path distance from 𝑝𝑖  to 𝑡𝑗 in graph 𝐺, computed as described above. 

Step 2: In this step, we need to compute the shortest-path distances from each source node 
𝑠𝑖 𝑆 to each exit node 𝑥𝑗 𝑋. If |𝑆| > |𝑋|, as is generally the case in our problems of interest, it 
is more efficient to perform |𝑋| SSP computations in the reverse direction. Therefore, with each 
exit node 𝑥𝑖   𝑋 as the source, we perform a reverse SSP computation using a variant of Dijkstra’s 
algorithm, which explores the incoming edges (𝑢, 𝑣) of the minimum-distance node 𝑢. The 
reverse SSP computation terminates when all the nodes in 𝑆 are settled. Subsequently, for each 
node 𝑠𝑗 𝑆, we perform the following actions: 

 If 𝑠𝑗 is not already in the set of nodes 𝑉′, add 𝑠𝑗 to 𝑉′. 
 Create an edge (𝑠𝑗 , 𝑥𝑖) in 𝐺′ with edge length 𝑙′(𝑠𝑗 , 𝑥𝑖) set equal to  𝑑(𝑠𝑗 , 𝑥𝑖), the 

shortest-path distance from 𝑠𝑗 to 𝑥𝑖 in graph 𝐺, found using the reverse SSP computation. 

After all the exit nodes in 𝑋 are processed as described above, the complete abstract graph 𝐺′ 
is formed. It is helpful to visualize 𝐺′ as a layered graph whose nodes are grouped into three sets, 
 𝑆, 𝑋 and 𝑇 as illustrated in Figure 3.  Each node in 𝑆 has outgoing edges connecting it to all the 
nodes in 𝑋. Each node in 𝑋 is connected to one or more nodes in 𝑇 through outgoing edges. Each 
node in 𝑇 has at least one incoming edge emanating from a node in 𝑋. The abstract graph 𝐺′ can 
be used to find the shortest-path distances from any source node to all the target nodes. (If there 
is a need to also find the composition of the shortest paths, then for each edge in 𝐺′, we should 
store the corresponding path in 𝐺 as a node sequence.) 

 

Fig. 3. An abstract graph G′ that represents the connectivity between source nodes and target nodes through 
exit nodes. 

For the sake of clarity, we have omitted a detail in Figure 3 and the preceding description. It is 
possible that some of the exit nodes are also source nodes. Let us consider one such node 𝑥𝑖 that 
is an exit node as well as a source node. In such a case, 𝑥𝑖 , besides being directly connected to at 
least one target node, will also have outgoing edges connecting it to all other exit nodes. These 
outgoing edges are relevant only if 𝑥𝑖 is the source node from which shortest-path distances to 
all the target nodes need to be found. On the other hand, if some other source node is being 
considered, it already has outgoing edges to all the exit nodes with edge weights equal to the 
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shortest-path distance between them in 𝐺. Therefore, in such a case, the outgoing edges from 𝑥𝑖 
to other exit nodes need not be considered in the shortest path computation. Hence, the graph in 
Figure 3 can be seen as a fair representation of the connectivity in 𝐺′. 

Step 3: In this step, we find the shortest-path distances in 𝐺′ from each source node 𝑠𝑖 𝑆 to 
each target node 𝑡𝑗 𝑇. This is done by performing an SSP computation for each source node. 
While the version of Dijkstra’s algorithm in Algorithm 1 can be used for this task, it is slightly 
more efficient to use a customized version that takes advantage of the following observations: 

 The shortest path in 𝐺′ from any source node in 𝑆 to any target node in 𝑇 consists of at 
most two edges. Hence, for any source node 𝑠𝑖 , it is sufficient to explore the outgoing 
edges of 𝑠𝑖 and the outgoing edges of all the exit nodes connected to it. 

 It is not necessary to maintain a priority queue of nodes and extract the minimum-
distance node from it as the order in which the nodes are processed does not affect the 
final result. 

4.1 Computational Complexity Analysis 

We express and compare the computational complexities of the conventional and proposed 
solutions to the clustered MSP problem in terms of the number of SSP computations performed 
using Dijkstra’s algorithm. The running time of the version of Dijkstra’s algorithm given in 
Algorithm 1 is 𝑂(|𝐸| log(|𝑉|)) in graph 𝐺 = (𝑉, 𝐸) if the priority queue in the algorithm is 
implemented using a heap [27]. For notational simplicity, we represent this as 𝑂(𝐷𝑉,𝐸), where 
𝐷𝑉,𝐸 = |𝐸| log(|𝑉|). The baseline algorithm involves |𝑆| SSP computations and has a running 
time complexity of 𝑂(|𝑆|  𝐷𝑉,𝐸). 

In Step 1 of the proposed clustered MSP algorithm, |𝑃| SSP computations are performed in 
graph 𝐺. In Step 2, |𝑋| reverse SSP computations are carried out in 𝐺. In Step 3, |𝑆| SSP 
computations are performed in the abstract graph 𝐺′. However, since 𝐺′ is typically much smaller 
compared to 𝐺 and shortest paths in it involve at most two edges, the total computation time of 
Step 3 is negligible compared to Step 1 and Step 2. Therefore, we do not consider Step 3 in our 
complexity analysis. Hence, the proposed clustered MSP algorithm involves a total of (|𝑃| + |𝑋|) 
SSP computations in 𝐺. It needs to be noted that 𝑋 𝑃, which means, in the worst case, |𝑋| = |𝑃|. 
Therefore, the running time of the clustered MSP algorithm is 𝑂(|𝑃| 𝐷𝑉,𝐸). Based on the above, 
the speed-up provided by the proposed algorithm over the baseline algorithm is 𝑂(|𝑆|/|𝑃|). It 
follows that the proposed algorithm is not effective for all possible values of |𝑆| and |𝑃|. For 
instance, the running time of the proposed algorithm will be slower than the baseline algorithm 
for cases where |𝑆| <  |𝑃|. However, for problems that we are interested in (e.g. map matching), 
|𝑆| is generally greater than |𝑃|. 

Without loss of generality, let us consider a circular source region 𝐴 with radius 𝑅. If the spatial 
distribution of the nodes in the network is assumed be even, the number of potential exit nodes 
|𝑃| is proportional to the circumference of the source region. It trivially follows that |𝑃| is linearly 
related to 𝑅. Hence, the worst-case time complexity of the clustered MSP algorithm can be 
expressed as 𝑂(𝑅 𝐷𝑉,𝐸). From the above, it can be seen that the speed-up provided by the 

proposed algorithm over the baseline algorithm increases with the value of 
|𝑆|

𝑅
 . In other words, 

the speed-up increases with the density of the source nodes in the source region. 
 

 



XX:10  GEORGE R. JAGADEESH et al. 

ACM Trans. Spatial Algorithms Syst., Vol. XXXX, No. XXXX, Article XXXX. Publication date: XXXX XXXX. 

5. Application to Map Matching 

The basic aim of map matching is to match a sequence of imprecise location measurements 
𝑜1, … , 𝑜𝑁  (i.e. a trajectory) to a sequence of road segments 𝑟1, … , 𝑟𝑁 in a road network. A location 
measurement is a tuple consisting of a latitude, longitude and timestamp. For map matching 
sparse and noisy trajectories, probabilistic sequence models such as Hidden Markov Model 
(HMM) [8], [28], [29] and Conditional Random Fields (CRF) [11], [30], [31] are widely used. For 
the experiments in this paper, we use a HMM-based map matching algorithm that we have 
previously developed [32]. It is briefly described below.  

Each imprecise location measurement in the trajectory is considered as an observation in the 
HMM. Due to the measurement error, the true on-road point corresponding to an observation is 
unknown.  For each location measurement obtained at a particular time step, the closest point on 
each road segment that lies within a certain error range is considered as a candidate point. Each 
candidate point is represented as a state in the HMM. All the states corresponding to a time step 
form a stage in the trellis representation of the HMM. The above concepts are illustrated using a 
simplified example in Figure 4 (top), where the grid represents a network of road segments. The 
black dots denote three location measurements (i.e. observations) 𝑜1 , 𝑜2 and 𝑜3 obtained at time 
steps 1, 2, and 3, respectively. The dashed circle around each location measurement indicates its 
error region. The black squares denote candidate points (i.e. states) on the road segments lying 
within the error regions. The 𝑘th state at time step 𝑡 is denoted as 𝑐𝑡,𝑘. The HMM trellis 
corresponding to this example is shown in Figure 4 (bottom), where the arrows indicate 
transitions between states. 

 

Fig. 4. (Top) A simplified example showing location measurements and candidate points on a grid 
representing a road network. (Bottom) The HMM trellis representation. 

For each state, an emission probability is computed as a Gaussian function of the distance 
between itself and the corresponding location observation. For each pair of states belonging to 
successive stages in the HMM trellis, a transition probability is assigned. The transition 
probability between any two states depends on the nature of the shortest path between them, 
specifically its circuitousness and the plausibility of traversing it within the elapsed time between 
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the two corresponding time steps. The most likely sequence of states in the HMM trellis is the 
sequence that maximizes the product of the emission and transition probabilities along it. An 
online variant of the Viterbi algorithm is used for finding the most likely sequence of states. A 
more detailed description of the map matching algorithm can be found in Section II of our 
previous paper [32].  

It can be seen from the above description that the computation of transition probabilities in 
the HMM requires the shortest-path distances to be computed from each candidate point at one 
time step to each candidate point at the next time step. That is, at each time step, an MSP 
computation is required between two clusters of candidate points bounded by the error regions 
of the corresponding location measurements. When noisy positioning technologies such as 
cellular positioning are used, the error regions are large with each of them typically containing 
several hundred candidate points. In such a situation, the amount of time required for computing 
the shortest-path distances becomes prohibitively large, especially for applications where a large 
number of trajectories need to be map matched in real time. We intend to accelerate this 
computation using the proposed clustered MSP algorithm. However, there is an issue to be 
resolved first: In some cases, especially when the error regions are large and the sampling interval 
is small, successive error regions may overlap. The clustered MSP algorithm, which assumes that 
all the target nodes lie outside the source region, cannot be directly applied in such cases. We 
handle this situation in the following manner. 

Let us consider two location observations 𝑜𝑡 and 𝑜𝑡+1 obtained at time steps 𝑡 and 𝑡 + 1, 
respectively. Let 𝑅 be the error range of the positioning technology used. Let 𝐴𝑡 and 𝐴𝑡+1 be two 
circular error regions of radius 𝑅 with 𝑜𝑡 and 𝑜𝑡+1 as their respective centers. If the circular 
regions 𝐴𝑡 and 𝐴𝑡+1 do not overlap each other, we directly apply the proposed clustered MSP 
algorithm by considering 𝐴𝑡 as the source region, all the candidate points of 𝑜𝑡 as the set of source 
nodes 𝑆, and all the candidate points of 𝑜𝑡+1 as the set of target nodes 𝑇. An example where the 
regions 𝐴𝑡 and 𝐴𝑡+1 partially overlap each other is shown in Figure 5, where the red squares and 
the green triangles indicate the candidate points of 𝑜𝑡 and 𝑜𝑡+1, respectively. In such a case, we 
form a set 𝑆′ consisting of the candidate points of 𝑜𝑡 lying in the non-overlapped portion of the 
region 𝐴𝑡, shaded red in the figure. We also form a set 𝑆′′ consisting of the candidate points of 𝑜𝑡 
lying in the overlapped portion of the region 𝐴𝑡, shaded brown in the figure. As before, set 𝑇 
consists of all the candidate points of 𝑜𝑡+1. We apply the clustered MSP algorithm to find the 
shortest-path distances from each node in 𝑆′ to each node in 𝑇. We apply the baseline algorithm 
for finding the shortest-path distances from each node in 𝑆′′ to each node in 𝑇.  

For the sake of clarity, the above explanation relies on a simplification that is not strictly true: 
candidate points are considered as source nodes and target nodes in the MSP computations. 
However, candidate points, which lie on road segments, may not always coincide with nodes, 
which are endpoints of road segments. The MSP computations in this work are actually performed 
using nodes in the road network as source/target nodes. Subsequently, the shortest-path distances 
computed by the algorithm are offset to account for the distance between the candidate points 
and the nodes used. 
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Fig. 5. When map matching noisy trajectories, error regions of successive location observations may overlap 
each other. In the above example, the circular error regions centered on the location observations ot and 
ot+1, respectively, are the source and target regions for the MSP computation. The clustered MSP algorithm 
is applied only for the source nodes in the non-overlapped portion (shaded red) of the source region. 

6. Evaluation 

We evaluate the clustered MSP algorithm in two stages. In the first stage, we evaluate the 
performance of the algorithm in a standalone manner. In the second stage, we embed the clustered 
MSP algorithm as a subroutine in the HMM-based map matching algorithm, invoke it as described 
in the previous section and assess the improvement in the running time. 

6.1 Standalone Evaluation 

For the standalone evaluation of the clustered MSP algorithm, we use a road network of Western 
Malaysia and Singapore, consisting of about 1.38 million directed road segments, derived from 
OpenStreetMap map data. The evaluations are performed on a HP Z420 Workstation with an Intel 
Xeon E5-1650 v2 (3.5 GHz) processor and 16 GB physical memory. We study the speed-up 
provided by the clustered MSP algorithm over the baseline algorithm in terms of running time as 
well as the total number of SSP computations performed. The running time speed-up is the ratio 
of the running time of the baseline algorithm to that of the clustered MSP algorithm. Similarly, 
we define the SSP computation speed-up as the ratio of the total number of SSP computations 
performed in the baseline algorithm to that of the clustered MSP algorithm. 

We randomly generate a number of instances of the clustered MSP problem. Each problem 
instance is defined by specifying the radius of the source region 𝑅 and the number of source nodes 
|𝑆|. In all the standalone experiments, we consider the number of target nodes |𝑇| to be equal to 
|𝑆|. For each problem instance, a source region of radius 𝑅 is formed centered on a randomly-
chosen point in the road network. Subsequently, the specified number of source nodes are 
randomly chosen from among the nodes lying within the source region. (If the source region does 
not contain the required number of nodes, it is discarded and the above steps are repeated.) The 
same number of target nodes are randomly chosen from among nodes lying outside the source 
region. A |𝑆| × |𝑇| array is used to store the output of the MSP computation (i.e. lengths of the 
shortest paths from each source node to each target node). In all the cases, the outputs produced 
by the proposed and baseline algorithms are identical. 
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We consider five different values of 𝑅, ranging from 1000 m to 5000 m. For each value of 𝑅, 
|𝑆| is varied such that |𝑆|/𝑅, which indicates the density of the source nodes in the source region, 
ranges from 0.1 to 0.5, in steps of 0.1. (For example, for a source region radius of 1000 m, the 
number of source nodes is kept at 100, 200, 300, 400 and 500.) Thus, a total of 25 different 
combinations of 𝑅 and |𝑆| are considered. For each combination of 𝑅 and |𝑆|, 30 instances of the 
clustered MSP problem are randomly generated as mentioned above and solved using both the 
compared algorithms. Figure 6 shows the average running time speed-ups for all values of 𝑅 and 
|𝑆| considered. The average speed-up provided by the clustered MSP algorithm over the baseline 
algorithm ranges from 3 times (𝑅 = 1000m, |𝑆|/𝑅 = 0.1) to 20 times (𝑅 = 5000m, |𝑆|/𝑅 = 0.5). For 
every value of 𝑅, increasing the density of source nodes (i.e. |𝑆|/𝑅) produces a consistent increase 
in the running time speed-up. This indicates that the proposed algorithm is well-suited for MSP 
computations in situations where the source nodes are densely clustered. 

Figure 7 shows the speed-up in terms of the total number of SSP computations. While the SSP 
computation speed-ups follow the same trend as the running time speed-ups, the former are lower 
compared to the latter. To understand the reason for this difference, we need to recall that while 
the baseline algorithm involves |𝑆| SSP computations, the clustered MSP algorithm performs 
(|𝑃| + |𝑋|) SSP computations. Therefore, the SSP computation speed-up is equal to |𝑆|/(|𝑃| +
|𝑋|). However, the |𝑋| SSP computations performed in Step 2 of the proposed algorithm generally 
explore a much smaller search space compared to the other SSP computations. This is because 
each SSP computation in Step 2 is carried out between an exit node and the source nodes, all of 
which lie within the source region. Therefore, while the inclusion of |𝑋| in the calculation of SSP 
computation speed-up causes the speed-up values to be lower, the |𝑋| SSP computations do not 
significantly impact the total running time. 

 

Fig. 6. The average running time speed-ups provided by the Clustered MSP algorithm over the baseline 
algorithm. 
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Fig. 7. The average SSP computation speed-ups provided by the Clustered MSP algorithm over the baseline 
algorithm. 

As noted in Section 4.1, if the nodes in the road network are evenly distributed, the number of 
potential exit nodes |𝑃| in a source region grows linearly with the region’s radius 𝑅. Based on 
this, we may expect the speed-up to remain roughly constant for a given value of |𝑆|/𝑅.  However, 
in Figure 6 and Figure 7, the speed-up generally increases with 𝑅, even as |𝑆|/𝑅 remains the same. 
This is because, in reality, |𝑃| and 𝑅 do not appear to have a linear relationship. The box plot in 
Figure 8 shows the distribution of |𝑃| for different values of 𝑅 (based on the 25 × 30 problem 
instances), with the horizontal line inside each box indicating the median of that distribution. It 
can be seen that the median value of |𝑃| grows sublinearly with 𝑅. (i.e. At higher values of 𝑅, |𝑃| 
values are generally lower than what they would be if |𝑃| and 𝑅 were linearly related.) This leads 
to higher speed-ups at higher values of 𝑅 because the speed-up provided by the proposed 
algorithm is inversely related to |𝑃|. 

 

Fig. 8. The distribution of the number of potential exit nodes |P| for source regions with different radii. 
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Figure 9 shows a scatter plot where the running-time speed-ups observed for all the problem 
instances are plotted against the corresponding values of |𝑆|/|𝑃|. The graph indicates that the 
running time speed-up is broadly proportional to |𝑆|/|𝑃|, thus confirming the analysis presented 
in Section 4.1. In all the problem instances considered in this experiment, the value of |𝑆|/|𝑃| is 
greater than 1 and the proposed clustered MSP algorithm is faster than the baseline algorithm. 

 

Fig. 9. The relationship between the running time speed-up provided by the clustered MSP algorithm and 
the ratio of the number of source nodes to the number of potential exit nodes. 

Besides the above experimental analysis, we also study the effectiveness of the clustered MSP 
algorithm in a more practical situation, namely, the computation of shortest-path-distances from 
a set of source nodes within a city to a set of target nodes outside it. We consider a circular region 
of 15 km radius encompassing Malacca City (shown in Figure 1) as the source region. For this 
source region, the number of potential exit nodes |𝑃| is 37. We consider 4 different values of the 
number of source nodes |𝑆|: 1, 10, 100 and 1000. For each value of |𝑆|, 30 instances of the clustered 
MSP problem are randomly generated with all the source nodes in each problem instance lying 
within the above source region. Figure 10 shows the average running times of the compared 
algorithms for different values of |𝑆| as a log-log graph. While the running time of the baseline 
algorithm increases roughly proportionally with the number of source nodes, the running time 
of the proposed algorithm remains mostly independent of it. For cases where |𝑆| < |𝑃|, (i.e. |𝑆| < 
37 in this experiment), the baseline algorithm outperforms the proposed algorithm. The converse 
is true for cases where |𝑆| > |𝑃|. It can be inferred from the graph that the speed-up provided by 
the clustered MSP algorithm over the baseline algorithm is broadly proportional to |S|/|P|. A speed-
up of 25 times is achieved for the case where |S| = 1000. The proposed algorithm provides 
substantially higher speed-ups when isolated regions sparsely connected to the rest of the road 
network are considered as source regions. For instance, in the case of Penang Island, which is 
connected to mainland Malaysia through two bridges (i.e. it has only two potential exit nodes), 
the speed-ups observed are an order of magnitude higher than those in the case of Malacca City. 
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Fig. 10. Comparison of the average running times of the clustered MSP algorithm and the baseline algorithm 
for different numbers of source nodes within a circular region of 15 km radius with 37 potential exit nodes. 

6.2 The Impact On Map Matching Performance 

We compare the running times of three versions of the map matching algorithm described in 
Section 5. While all the three versions are functionally equivalent (i.e., their outputs are identical), 
each version uses a different algorithm as a subroutine for the MSP computations between 
successive sets of candidate points. The three algorithms used for the MSP computations are the 
baseline algorithm, the landmarks-based MSP algorithm [22] and the proposed clustered MSP 
algorithm. It is worth noting that unlike in the standalone evaluations where the target nodes are 
randomly distributed outside the source region, the target nodes are clustered within a bounded 
area in the case of map matching. As seen in Section 2, goal-directed approaches such as the 
landmarks-based MSP algorithm are known to provide a speed-up over the baseline algorithm 
when the target nodes are clustered. Hence, we include the landmarks-based MSP algorithm in 
our comparative evaluation.  

For evaluating the three versions of the map matching algorithm under different levels of 
measurement noise, we use the following trajectory datasets: 

 Cellular positioning dataset: This dataset consists of 20 imprecise trajectories generated 
using cellular network positioning. These trajectories were recorded using a smartphone 
during taxi trips made in Singapore. The average length and duration of the trips are 21 
km and 24 minutes, respectively. The location measurement error of these trajectories 
has a standard deviation of 382 m. The ground truth paths corresponding to the noisy 
trajectories were constructed using accurate GPS trajectories that were simultaneously 
recorded using another smartphone. 

 Synthetic dataset (100 m noise): This dataset was created by adding random gaussian 
noise with a standard deviation of 100 m to 30 ground truth trajectories corresponding 
to taxi trips in Singapore. The average length and duration of the trips are 18 km and 22 
minutes, respectively. 

 Synthetic dataset (200 m noise): This dataset is the same as the above except that the 
added gaussian noise has a standard deviation of 200 m. 
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While the trajectories were originally recorded at the rate of one sample per second, for the 
evaluations, we down-sampled them at different rates with the sampling interval ranging from 1 
to 5 minutes. 

In the map matching algorithm, the error range of the location measurements is set to be 3 
times the standard deviation of the location measurement error. Irrespective of which algorithm 
is used as a subroutine for the MSP computations, the map matching accuracy (the degree of 
agreement between the map matched path and the ground truth path) remains the same. 
However, our focus here is not on the map matching accuracy, but on the running time of the 
map matching algorithm. 

Figure 11, Figure 12 and Figure 13 show the average running times taken by the three versions 
of the map matching algorithm for processing one trajectory in each of the three datasets. The 
running times of all the versions are higher at lower sampling intervals because, in such cases, a 
higher number of location observations need to be processed, resulting in a higher number of 
MSP computations. For all the trajectory datasets and for all the sampling intervals considered, 
the version with the clustered MSP algorithm outperforms the other two versions by a significant 
margin. The landmarks-based MSP algorithm performs considerably worse than the baseline 
algorithm at 1-minute sampling interval, but the former’s performance improves at higher 
sampling intervals. This indicates that the effectiveness of landmarks-based MSP algorithm, 
which performs goal-directed search, increases with the separation between the clusters of source 
nodes and target nodes. (The sampling interval generally correlates with the distance between 
centers of the source and target regions in the MSP computation.) The speed-up provided by the 
clustered MSP algorithm increases with the sampling interval for all the datasets. This is not 
surprising as, at low sampling intervals, it is more likely for the source and target regions to 
overlap each other, thereby reducing the usage of the clustered MSP algorithm. When cellular 
positioning trajectories are sparsely sampled at the rate of 1 location measurement every 5 
minutes, we observe that the clustered MSP algorithm produces a 82% reduction (i.e. a speed-up 
of 5.6 times) in the overall running time of the map matching algorithm. 

 

Fig. 11. Comparison of the average running times of three versions of the map matching algorithm for the 
cellular positioning dataset. 



XX:18  GEORGE R. JAGADEESH et al. 

ACM Trans. Spatial Algorithms Syst., Vol. XXXX, No. XXXX, Article XXXX. Publication date: XXXX XXXX. 

 

Fig. 12. Comparison of the average running times of three versions of the map matching algorithm for the 
synthetic dataset (100 m noise). 

 

Fig. 13. Comparison of the average running times of three versions of the map matching algorithm for the 
synthetic dataset (200 m noise). 

7. Conclusions 

We have presented an alternative approach for efficiently computing shortest paths from a cluster 
of source nodes in a road network to a set of target nodes. The approach involves identifying a 
set of exit nodes in the source region that lie along the shortest paths from the source nodes to 
the target nodes. The many-to-many shortest path computation is accelerated by breaking it 
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down into two stages: computing shortest paths between the exit nodes and the target nodes and 
doing the same between the source nodes and the exit nodes. An abstract graph representation is 
used to optimally combine the results of the above computations. Unlike many existing 
techniques that seek to accelerate shortest path computations by preprocessing the road network, 
the proposed solution can be applied to networks with dynamically changing connectivity and 
edge lengths. 

Experimental evaluations using a large number of random problem instances on a real road 
network show that the proposed clustered MSP algorithm achieves a substantial speed-up over 
the conventional solution, with the speed-up increasing with the density of source nodes in the 
source region. We have also successfully applied the clustered MSP algorithm for accelerating the 
computationally expensive clustered MSP computations involved in map matching of imprecise 
trajectories. We find that in the case of sparse trajectories with high levels of noise, the proposed 
algorithm achieves a major reduction in the overall computation time. 

The proposed solution can be potentially optimized further by combining it with standard 
speed-up techniques such as goal-directed search, especially when the target nodes are clustered 
in a region. Another possible way of extending this work is to explore ways to heuristically limit 
the selection of potential exit nodes in Step 1 of the algorithm. The technique presented in this 
paper can be potentially used for accelerating a wider class of shortest path problems in various 
practical applications. For instance, it appears feasible and interesting to transform the 
computation of all pairs shortest paths (APSP) in a large network into a number of smaller 
problems by partitioning the network into several regions and performing one APSP computation 
and one clustered MSP computation for each region. It would also be interesting to study the 
applicability of the proposed technique for spatial networks other than road networks. 
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