
Performance Estimation of FPGA Modules for
Modular Design Methodology using

Artificial Neural Network

Kalindu Herath, Alok Prakash, and Thambipillai Srikanthan

Nanyang Technological University, Singapore
kalindub001@e.ntu.edu.sg,{alok,astsrikan}@ntu.edu.sg

Abstract. Modern FPGAs consist of millions of logic resources allowing
hardware designers to map increasingly large designs. However, the de-
sign productivity of mapping large designs is greatly affected by the long
runtime of FPGA CAD flow. To mitigate it, modular design methodol-
ogy has been introduced in the past that allows designers to partition
large designs into smaller modules and compile & test the modules in-
dividually before assembling them together to complete the compilation
process. Automated decision making on placing these modules on FPGA,
however, is a slow and tedious process that requires large database of pre-
compiled modules, which are compiled on a large number of placement
positions. To accelerate this placement process during modular design-
ing, in this paper we propose an ANN based performance estimation
technique that can rapidly suggest the best shape and location for a
given module. Experimental results on legacy as well as state-of-the-art
FPGA devices show that the proposed technique can accurately estimate
the Fmax of modules with an average error of less than 4%.

Keywords: FPGA, floorplaning, modular design methodology, computer-
aided designing

1 Introduction

The rapid scaling of transistors over the past decade has allowed commercial
Field Programmable Gate Array (FPGA) giants like Altera[1] and Xilinx[7] to
realize FPGAs with tens of millions of logic gates alongside useful ready-to-use
hard Intellectual Property (IP) cores such as Block-RAMs (BRAMs) of different
size and Digital Signal Processors (DSPs). Such resource-rich modern FPGAs
permit system designers to use FPGAs for application specific implementation as
well as to map increasingly complex applications. At the same time, the increas-
ingly strict non-recurring engineering (NRE) costs and time-to-market (TTM)
constraints are also pushing FPGAs favourably when compared to ASICs [24].

However, while FPGA devices are becoming more sophisticated, the computer-
aided design (CAD) tools used for FPGA-based designs have not yet matured
sufficiently to efficiently map large-scale applications into such FPGAs [26]. It
is observed that typical CAD flow can take tens of minutes to hours or even
days [8] for such applications, thereby significantly limiting design productivity.

2

Such mapping with existing CAD can also result in poor placement and routing
decisions, which can lead to degradation in the quality of result (QoR), i.e. per-
formance and power consumption of the final design. Placement step of current
CAD flow has also been identified as the most time consuming step, contributing
to almost 50% of total CAD runtime [20]. Traditional Simulated Annealing (SA)
based placement algorithms are known to produce superior quality placement
results for small and medium scale designs. However, SA does not scale well for
larger designs, and hence resulting in longer runtime [9].

There have been attempts in developing scalable CAD to reduce the runtime.
Altera improves their proprietary CAD tool, Quartus, by introducing parallelism
in their SA based Q2P placer [18]. Similarly, Xilinx introduces an analytical
placement strategy in their CAD [11], inspired by ASIC placement strategies.

However, the runtime of these CAD tools are still considerably high, espe-
cially for large and complex designs. To address the design productivity ineffi-
ciencies while compiling large applications [16], existing research work in FPGA
CAD has proposed a new CAD flow, called modular design methodology (MDM).
This technique breaks a large system into smaller modules. Some of the mod-
ules, for example, board support packages or external memory interfaces, do
not change frequently in a development cycle. Hence, these modules can be
placed and routed individually and stored in a library and therefore can be ex-
cluded from subsequent compilations. The reuse of pre-compiled library modules
significantly decrease the runtime of the flow [14]. Commercial FPGA vendors
have also introduced augmented modular compile flow support to their CAD
flow. Altera uses Quartus Incremental Compilation Flow [3] and Xilinx has in-
tegrated Hierarchical Design Suite [6] in PlanAhead Design and Analysis Tool
[5]. However, this design technique is not sensitive to the connection information
between modules. It avoids optimization of those connections that is possible
in usual compilation flow. As a result, QoR of modular design methodology is
typically degraded [12].

Modular design workflows use a large database of pre-compiled modules.
Modules are placed and routed at large number of possible locations on FPGA
during offline module creation phase. During design assembly phase, best set of
pre-compiled modules are searched and mapped to get the final design. Large
heterogeneous FPGAs offer greater possible ways a module to be placed on
FPGA space, making large solution space for the module assembly stage. How-
ever, due to availability of different types of resources on these FPGAs, selecting
a place and a shape for a given module from the library becomes more criti-
cal. Wrong selection either could lead to resource wastage [16] or could affect
the performance of the module [15]. In addition, pre-compiling large number of
variations per each module becoming increasingly time consuming. During our
experiments, each module took about 3 hours to compile all possible placement
variations. Therefore, it is apparent that module creation phase has become less
feasible, especially if the module library changes frequently. [19].

In this paper, we propose an artificial neural network (ANN) based approach
to estimate the shape and placement of a given module in order to achieve the

3

best performance. Aim of this estimation is to make swift placement decisions
during module based development, eliminating the need of having frequently
changing pre-compiled module database. In the next section we discuss the ex-
isting modular design workflows, followed by a motivational example in section
3. In section 4, we explain the proposed methodology that estimates performance
of modules in detail. Section 5 evaluates the proposed method and discusses the
experimental results. Section 6 concludes this paper.

2 Related Workflows

MDM is an extensively explored design paradigm. Frontier [23] is a module based
hierarchical placement framework. It uses a library of pre-placed modules to
identify similar patterns in a given application. Identified patterns are clustered,
and placed on FPGA by using library information. However, Frontier does not
preserve routing information of the modules. HMFlow [14], on the other hand,
maintains a library with pre-routed modules. It also creates new library modules
for application logic which does not match with any library Module. BPR[8] uses
coarser pre-compiled modules as compared to HMFlow to improve compilation
time. In addition, its module library keeps different variations of each module by
placing and routing for all possible locations on FPGA. During full compilation,
only one version of each module is selected. qFlow [9] divides a given design
into evolving (frequently changes) and invariant portions. Evolving portion is
compiled as modules and is combined with invariant section. TFlow [17] extends
qFlow methodology and uses bitstream level modules during design assembly
phase. However, placement of bitstream level modules is less flexible due to
restriction in bitstream configuration boundaries.

The effect of module size on QoR has been explored in [10]. Authors analysed
QoR in their module based placement approach by varying the granularity of
the modules. Analysis has been done in terms of runtime of the placement tool,
and the Half Perimeter Wire Length of the placement solution. The impact of
shapes of modules to overall FPGA resource utilization and placement flexibility
is greatly discussed in [16]. They have shown multi shape pre-compiled modules
can lead to better resource utilization and additional placement flexibility, which
ultimately results more packing of modules on FPGA. Module shape exploration
has been used in FPGA floorplanning techniques such as [22] and [25] but they
considered shapes with single resource type. On the other hand, [19] argues pre-
synthesising each module for different shape ratios is a tedious process. They
suggest a method to change the shapes of modules during the placement stage
using a pre-placed library of modules with a single size.

Most of the modular design workflows aim on turnaround time of a design cy-
cle, rather than achieving both high performance while improving runtime. Large
pre-compiled libraries involve in most workflows, while having a single shape for
each pre-compiled module. Shape exploration for library modules with hetero-
geneous resources has been done, but it targets resource utilization on FPGA as

4

a measurement of QoR. Previous work lacks a shape exploration framework to
achieve better performance in each module.

3 Motivation

Modern FPGA architectures, including Altera and Xilinx FPGAs, are typically
categorized as island-style FPGA architecture where resources such as BRAMs
and DSPs are arranged in columns and interleaved between a sea of Config-
urable Logic Blocks (CLBs) columns. Interconnect wires are provided in copious
amounts to provide for high bandwidth connectivity between these resources. It
has also been observed that these resources are arranged homogeneously along
the vertical axis such that most of the rows look identical in an FPGA.

However, as FPGAs continue to become more heterogeneous, incorporating
different types and location of resources, it is important to identify the optimum
placement and shape for a design module implemented in such FPGAs. The
shape of a module refers to the rectangular space in the FPGA within which the
module can be placed and routed. The optimum placement and shape ensures
that the most widely used resources are available at a physically closer distance,
thereby potentially reducing length of the interconnecting wires, ultimately lead-
ing to better performance and lower power consumption [13].

Figure 1 shows two different shapes and placement locations for a single mod-
ule. The module is isolated from the rest of the design, so that it is independent
from the connections for module to the rest of the design. We have observed that
the shape given in Figure 1 (b) produces 12% greater maximum allowable clock
frequency (Fmax) as compared to (a). While similar number of resources are con-
sumed in both cases, the main difference is the arrangement of resource columns.
Depending on how the CLBs BRAMs and DSPs are connected within a module,
an arrangement of columns in a rectangular region can be more preferable for
the module. Hence, in this paper we propose a methodology, which is able to
predict the Fmax of given module on a FPGA device, when shape and appli-
cation parameters given. As discussed in the previous section, existing module
based designing techniques have not explored the relationship between module
performance and its shape as well as the location in the FPGA fabric.

155.09 MHz

174.47 MHz

(a) (b)

LUTs

BRAMs

DSPs

Fig. 1: Performance (Fmax) of a module in two location and shapes

5

4 Methodology
In this section, we first provide some background information before explaining
our approach. We use the Altera’s Quartus CAD tools to explain the proposed
methodology as well as for our experiments. It should be noted that the proposed
methodology does not depend on vendor specific CAD tools. It is also noteworthy
that Xilinx offers equivalent functionalities in their PlanAhead tool flow [5].

4.1 Background

Quartus Incremental Compilation (QIC) In the default Quartus compila-
tion flow, also referred to as ‘flat compilation’, all the RTL code files are processed
simultaneously in the Analysis and Synthesis step and the entire post-synthesis
netlist is placed and routed subsequently by the fitter. If any changes need to be
made after a flat compilation, one needs to perform a fresh re-compilation.

Altera includes a toolset for modular design methodology (MDM) in Quartus,
called Incremental Compilation Design Flow. It allows hardware designers to
follow a divide and conquer strategy, by partitioning a large design into relatively
smaller modules and develop each module separately. In the rest of the paper,
we use the term module and partition interchangeably. Some modules in a design
might require frequent revisions than some other modules. For such situations,
incremental compilation technique allows designers to change the code segments
of only some modules and compile them separately without having to compile
the whole project or alter the rest of the design.

Partitioning a large design into relatively smaller modules is typically per-
formed using a bottom-up approach, where one or more VHDL entities or Verilog
modules in the RTL code are defined as a design partition by the designer. Per-
forming an incremental compilation after defining partitions creates separate
netlist for each partition after each stage. For instance, after the ‘Analysis and
Synthesis’ step a post-synthesis netlist or after ‘Fitter’ step post-fit netlist is
generated. A single full post-fit netlist is created by merging netlists from each
partition at the end of the incremental compilation flow. Quartus allows us to
preserve the generated netlist of each partition at any stage by setting a param-
eter called preservation level. A partition with post-fit netlist preservation will
not be processed during both synthesis and fitter steps, and its post-fit netlist
generated in previous compilation is used for producing the full post-fit netlist.

LogicLock The atomic components (CLBs, BRAMs and DSPs) of a partition
might be placed anywhere in the FPGA space during the fitter step. However,
Quartus LogicLock feature allows designer to restrict the placement of these com-
ponents to a rectangular region in the FPGA space. Designers can define such
regions by providing the shape information (width and height), placement infor-
mation (bottom left coordinate) and VHDL entities/Verilog modules belonging
to the partition which needs to be in the region. Such rectangular regions with
shape and placement information are called footprint of a partition.

4.2 Footprint generation for Design Partitions

Footprint of a Design Partition A design partition Pi is characterized by a
resource requirement, which we express as a tuple Ai = {l,m, d} where l, m, d

6

are the minimum requirement of CLBs, BRAMs and DSPs on the FPGA space
in order to successfully map the partition into FPGA. During the incremental
compilation flow, designers have to ensure that the final compilation of the overall
design at least provides for Ai resources for each partition Pi. Therefore, during
the early stages, we reserve a FPGA region with Ai resources for Pi by defining
a LogicLock region LLi. This LogicLock region is referred to as the footprint of
the design partition. The shape and location properties of footprint LLi can be
expressed as a tuple Si = {x, y, w, h} where x and y are the bottom left corner
of the rectangle in FPGA space, and w, h is width and height of the rectangle.
In a typical island style FPGA, the bottom left corner block is marked as the
origin of the coordinate plane which is {1, 1}.

For example, consider two different footprints LL1,1, LL1,2 for partition P1

with A1 = {421, 20, 0} on Altera EP2C35 FPGA [2] as shown in figure 2. The
shape parameters of two footprints are S1,1 = {1, 1, 56, 8} and S1,2 = {1, 1, 52, 9}.
Here, the second variable (k) in the notations, LLi,k & Si,k, denotes the different
footprints and shape parameters respectively of a single design partition (i). Both
footprints consist of 3 BRAM columns and 1 DSP column but contain 52 CLB
columns in the former case and 48 CLB columns in the latter. LL1,1 offers FPGA
resources {432, 24, 8} which satisfies the requirement A1. If we reduce the width
of LL1,1 to 52 without adjusting the height, the resultant resource coverage on
FPGA will be only {384, 24, 8} which does not satisfy the CLB requirement hence
it is an invalid footprint. However, by increasing the height to 9 while reducing
width to 52, we can achieve LL1,2 which offers FPGA resources {432, 27, 9}. Note
that both LL1,1 and LL1,2 cause resource wastage. However, if we select a region
with height of 7 for P1, the CLB requirements cannot be satisfied even if its width
is set to the entire device width of this FPGA (i.e. 64). The subsequent sections
uses the proposed ANN based performance estimation technique to identify the
best footprint for each module in a modular design methodology.

56 52

8 9

(1,1) (1,1)

LUTs

BRAMs

DSPs

Fig. 2: Footprint variation for a given subsystem

4.3 Methodology for training an Artificial Neural-Network
Now, we present our artificial neural-network (ANN) based approach to estimate
the performance of a given design partition. We train the ANN using application
and architecture parameters through supervised training technique by providing
the expected output performance (Fmax) for the respective input data.

Training dataset In order to generate a large dataset for a better ANN train-
ing, we use the RTL design of a benchmark application and treat it as a design

7

partition p1. For this p1, we exhaustively generate many footprints LL1,x, where
each LL1,x has different values for the parameters as explained below, and is
compiled using Altera Incremental Compilation to get the respective Fmax. We
generated the footprints in this exhaustive manner for several benchmark as well
as handwritten applications in order to create a large training data for the ANN.

Modelling parameters The following are the input parameters we use to
model the performance of a given footprint. These parameters are analogous to
independent variables in typical regression.

1. Architecture features: Starting horizontal coordinate (x), width (w) and
height (h) of the rectangular region on FPGA space.
Note that we ignore the vertical coordinate (y), as a feature due to unifor-
mity of the FPGA architecture along vertical direction. In other words, if we
move any rectangular region along vertical axis on FPGA space, it does not
change the number of resources within that region. The FPGA architectural
features in a region, such as the number and position of resource columns of
each resource type, are captured by the (x), (w) and (h) parameters.

2. Application Area: Area requirement Ai, as discussed in Section 4.2, signifies
the minimum resources needed to implement the application partition pi.

3. Application internal links (ci): Performance (Fmax) of a design partition
depends on number of available routing resources in the respective region.
High routing resource utilization within the region typically results in longer
routing paths for some routes, which could lower the performance.

4. Application default critical path (cpi): Critical path of a design is the longest
path between two registers. Some applications may contain critical paths
along the combinational logic while others may have paths along memory and
DSP I/O. To have this differentiation in our dataset, we include a parameter
as an estimation of the critical path for each application. However, this
estimated critical path is same for all the footprints of a single application,
and should not be mistaken with the output of the model.

Problem statement Given a design/application partition pi with an area re-
quirement Ai, with ci internal links and a default critical path cpi, what is the
expected Fmax if it is compiled to a footprint of Si = {x,w, h}.
Training procedure As shown in figure 3, we use a benchmark or handwrit-
ten application in entirety for the training step. The application is treated as
an isolated module and is defined as a design partition in Quartus tool. We first
extract the application specific parameters 2,3 and 4 defined above by perform-
ing a one-time incremental compilation for the defined designed partition. This
compilation is done without footprints information.

Next, we generate a series of footprints LLi,k by setting different shape prop-
erties Si,k using LogicLock for set of i applications. Figure 4 shows the way we
set Si,k. For LLi,k we set x = 1 and w to the device maximum width (i.e. 64 for
our case). The height h of the footprint is calculated using Ai, which is known
from onetime-compilation discussed above. For instance, if Ai = {421, 20, 0} then
for a rectangular region on an EP2C35 FPGA device, with starting coordinate
x = 1 and w = 64, the height should be at least 8 to satisfy the area constraint

8

iLL

iLL

iLL

niLL

Fig. 3: ANN Training Methodology

LUTs

BRAMs

DSPs

Fig. 4: Generating footprints for training

Ai. Therefore, we set Si,1 = {1, 64, 8}. For the next footprint LLi,2, w is set to
63, reduced by one compared to LLi,1, while keeping x = 1. Similar to previ-
ous case, h is calculated according to Ai, resulting Si,2 = {1, 63, 8}. Likewise,
set of footprints are generated by reducing w and calculating respective h while
x = 1, until w cannot be reduced further to generate a valid footprint. This
footprint generation process can be repeated by shifting the starting position
x = 2, 3, ... until there are no more valid footprints. We obtained the training
data by changing x and w with an interval of 2.

We used separate Quartus project to compile each footprint using Quartus
Incremental Compilation. The application code is included into a single VHDL
entity and kept within project’s top level entity. During the incremental com-
pilation, we set the netlist preservation level of the application to Source Code
Level while the top level entity is kept as Empty preservation level in order to
treat the application as an isolated module. After each compilation, we note the
performance (Fmax) of the application located at the respective footprint. This
(Fmax) is used as the output of training data set. Note that, all these footprints
carry same application specific modelling parameters. An example for a train-
ing dataset entry k of application i can be notified as {Si,k, Ai, ci, cpi, Fmaxi,k

}.
Once the training dataset is created using all the benchmark and handwritten
applications, we train a standard MatLab deep learning ANN model [4]. ANN
model is trained with 8 hidden layers and using standard Resilient Backpropa-
gation training algorithm. Appropriate number of hidden layers and the training
function were found empirically.

9

5 Results and Discussion

5.1 Benchmarks applications and target platforms

We use a total of 26 applications, 16 from Polybench benchmark suite [21] and
10 handwritten, in this work. Out of these 26 applications, 23 were used during
the training phase, while the remaining 3 were used to evaluate the proposed
methods. Application parameters of these applications are shown in Table 1.
As discussed in section 4.3, Table 1 presents the modelling parameters for each
application, i.e. Application area (Ai(l,m, d)), Application internal connections
(ci) and Application default critical path (cpi).

For an extensive evaluation, we experimented using four FPGA devices; (a)
Cyclone II, EP2C35 - a smaller device with homogeneous floorplan (b) Cyclone
V, 5CGXBC4 - one of the latest device with heterogeneous floorplan which
includes number of BRAM and DSP columns (c) Cyclone V, 5CGTFD9 - largest
FPGA of Altera Cyclone FPGAs (d) Cyclone 10LP, 10C025 - very recently
released FPGA. Characteristics of these devices are listed in Table 2.

Table 1: Benchmark applications used for modelling and testing

Application CLB(l) BRAM(m) DSP(d) Connections(ci) Default Critical Path(cpi)
1 2mm 36 40 3 128 98.01
2 3mm 51 56 9 384 234.96
3 bicg 25 12 3 256 235.07
4 conv2d 19 16 2 64 108.31
5 conv3d 25 64 2 64 101.55
6 doitgen 22 72 3 160 167.95
7 fdtd2d 56 25 2 384 91.93
8 gemm 26 24 3 128 197.75
9 gemver 72 16 9 544 163.23
10 gesummv 34 19 6 224 189.54
11 mvt 29 12 6 256 209.47
12 symm 26 24 3 128 212.76
13 syrk 33 16 6 160 194.59
14 syr2k 37 24 6 192 211.73
15 atax 25 11 3 224 239.29
16 trmm 21 16 3 96 234.58
17 subsys1 421 20 0 3200 163.91
18 subsys2 360 18 0 2688 167.5
19 subsys3 349 20 0 2688 165.7
20 subsys4 357 22 0 3008 168.92
21 subsys5 325 21 0 2496 170.39
22 subsys6 121 16 0 960 183.82
23 subsys7 61 14 0 480 191.75
24 subsys8 91 21 0 800 168.63
25 subsys9 523 30 0 4512 157.8
26 subsys10 523 36 0 4704 164.8

Table 2: Target FPGA architecture characteristics

Family Device Logic elements BRAM columns DSP columns
Cyclone II EP2C35 35k 3 2
Cyclone V 5CGXBC4 50k 8 5
Cyclone V 5CGTFD9 301k 11 6

Cyclone 10LP 10CL025 25k 2 2

10

5.2 Training Error and Testing Error

Training the ANN based model The training data set contains data points
from 23 applications as described above. These applications are compiled at var-
ious footprints as described in Section 4.3 to generate the large training dataset.

We calculate the training error for each application for every footprint as a
percentage difference between the actual performance (Fmax) and the predicted
performance from the model. The average training error across all applications
at every footprint for each device is shown in Table 3.

Table 3: Training Error

Device No.of data points Average training error(%)

EP2C35 6818 3.5

5CGXBC4 7059 3.27

5CGTFD9 19738 2.65

10CL025 3471 2.58

Testing the model To evaluate the effectiveness of the model, we use three
applications, where the expected output (ground truth) was first obtained by
compiling these applications using Quartus at every footprint. We use the atax
and 2mm applications from Polybench [21] and a handwritten subsys10 appli-
cation for the testing phase.

We calculate the test error similar to the training error above. Table 4 shows
the individual test error for the 3 test applications, average across all footprint,
for each device. Overall, the maximum average error across all applications and
devices is less than 4%.

To evaluate the error values in a greater detail, we also plot the histogram of
errors at the various footprints for each of the test applications on the EP2C35
device. Figure 5 shows these histogram plots. It can be clearly observed that
at the majority of footprints, the error stays at the lower end of the histogram,
showing the overall effectiveness in predicting the performance (Fmax) using
the proposed ANN based technique. Error histograms for the other devices are
similar to figure 5 hence are not shown in the paper due to the space constraints.

5.3 Discussion

While the above results confirm the accurate prediction of Fmax using the pro-
posed ANN based technique for a given design partition in a footprint, a more
interesting application of our approach is to identify the best footprint that
provides the highest Fmax for a given design partition.

It is indeed possible to obtain this using the proposed methodology by rapidly
predicting the performance at all footprints using our model and then identifying

11

Table 4: Test error percentages

Device
atax 2mm subsys10

Average Error(%) Average Error(%) Average Error(%)

EP2C35 2.56 1.36 2.30

5CGXBC4 3.76 2.43 2.99

5CGTFD9 3.79 1.76 3.63

10CL025 3.35 1.68 3.08

Error percentage

N
o
.
o
f
o
cc

u
rr

en
ce

s

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5

100

80

0 1 2 3 4 5 6 7 8 9

atax 2mm subsys10

60

40

20

70

50

30

10

30

20

10

5

15

25

Fig. 5: Test error percentage histogram

the footprint with the highest Fmax. This is immensely useful in a modular design
methodology, where, instead of storing a pre-placed and routed database for all
the partitions for all possible locations, a smaller database could be maintained
during full design incremental compilation by setting preservation level of the
best footprint set of post-fit. Though we explain the proposed work using Quartus
specific terminology, similar toolset is available in Xilinx environments as well [5].
Hence the proposed methodology is also applicable Xilinx based designs.

It should also be noted that, the model is architecture specific and needs
to be trained for each device. However, this requirement is common for all the
module based FPGA designing approaches since the post-fit netlists are indeed
architecture specific.

6 Conclusion

In this paper, we presented our artificial neural-network based methodology
to estimate Fmax of a design partition at any footprint on a FPGA device.
We have used Altera Quartus incremental compilation tools for implementing
the design partitions and used MatLab to train the ANN model. The proposed
methodology accurately estimates Fmax with less than 4% average error across
the test applications and 4 widely used latest state-of-the-art FPGA devices. The
proposed technique can be of immense benefit in a modular design methodology
to reduce module library sizes by keeping only the best footprints set for a given
partition while discarding the other footprints.

While in this work, we can accurately estimate the best footprint for a par-
tition in isolation, in future, we propose to find the best footprints for all the
partitions in a design in order to obtain a globally optimal footprint for the
entire design that achieves the highest Fmax performance.

12

References

1. Altera. https://www.altera.com/
2. CycloneII FPGAs. https://www.altera.com/products/fpga/cyclone-

series/cyclone-ii/support.html
3. Increasing Productivity with Quartus II Incremental Compilation.

https://goo.gl/uy225f
4. Neural Network Toolbox. https://www.mathworks.com/products/neural-

network.html
5. PlanAhead Design and Analysis Tool. https://www.xilinx.com/products/design-

tools/planahead.html
6. Vivado Design Suite User Guide-Hierarchical Design. https://goo.gl/6bUqqD
7. Xilinx. https://www.xilinx.com/
8. Coole, J., et al.: BPR: Fast FPGA Placement and Routing Using Macroblocks. In:

CODES+ISSS (2012)
9. Frangieh, T., et al.: A design assembly framework for FPGA back-end acceleration.

Microprocessors and Microsystems (2014)
10. Gort, M., et al.: Design re-use for compile time reduction in FPGA high-level

synthesis flows. In: FPT (2014)
11. Gupta, S., et al.: CAD Techniques for Power Optimization in Virtex-5 FPGAs. In:

Custom Integrated Circuits Conference, 2007. CICC’07. IEEE (2007)
12. Haroldsen, T., et al.: Rapid FPGA design prototyping through preservation of

system logic: A case study. In: FPL (2013)
13. Herath, K., et al.: Communication-aware Partitioning for Energy Optimization of

Large FPGA Designs. In: GLSVLSI (2017)
14. Lavin, C., et al.: HMFlow: Accelerating FPGA Compilation with Hard Macros for

Rapid Prototyping. In: FCCM (2011)
15. Lavin, C., et al.: Impact of hard macro size on FPGA clock rate and place/route

time. In: FPL (2013)
16. Lee, K., et al.: Shape Exploration for Modules in Rapid Assembly Workflows. In:

ReConFig (2015)
17. Love, A., et al.: In pursuit of instant gratification for FPGA design. In: FPL (2013)
18. Ludwin, A., et al.: Efficient and deterministic parallel placement for FPGAs. ACM

Transactions on Design Automation of Electronic Systems (TODAES) (2011)
19. Mao, F., et al.: Dynamic Module Partitioning for Library based Placement on

Heterogeneous FPGAs . In: RTCSA (2017)
20. Murray, K.E., et al.: Titan: Enabling large and complex benchmarks in academic

CAD. In: Field Programmable Logic and Applications (FPL), 2013 23rd Interna-
tional Conference on (2013)

21. Pouchet, L.N.: Polybench: The Polyhedral Benchmark Suite.
http://web.cs.ucla.edu/ pouchet/software/polybench/ (2012)

22. Rabozzi, M., et al.: Floorplanning for Partially-Reconfigurable FPGA Systems via
Mixed-Integer Linear Programming. In: FCCM (2014)

23. Tessier, R.: Fast Placement Approaches for FPGAs. TODAES (2002)
24. Trimberger, S.M.: Three Ages of FPGAs: A Retrospective on the First Thirty

Years of FPGA Technology. Proceedings of the IEEE (2015)
25. Vipin, K., et al.: Architecture-Aware Reconfiguration-Centric Floorplanning for

Partial Reconfiguration. Reconfigurable Computing: Architectures, Tools and Ap-
plications (2012)

26. Wirthlin, M., et al.: Future Field Programmable Gate Array (FPGA) Design
Methodologies and Tool Flows. Tech. rep. (2008)

