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ABSTRACT
Modern FPGAs integrate multi-million logic resources that
allow the realization of increasingly large designs. How-
ever, state-of-the-art simulated annealing based CAD tools
for FPGA suffer from long runtime, poor performance and
sub-optimal routing and placement decisions, especially for
large applications, leading to less energy efficient designs. In
this paper, we present a partitioning methodology that di-
vides large application into smaller subsystems based on the
communication frequency between these subsystems. We
leverage the existing CAD tools to compile the large design,
which is now annotated with their subsystems, to obtain the
final bitstream. Experiments show that the proposed strat-
egy can lead to a performance gain of over 60% while still
achieving more than 20% reduction in energy consumption.
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1. INTRODUCTION
The continuous scaling of transistor has enabled Field

Programmable Gate Array (FPGA) manufacturers such as
Xilinx [4] and Altera [1] to integrate millions of logic re-
sources into modern FPGAs, providing opportunities for
designers to develop increasingly complex FPGA designs.
At the same time, the incorporation of FPGA in the latest
iPhone 7 smartphone from Apple� [15] bears true testament
to the increasing popularity and usefulness of FPGAs. How-
ever, FPGAs are still less energy-efficient than their ASIC
counterparts and hence their integration in battery pow-
ered devices can prove to be detrimental. This issue can
be alleviated, to some extent, by extensive power-conscious
application-specific customization of FPGA designs [6]. The
current Computer-Aided Design (CAD) tools, however, are
not sophisticated enough to cater for such customizations.
Specially, compiling large applications typically results in
very long compilation times, poor placement and routing
decisions that inevitably leads to degradation in circuit per-
formance, area and energy consumption [5].

Among CAD steps, scalability of placement step has been
discussed recently [10] [5]. An extensive search in litera-
ture shows that the widely popular Simulated Annealing
(SA) based placement tools poorly scale for larger applica-
tions [5] [9] despite being capable of producing high-quality
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placement for smaller designs [10]. Partitioning based place-
ment tools [12] show faster runtime, but, this comes at the
cost of degraded quality of result. Analytical placement
tools [10] have been known to achieve better balance be-
tween scalability and quality of results. There have also
been attempts to lower the runtime of placement by intro-
ducing pre-compiled macro block based design flow [8] [7].
But these techniques introduce large degradation in place-
ment quality. The commercial FPGA vendors have also
improved the scalability of their placement tools. For in-
stance, Altera uses parallel SA techniques [11] whereas Xil-
inx relies on scalable analytical placement techniques [10].
These research endeavors, however, mostly focus on opti-
mizing performance, leaving an inadequacy for an energy
efficient CAD tools for large applications. In addition, these
approaches have not considered runtime characteristics of
the application during compilation. Existing work has also
identified that the FPGA interconnect resources consumes
most of its dynamic power[14][16]. Hence, reducing the us-
age of these interconnect resources can effectively lead to
power and energy-efficient FPGA designs.

In this paper, we propose a communication-aware design
mapping technique that is especially targeted towards large
and complex FPGA designs. The proposed technique parti-
tions such FPGA designs into smaller subsystems such that
the intra-subsystem communication frequency is maximized,
while the inter-subsystem communication frequency is min-
imized. This strategy minimizes the energy consumption
in the interconnects by reducing the frequency of long dis-
tance communication. Additionally, the partitioning of the
large design into smaller subsystems also aids the CAD tools
during compilation since it already excels in placement for
smaller designs [10]. We rely on the existing CAD tools for
the entire compilation process and only annotate the input
design with the partitioning information using pragmas.

2. MOTIVATION
The main modes of power dissipation in FPGAs are tran-

sistor leakage current (static power), short circuit current
and the charging/discharging of capacitive loads. Amongst
these modes of power dissipation, charging/discharging of
capacitive loads contributes the most to the overall power
dissipation, and is modelled as [14];

P =
1

2
Σi∈netsCi.αi.v

2 (1)

where nets are all the connections and respective compo-
nents in the design, P is the average power consumption, Ci

is the capacitance of net i, αi is the average toggle rate of
net i and v is the supply voltage. In a typical application,
some code sections are executed more frequently than the
rest. Hence, the data flow rate of the interconnect links be-
tween such frequently executed computation units and the
corresponding memory blocks is relatively higher, leading
to higher toggle rate α and consequently higher intercon-
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Figure 1: Floorplan for sample application (i) Without Sub-
systems (ii) With Subsystems

nect power consumption. Additionally, as discussed in the
previous section, dynamic power dissipation of FPGAs are
dominated by the power consumed by the interconnect re-
sources. This is due to its higher capacitive loads which
typically increases with increase in the length of the inter-
connect[14]. Hence, it is essential to have shorter routing
paths and even more so for the nets with high toggle rate to
have overall lower power consumption.

In order to observe the extent of degradation in power
and performance of a large application on an FPGA, we
performed a case study using the commercial Quartus CAD
flow. An application is considered to be ‘large’ if it consumes
above 80% device logic, memory and routing resources. We
developed a hand-coded application, which contains N num-
ber of computation units (CU) and memory units (MU).
Each CU is connected to n number of MUs. We tuned the
parameter N and n to satisfy the above requirement of a
large application. Figure 1 shows the floorplan of a Quartus
mapping of a sample large application. The high demand
for routing resources for the application in Figure 1 has ex-
hausted the routing resources in the central region of the
FPGA floorplan. Hence, 2 modules as shown in the floor-
plan have been connected via an unusually long intercon-
nect path ‘a’, instead of a far more preferable interconnect
path, ‘b’. Additionally, since the tool does not consider the
communication frequency between the modules during the
routing phase, the problem is exacerbated if these two mod-
ules communicate frequently, thereby resulting in high power
consumption. We observe the maximum allowable frequency
(F.Max) for the resulting design, as well as its total energy
consumption after running the design on the target FPGA.

Next, we partition this large application into a set of sub-
systems such that highly communicating computation and
memory nodes become part of a single subsystem. We will
discuss in detail regarding the subsystems and the exact al-
gorithm for the partitioning step later in Section 3. Next, we
use pragmas to instruct the Quartus to place the identified
subsystem RTL components as a group. After the mapping
is done by the Quartus, we again observe the F.Max and the
total energy consumption for this partitioned design.

We observed that the F.max increased from 50.61 MHz to
89.17 MHz while the total energy consumption reduced by
over 17%, by using the proposed partitioning strategy. This
example proves that the Quartus is unable to optimally map
large application into the FPGA. It also shows the suitabil-
ity of the proposed communication-aware partitioning strat-
egy, explained in the next section, for large application to
improve the quality of the final mapping.

3. PARTITIONING FRAMEWORK
The proposed algorithm takes an RTL design, represented

as a graph, as input and produces a network of subsystems.
A subsystem refers to a group of computation and mem-
ory modules with high intra-group communication, which
we identify to be placed in close proximity to each other.

3.1 Problem Statement
An FPGA RTL level design can be represented as a graph

G(V,E) where V is a set of nodes where each node repre-
sents a RTL module; i.e. computation unit or a memory
units, and E is a set of edges where each edge represents
a connection between two RTL modules. Each design unit
node has an area requirement on the FPGA floorplan. The
minimum area needed by the unit (vertex) vi is noted as ai
(li,mi) where li and mi represent number of CLBs and num-
ber of Block RAMs (BRAMs) respectively. The communi-
cation frequency between two modules (nodes) is analogous
to the toggle rate α in the equation 1 and is represented
by the cost value of each connection (edge) ej . The total
available number of CLBs and BRAMs in the device can be
noted as Al and Am respectively. Maximum allowed wires
per unit FPGA area (also referred to as connection density)
is represented by C and is assumed to be a constant for the
entire FPGA area. Given the design graph G(V,E), area re-
quirement of design units a(l,m), communication frequency
of each connection between design units α and the FPGA
parameters Al,Am, and C, the communication-aware design
partitioning problem can be thought of as dividing the graph
into n (≤ N) number of subgraphs (referred to as subsys-
tems), where N is the upper bound of number of subgraphs.
The optimization goal for the partitioning problem is to min-
imize the total inter-subsystem communication activity, and
is subjected to the following constraints.
1. Area Constraint: Total number of CLBs and BRAMs

required by each subgraph must be less than a predefined
value Al′ and Am′ respectively

2. Congestion Constraint: Ratio of Area and the correspond-
ing connections in each subgraph must be less than C

3.2 Algorithm
Algorithm 1 presents our greedy clustering strategy for the

partitioning step. We start the clustering process by treat-
ing each computational module and memory module as a
subsystem with only one element. The algorithm maintains
a list edge list of all the edges and respective communication
frequency of the connection in Line 1 of Algorithm 1. In Line
3 through 6, each iteration of the while loop, an edge is first
selected from this list using the get valid edge(edge list)
procedure. Then, the associated two subsystems of the se-
lected edge are merged to form one (larger) subsystem using
themerge(edge) procedure. This selection of edges and their
merging process is repeated until all the edges are exhausted.

3.2.1 Valid Edge Identification
An edge can be identified as a valid candidate for merging

operation if the associated subsystems (nodes) of the edge
satisfy the Area and Congestion constraints, as identified
above, upon merging. Hence, in Line 8 through 18 of Algo-
rithm 1, if there exists any valid edge, we choose the most
profitable edge among them for the merging operation.

3.2.2 Merge Operation
Line 20 through 31 of Algorithm 1, present themerge(edge)

procedure. Nodes a and b, associated to the edge e are
merged to form a new subsystem a′, and the edge is removed
from edge list. There can be other nodes, e.g. c, adjacent
to both a and b that should now maintain a single edge from
a′. Other edges associated with nodes a and b are added to
the subsystem without modifying their communication fre-
quency. The changes of the graph due to new merged node
a′ are handled by update edge list() procedure on Line 30.



Algorithm 1 Communication-aware partitioning algorithm

1: edge list← communication activity α for all e ∈ E
2:
3: while has valid edge do
4: edge← get valid edge(edge list)
5: merge(edge)
6: end while
7:
8: procedure get valid edge(edge list)
9: emax profit ← first edge(edge list)

10: for each e ∈ edge list where e /∈ marked edges do
11: if meet constraints(e) then
12: if profit(e) > profit(emax profit) then
13: emax profit ← e
14: end if
15: end if
16: end for
17: return e
18: end procedure
19:
20: procedure merge(edge)
21: {a, b} ← get connecting nodes(edge)
22: a′ ← merge of {a, b}
23: remove(edge)
24: for each node c where c ∼ a and c ∼ b do
25: ec1 ← get associated edge(c, a)
26: ec2 ← get associated edge(c, b)
27: x← merge of ec1, ec2
28: αx ← αec1 + αec2

29: end for
30: update edge list()
31: end procedure

3.2.3 Calculating the profit
We consider two factors to evaluate profit of merging two

nodes (subsystems) a and b, connected by edge e, into a′.
First is the communication between all the RTL modules in
a and b. The higher the communication between modules,
the better the quality of the resultant subsystem a′. We
term this communication as intra-subsystem communication.
The other factor is the communication between resultant
subsystem a′ and the nodes outside, which we call as inter-
subsystem communication. The clustering process strives to
increase the intra-subsystem communication and decrease
the inter-subsystem communication. Hence, the profit of
merging subsystems (a, b) which is connected by edge e is:

profite(a,b) =
intra-communication

inter-communication
(2)

3.2.4 Constraints
The partitioning strategy, discussed above, can lead to a

trivial solution in extreme cases, where all the nodes are
clustered together into a single subsystem so that the inter-
communication is zero and intra-communication is maxi-
mum. Even in a less than extreme situation, it is not al-
ways beneficial to have lesser number of partitions that only
satisfy the intra- and inter-subsystem communication goals
and maximize the profit term expressed in Equation 2. To
avoid such trivial solution, we control the maximum area of a
subsystem during merging RTL components by setting area
constraint Al′ and Am′ for LUTs and BRAMs respectively.

Regarding the congestion constraint, it is noteworthy that
while restricting high communication links in a relatively
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Figure 2: Execution of the algorithm a) Initial condition
b) After the first execution
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Figure 3: Communication-aware Partitioning

small area improves the intra-communication, merging more
nodes into subsystems also involves having more internal
edges in the subsystem. These edges ultimately map to
physical routing wire of the FPGA. Hence, many connec-
tions within a subsystem may cause high routing congestion
regions after getting mapped to FPGA. Therefore, to avoid
such regions, we control number of connection per unit area
by introducing a term called connection density.

We explain our algorithm using a sample application
shown in Figure 2(a). Each circle represents nodes
within the subsystem, area consumption of the subsys-
tem(LUTs,BRAMs) and intra-communication in the nota-
tion [node list] {l,m}{αintra}. The edges in the graph are
annotated with edge-id and inter-communication value as a
tuple [edge no] {αinter}. From Figure 2 (a), e11 is selected
for merging as it shows a greater profit than e4, although
αe11 < αe4. Merging respective connecting subsystems of
e11, subsystems [4] and [3], make a new subsystem [4, 3] of
area (l,m) = (16, 0), as shown in Figure 2 (b). Since the
edge e11 is now internal to the subsystem [4, 3], the αintra

of the subsystem is now 200. In the next iteration, merging
e10 is profitable, as it makes αintra = 350 and αinter = 250,
resulting in a profit of 1.4 according to the Equation 2.

3.3 Communication-aware Partitioning
Figure 3 shows our communication-aware FPGA design

partitioning methodology. We take an RTL design as the
input. From a given RTL design code, the following param-
eters are extracted to execute the partitioning algorithm:

i) Area of modules: Typical RTL synthesis step of CAD
flow estimates area of design modules. Since the runtime
of RTL synthesis is minimal as compared to the runtime of
placement and routing steps, we obtain area a(l,m) of each
node in G(V,E) by performing a quick RTL Synthesis step.

ii) Communication Frequency of Edges: Next, we per-
form a RTL simulation where each edge e ∈ E is treated as
signal. Simulation signal dump files are then used to obtain
communication frequency of each edge e, αe.

iii) Graph Connectivity: We need a netlist of a given RTL
design in order to build the graph G(V,E). However, since
commercial CAD tools like Quartus do not allow users to
read generated netlist, we perform text processing on design
code to extract the relevant information.



Table 1: Performance (F.Max) Improvement
App. Without subsys.

F.Max(MHz)
With subsys.
F.Max(MHz)

F.Max Imp. (%)

Synth1 50.61 89.17 76.19
Synth2 50.61 69.26 36.85
Synth3 52.43 93.9 79.10
Atax′ 51.91 90.23 73.82
Bicg′ 57.8 81.01 40.16

Table 2: Power and Energy reduction using subsystems
App. Total Power Re-

duction(%)
Routing Power
Reduction(%)

Total Energy
Reduction(%)

Synth1 6.51 19.80 41.77
Synth2 2.05 9.47 18.00
Synth3 0.56 1.31 18.67
Atax′ 3.12 8.47 16.06
Bicg′ 0.76 1.64 7.37

After the extraction, these parameters are input to our
communication-aware partitioning algorithm. The output
of the algorithm is subsystem pragmas for the LogicLock
feature in Quartus tool. Each LogicLock is set of RTL mod-
ules belongs to a subsystem to be placed in a square region
on FPGA. However, we do not instruct the size of the Logi-
cLock and its physical placement of FPGA, and let Quartus
compiler decide them. An application with its subsystems
identified is then compiled using Quartus.

4. RESULTS AND DISCUSSION
We used the proposed communication-aware partitioning

algorithm on various applications and observed their per-
formance in terms of Fmax and energy consumption. Al-
tera’s Quartus toolchain[2] was used for our experiments.
For both, traditional and the proposed approaches, Quar-
tus compiler optimizes for the performance of the mapping
solution (rather than optimize on area).

After the Quartus compilation finishes for both cases, with
and without subsystems, the performance (maximum run-
ning frequency - Fmax ) of each case is obtained from the
compilation report. We also use the Quartus PowerPlay
feature [3] by performing a gate level simulation to obtain
an accurate power estimation in each case. Total Energy
consumption is also derived from these parameters.

To evaluate our approach, we created three hand-coded
applications, as described in section 2, to exhaust the logic
and memory resources on a Altera EP2C35 FPGA device.
We also modified and experimented with Atax and Bicg ap-
plications from Polybench [13] benchmark suite. Since, these
application kernels are relatively small-scale design, we du-
plicated them multiple times with minor modifications to
the kernel itself, to fully utilize the logic and memory re-
sources of a Altera EP2C70 series FPGA device with 70K
logic elements. We refer to them as Atax′ and Bicg′.

The three hand-coded applications are mapped to the
Altera EP2C35 FPGA device while Atax′ and Bicg′ are
mapped to the Altera EP2C70 FPGA device, without and
with subsystems generated from the proposed technique.
Table 1 shows performance of these five applications in terms
of maximum achievable frequency, Fmax. As evident from
this table, partitioning the large applications into subsys-
tems, has significantly increased the performance of mapped
solution with an average of over 61% in their Fmax.

Next, Table 2 shows the percentage reduction in overall
power consumption as well as for the interconnect resources
only. It is evident that the proposed approach can lead to
a significant reduction in the interconnect power consump-
tion. Even the total power consumption is reduced while
achieving higher performance, when compared to the tra-

ditional compilation method without communication-aware
design partitioning. Applications such as Synth3 and Bicg′
do not show significant reduction in power. However, they
still show a significant improvement in their performance as
seen in Table 1. After careful investigation of these appli-
cations, we observed that the CAD tools kept the commu-
nicating modules in close proximity for these applications
even without partitioning the application into subsystems.
Hence, these application do not show a significant reduction
in power after the proposed communication-aware partition-
ing. However, this behavior of the CAD tools is not guar-
anteed for every application as evident by the significant
improvement in power consumption for other applications.

Finally, as shown in Table 2, there is a significant reduc-
tion in the overall energy consumption when using the pro-
posed partitioning strategy, especially for applications where
both the performance and power consumption improve sig-
nificantly when compared to the existing tools.

5. CONCLUSION
In this paper, we presented our communication-aware par-

titioning approach for large FPGA designs, that not only re-
duces the energy consumption, but also improves the maxi-
mum achievable operating frequency (F.Max) of the result-
ing design significantly. Experimental results on 2 FPGA
devices show an average of over 61% improvement in F.Max
and more than 20% reduction in energy consumption when
compared to the traditional design flow.
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