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Abstract—Accurate travel time prediction of public transport
services is essential for reliable journey planning. Existing meth-
ods for journey time prediction typically assume a fixed journey
route with predefined bus services. However, there usually exist
multiple alternative bus services that can serve the same journey
route (or a segment of the route); thus the passengers could
dynamically decide which bus service to take based on the
dynamic bus arrivals. In this paper, we address the problem of
travel time prediction of bus journeys with multiple alternative
bus services (TP-BJMAS). We propose a novel framework to
solve the TP-BJMAS problem by partitioning the journey route
into several route segments based on the transfer points, such
that each segment can be served by multiple bus services.
The travel time of each segment is estimated using a segment
prediction module based on neural network technique and the
total journey time is obtained by aggregating the travel time
of all segments. In the segment prediction module, the travel
time using a specified bus service is obtained based on pre-
trained riding time prediction model and waiting time prediction
model. Since each route segment can be served by multiple
alternative bus services, multiple estimations of segment travel
time (ESTT) are calculated (each based on one bus service). The
attention technique is utilized to fuse the ESTTs of all bus service
considering the heterogeneous importance of different ESTTs.
The effectiveness is evaluated using large scale real-world public
transport networks and traffic data involving more than 30 bus
services.

Index Terms—Travel time prediction, bus journey, waiting
time, alternative bus services.

I. INTRODUCTION

Efficient and easy-to-use public transportation system is an
important element in sustainable cities as it can boost the
reduction in traffic congestion and lower carbon emissions
from vehicles [1], [2]. A key enabler to the success of public
transportation system lies in the provision of accurate travel
time information for travelers to make reliable journey plan-
ning. This is especially vital for bus services which typically
account for the majority ridership among all public trans-
port journeys [3]. Travel time prediction is also elementary
to dynamic route guidance systems that provide intermodal
transport options and recommended routes to travellers based
on real-time data. Existing works on travel time prediction
[4]–[6] typically assume a fixed journey route with predefined
bus services. This could lead to unreliable prediction results
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as there usually exist multiple alternative bus services that can
serve the same journey route (or a segment of the route). Thus,
there is a need to provide accurate travel time prediction with
consideration of multiple alternative bus services, such that
the passengers could dynamically decide which bus service to
take based on the dynamic bus arrivals.

In this paper, we address the problem of travel time pre-
diction of bus journeys with multiple alternative bus services
(TP-BJMAS). In general, the major works and contributions
of this paper can be summarized as follows:

1) To the best of our knowledge, there exist no existing
works that consider multiple alternative bus services during
travel time prediction of bus journeys. We propose a novel
framework to solve the TP-BJMAS problem by partitioning
the input journey route into several route segments based on
the transfer points, such that each segment can be served by
multiple bus services. The travel time of each segment is
estimated using a segment module based on neural network
technique and the total journey time is obtained by aggregating
the travel time of all segments.

2) We propose methods to predict the waiting time at the
transfer points (including the origin stop), by considering two
practical scenarios: online and offline scenario. For online
scenario, a deep learning based model is developed to pre-
dict the waiting time at the origin stop relying on multiple
spatiotemporal features (e.g. time-of-day, bus stop location,
etc.) as well as previous bus arrival time records prior to the
journey start time. For the offline scenario, since the previous
bus arrival times are not available (at the transfer points), the
method proposed in [7] is utilized.

3) Since each route segment can be served by multiple
alternative bus services, multiple estimations of segment travel
time are obtained (each based on one bus service). Different
estimation contributes not equally as the bus service with
earlier arrival time (i.e. shorter waiting time) is more likely
to be taken. As such, we utilize the attention technique to
calculate the segment travel time by fusing the estimations of
all bus service. Specifically, we develop an attention network
to dynamically determine the importance of different estima-
tions, based on the predicted waiting time related to each bus
service.

Through extensive experimental evaluations on real world
public transport networks and traffic data involving more than
30 bus services, we show that our proposed method can
efficiently predict the travel time of the TP-BJMAS problem.



The remainder of the paper is organized as follows. Section
II reviews some related works and highlights the similarity and
differences between this work and the existing ones. Section
III introduces important definitions and problem description.
Section IV discusses the proposed method for predicting the
travel time of bus journeys with multiple alternative bus
services. Section V evaluates the performance of the proposed
approach, and Section VI concludes the paper.

II. RELATED WORKS

A. Bus Travel Time Prediction

In general, the existing methods for predicting bus travel
times can be categorized into the following groups: historical
average (HA) method [8], Kalman Filter (KF) approaches [9],
[10], time series analysis (TS) [11], and machine learning
(ML) based methods such as linear regression [12], support
vector regression [4] and neural networks [13], [14]. HA ap-
proaches [8] predict the travel time of a journey by relying on
the historical average travel time for the same daily period over
different days. It constructs a non-parametric model that makes
no assumptions on the underlying data. However, it is difficult
to collect sufficient fine-grained travel records between OD
pairs (e.g. using APPs running on mobile phones), not only
because of high power consumption of mobile phones but also
due to privacy issues. This negatively impacts the amount of
data that can be collected and thus affect prediction accuracy.
KF approaches use a series of travel time records observed
over time to produces estimates of unknown travel times,
by estimating a joint probability distribution over the travel
time records for each time frame [9], [24]. Typically, a KF
model cannot be generalized to the prediction of different time
series [10] (e.g. a KF model that is used to predict the travel
time of a bus line 15 minutes later may not work well for
predicting the travel time of the same bus line 1 hour later).
Moreover, the KF approach is sensitive to anomalies which
are common in bus journeys due to uncertainties caused by
bunching, delays at intersections, etc. As a result, the KF
method is unreliable if there is a huge difference in travel
time between two consecutive time steps. TS methods predict
future values based on previously observed values by modeling
possible internal structure in the data [11]. However, it was
shown that the TS based approaches could not produce high-
accuracy predictions for complex scenarios such as urban bus
travel time prediction. It is because bus travel time is affected
by not only by the dynamic travel demands (e.g. the number of
alighting and boarding passengers, etc.) but also by the traffic
and route conditions (e.g. route length, traffic congestion,
number of bus stops, intersections and traffic signals etc.).
ML models based on regression, SVM and neural network
have been utilized in travel time prediction. Linear regression
models have been widely used in traffic prediction to capture
the linear relationship between travel times and the related
impact factors [12]. This model is computationally efficient
but usually, produce results of low accuracy for nonlinear
systems. Since SVM have better generalization capacity and
can guarantee global minima for a training data, existing works

have applied Support Vector Regression (SVR) to travel time
prediction of cars on highways [4] and buses in city road net-
work [25]. SVR-based model suffers from high computation
overhead. Many Neural Network (NN) based methods have
been developed to predict bus travel time using both historical
and real-time data [14], [26], [27]. Factors that affect the travel
time, such as the travel distance, number of stops, number
of passengers boarding and alighting at each stop, average
non-stop journey time, dwell time, bus schedule, have been
used as inputs for the existing NN prediction models. The
NN based model has demonstrated advantages over the KF
model, HA model, ARIMA and classic regression models. The
ML approaches are often combined with other approaches to
form hybrid methods [28]. Our work differs from the above
methods of bus travel time prediction as they only target a
single bus journey. These methods cannot be directly applied
to our problem where the waiting times during transfer need
to be considered.

B. Journey Travel Time Prediction

Many works have been reported to estimate the travel
time of vehicles (taxis or private cars) between an origin-
destination (OD) pair [4]–[6], [29], [30]. They proposed route-
based strategies, i.e. first partition the route into multiple route
segments and then aggregate the travel time spent on each seg-
ment using historical trajectories. However, these approaches
are not suitable for bus journey time prediction because: 1)
Unlike the general autonomous vehicles (e.g. private cars,
taxis), the travel time of buses is not only affected by the traffic
conditions (e.g. traffic flow, vehicle speed, traffic signal) but
also by other factors such as travel demand, the dwell time at
each bus stop, bus service frequency, bus schedule timetable,
etc. 2) Waiting times at the transfer points (including the
origin stop) need to be considered as they are a non-negligible
part of a passengers’ total journey time. This challenge is
compounded by the lack of sufficient historical travel records
of individual passengers to enable proper validation of the
algorithms.

The work in [31] investigated the problem of online travel
time prediction in the context of a bus journey, using both
historical data and real-time data streams. It partitioned each
bus line into segments based on bus stops, and the travel
time over each segment is estimated using data from multiple
bus lines that travel through the same segment. However, the
approach requires real-time information to predict the travel
time of an ongoing journey. Moreover, the waiting time and
transfer time at interchange stations along the journey have
not been taken into consideration. Also, it is shown that
simply summing up the travel time of each route segment
does not result in high prediction accuracy [32]. The work
in [7] investigated the problem of travel time prediction of
bus journeys, where each journey may involve multiple bus
services. They also considered the waiting time at the transfer
points, including the origin stop. However, it assumes that
the utilized bus services are fixed and given in advance,
while neglecting the fact that journey route (segment) could



be served by multiple bus services and the passengers may
dynamically determine which bus to take based on dynamic
bus arrival.

III. DEFINITIONS AND PROBLEM DESCRIPTION

In this section, we first present several definitions and then
provide our problem description.

Bus Line: A bus line is a fixed route regularly traveled by
the bus service, and it can be represented by a sequence of
points BLl =< pl1, pl2, . . ., plnl

> where pi = (xi, yi), for
i = 1 . . . n, is the GPS location of the i-th bus stop along
the bus line BLl, and nl is the number of bus stops in the
bus line. We use bus stops as points to represent a bus line
as predicting the arrival time at a bus stop is usually desired.
Bus passengers tend to be only interested in the arrival time
at a bus stop rather than a random point along the route. In
this paper, the notation bus line, bus route, and bus service are
used interchangeably. A bus line segment is a set of connected
points, e.g. Rl

i,j =< pli, p
l
i+1, . . . , p

l
j > (i < j) indicating

the segment from stop pli to stop plj of the bus line BLl.
Particularly, the bus line segment RL

i,j is called a unit segment
if pLi and pLj are consecutive bus stops of the bus line BLl.

Bus Trajectory: A bus trajectory Tr is a sequence of
consecutive points that record a bus’ travel information, i.e.
Tr = {p1, p2, ..., p|Tr|}. Each point pi contains the latitude
information, longitude information and the timestamp infor-
mation. A bus trajectory contains the arrival time of a bus at
each of the bus stops along the bus line. Based on the bus
trajectory, the actual bus travel time between any segment of
the trajectory can be derived.

Journey Route: A bus journey route signifies a complete
travel route from the passenger’s origin to the destination,
which may involve multiple bus line segments using different
bus lines/services. Passengers typically need to wait for a bus
service at the origin stop as well as the intermediate bus
stops/interchange station. A journey route considered in this
paper specifies the origin po, destination pd, set of transfer
stops TP .

Alternative Bus Services: A bus journey typically is
achieved by using multiple bus services, and the passengers
need to change to a different bus service at each transfer point.
As such, a bus journey route typically can be partitioned into
several segments based on the transfer points along the journey
route. For each segment, e.g. starting from stop A and ending
at stop B, there usually exist multiple alternative bus services
that can take the passengers from A to B, as illustrated in Fig.
1. The alternative bus services may travel through either the
same or different roadways.

The following describes our problem statement. Given a
journey start time t0 and the journey route R, which may
cover portions of multiple route segments, characterized by
the origin po, the destination pd and a set of transfer points
TP , our goal is to predict the total journey time including the
riding time in each route segment and the time waiting for the
bus services, with the consideration that each route segment
can be served by multiple alternative services.

A C
B

b1

b2

b3

b4

b5

b6

b7

Fig. 1. An example of journey routes with multiple alternative bus services.
There are 3 available bus services (i.e. b1, b2, b3) to take passengers from
stop A to stop B while 4 available services (i.e. b4, b5, b6, b7) between stop
B and C. As such, there could be 12 different plans to travel from stop A
to C. This paper predicts the journey time from A to C without fixing the
utilized transport services in advance.

We make the following assumptions: 1) the journey route
(specified by origin, transfer points and destination stop) is
given, i.e. it has been specified by the user or generated by
a route planner; 2) the alternative bus services for each route
segment are known; 3) the passenger is notified with all the
alternative services and will take the first arrival service.

IV. PROPOSED METHOD

In this section, we first provide an overview of the proposed
framework for the TP-BJMAS problem. Then, we present the
details of each component of the framework in the following
sections.

A. Main Framework

Fig. 2 illustrates the framework for the TP-BJMAS problem.
The input journey route is partitioned into several segments
based on the transfer points, such that a journey route with k
different services is partitioned into k segments. The time for
travelling on each segment consists of both the riding time on
the bus service and the time waiting for the bus service at the
transfer point. In the proposed method, the travel time of each
segment is predicted by a separate Segment Module (as shown
in the figure) and the total travel time of the entire journey is
obtained by aggregating the travel time of all segments. The
Segment Module works in the following way.

1) We develop efficient machine learning methods to pre-
dict the waiting time at the transfer/origin stop, by con-
sidering two different scenarios, i.e. online and offline
scenario. The model can predict the arrival time of the
next three bus trips for each bus services (e.g. bus 241).
For example, the expected arrival times of the next three
bus 241 at stop A are 08:02, 08:09, 08:15, respectively.
Based on the obtained bus arrival time, the expected
waiting time for each alternative bus services can be
easily calculated.

2) A deep learning approach based on Long Short-Term
Memory (LSTM) is developed to predict the riding time
on each segment of a given bus line. The LSTM based
model relies on multiple features extracted from multi-
ple data sources, which not only characterize roadway
characteristics (e.g. distance, number of bus stops, traffic
signals, etc.) and traffic conditions (characterized by trip
start time, day of week, route spatial distribution, etc.).
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Fig. 2. Proposed framework for predicting travel time of bus journey with multiple alternative bus services.

3) Due to the uncertainty caused by the dynamic traffic
conditions as well as the traffic signals, the actual bus
arrival time might be different from the predicted. The
bus service with smaller predicted waiting time is more
likely to arrive earlier and be taken by the passenger.
As such, the riding time regarding the bus service with
smaller waiting time is more important than those with
larger waiting time. We utilize the attention technique
to integrate the journey times of using different bus
services. The final total journey time can be calculated
by aggregating the journey time over all segments of the
given journey route.

In the following sections, we will present the details of each
component, including 1) Riding Time Prediction component,
which predicts the riding time on a route segment using a
single bus service; 2) Waiting Time Prediction component,
which predicts the waiting time for specific bus service at a bus
stop; 3) Attention based Fusion component, which estimates
the travel time on a route segment by fusing the results of
multiple alternative bus services.

B. Riding Time Prediction

This section describes the model for predicting the bus
riding time using a single bus service without transfering.
The Riding Time Prediction component is pretrained and will
be directly used in the prediction model for the TP-BJMAS
problem. We first discuss the training dataset and the features
that are used to train the LSTM network, then we present the
details of our LSTM network.

1) Training data: Given a bus trajectory, we can extract
a training data consisting of a number of journey records,
each journey record is a sub-trajectory of the complete bus
trajectory. With a journey record, a vector representing the
information of the trip record is extracted, which consists
of two parts: travel time and a feature vector containing the
following features that impact the journey travel time [7]:
• Time of day, i.e. journey start time. In the same day,

journeys with different start time have significant variance

in the travel time, which shows that the journey start time
has an impact on the travel time and should be used as a
feature for travel time prediction. The journey start time
can be used as an indicator to characterize the variance
of traffic conditions over a day.

• Day of week, i.e. day that journey will be made. Working
days (Monday to Friday) have similar travel time patterns,
and the same can be observed for weekends (Saturday
and Sunday). On the other hand, weekdays and weekends
have different travel time distribution. This indicates that
the day of week should also be considered as a feature to
differentiate the traffic conditions between working days
and weekends for travel time prediction.

• Travel distance, i.e. total distance of the journey route.
Longer travel distance typically leads to longer travel
time. In addition, longer travel distance generally cor-
responds to more intersections and more traffic signals,
which may cause unexpected delays.

• Number of bus stops, i.e. number of stops between the
origin stop and the end stop along the journey route. It
has direct impacts on the total travel time. The reason that
more bus stops lead to longer travel time is not only due
to longer travel distance, but also because of the increase
in bus dwelling time (more number of bus stoppings)
and bus deceleration/acceleration at the bus stops. This
reflects the expected number of bus stopping and the bus
dwelling time.

• Number of intersections, i.e. number of intersections
along the journey route, including pedestrian crossings.
Note that buses typically slow down at intersections.

• Number of traffic signals, i.e. number of traffic signals
along the journey route. Buses often need to stop at the
intersections with signals.

• Weather condition. This affects the bus moving speed.

The extracted features can characterize not only the temporal
data dependencies but also the spatial data correlations. For-
mally, a sub-matrix xi ∈ RFi×D is extracted from each bus
trajectory, where Fi is the number of journey records obtained



from trajectory Tri and D is the dimension of features. A bus
trajectory Tri has with ni+1 bus stops has ni·(ni−1)

2 different
journey records in total. The sub-matrices obtained from all
bus trajectories are combined together as x ∈ RF×D to train
a LSTM model, which is able to make accurate travel time
prediction for any segment of the bus service. The ground
truth vector of the journey travel time is denoted as ŷ ∈ RF .
In addition, we use y ∈ RF to denote the target vector.

2) LSTM Network Structure: The input matrix is fed into
two stacked LSTM layers, where each LSTM layer has 128
neurons. The LSTM memory cell can be described with the
following equations:

it = σ(Wixxt +Wihht−1 + bi)

ft = σ(Wfxxt +Wfhht−1 + bf )

ot = σ(Woxxt +Wohht−1 + bo)

C̃t = tanh(WCxxt +WChht−1 + bC)

Ct = it ∗ C̃t + ft ∗Ct−1

ht = ot ∗ tanh(Ct)

(1)

where t indicates the t-th timestamp, it, ft, ot refer to the
output of the input gate, forget gate and output gate respec-
tively. xt, ct, ht are the input vector, state vector and hidden
vector respectively, and ht−1 is the former output of ht. C̃t

and Ct are the input state and output state of the memory cell,
and Ct−1 is the former state of Ct. σ is a sigmoid function.
Wix,Wfx,Wox,WCx are the weight matrices connecting xt

to the three gates and the cell input, Wih,Wfh,Woh,WCh

are the weight matrices connecting xt−1 to the three gates and
the cell input, bi, bf , bo, bC are the bias terms of the three
gates and the cell gates.

The output of the second layer goes into several fully-
connected layers, where each layer is of size 128. The fully-
connected layers are connected with residual connections,
which is shown to be efficient for training a very deep neural
network [20]. For the first fully connected layer, its input
is the output of the second LSTM layer. Let σfi be the i-
th residual fully-connected layer, then the output of the first
layer is σfi(oz), where oz is the output of the LSTM layer.
For the rest of the residual layers, let ofi be the output of
the i-th layer, then the output of the (i + 1)-th layer can be
represented as ofi+1

=ofi⊕σfi+1
(ofi), where ⊕ is an element-

wise add operation.
Finally, we apply a tanh activation function and obtain the

prediction results. In order to prevent overfitting, two widely
used regularization techniques are employed: dropout [21]
and L2 regularization. The dropout mechanism is applied to
each hidden layer, where the rate of dropout is set to 0.5.
Moreover, we apply L2 regularization on model weights to
prevent possible overfitting. Formally, the loss function used
for training the model is:

Lloss =

F∑
i=1

(ŷi − yi)2 + λ ‖W ‖2 (2)

where λ is a hyper-parameter to control the regularization
strength and W denotes all weights in the network. The
Adam optimizer is utilized as the gradient descent optimization
algorithm. The training process repeats for 50 epochs.

C. Waiting Time Prediction

Predicting the waiting time for bus service at the origin
stop or at a transfer point is a challenging task. Assume that a
passenger is expected to arrive at bus stop p at time t0 to wait
for the bus (e.g. bus 179). We consider two different scenarios
for waiting time prediction: 1) Online scenario, where the ω
previous bus arrival time before time t0 are known or can be
preciously predicted; 2) Offline scenario, where the ω previous
bus arrival time before time t0 are not known and cannot be
preciously predicted. For the online scenario, a neural network
based prediction model is developed to predict the arrival time
of the next 3 bus trips after time t0, for a given bus service
at a bus stop. For the offline scenario, since the previous bus
arrival information is not available, we employ the method
proposed in [7].

1) Online scenario: We rely on the large scale dataset
of historical bus arrival times of buses at each bus stop to
train a model to estimate the bus arrival times and thus the
waiting times. Let BATp,i be the dataset of historical bus
arrival times at bus stop p containing data of the i-th day. For
each data sequence of BATp,i, we can extract a training data
consisting of a number of training records, each record is a
vector consisting of the following features:

• Time of day, i.e. the expected time that a passenger arrives
at the bus stop, denoted as t0. The t0 affects the expected
waiting time because a bus service typically has a higher
frequency at peak hours and lower frequency at off-peak
hours. As such, t0 should be used as an indicator to
characterize the variance of bus service frequency over
a day.

• Day of week, i.e. day that journey will be made. Week-
days and weekends have different frequency of bus
services and traffic conditions. This indicates that the
day of week should also be considered as a feature to
differentiate the traffic conditions between working days
and weekends for bus arrival time prediction.

• Previous ω records of bus arrival time. The original
sequence of ω bus arrival time records, as well as the
sequence of time intervals between consecutive records
are used.

• Weather condition. This affects the bus moving speed and
travel demands.

• The location of the bus stop. It reflects the spatial
information, as the bus services have uneven spatial
distribution in both services frequency and coverage.

A sub-matrix is extracted from each BATp,i, and the combi-
nation of all sub-matrixes from all BATp,i for all bus stops
in all days form the entire training set. The ground truth for
each record is the arrival times of the next three buses for the
given bus service (e.g. bus 179) after time t0 at the stop p. The



utilized prediction model is the same as that used in section
IV-B1.

2) Offline scenario: Since the previous ω records of bus
arrival times may not be readily available for some cases (e.g.
predicting the bus arrival times at the transfer point when
the passenger has not started the journey), we employ the
offline method presented in [7] for waiting time prediction.
Specifically, BATp is the sequence of the historical bus arrival
times at stop p consisting data of d days, then the historical
average waiting time is

HA(p) = HA(p, t0) =

∑d
i=1(ti|BATp

− t0)
d

(3)

where ti is the first bus arrival time after time t0 in the i-th
day of the dataset BATp. ti|BATp

−t0 is the historical waiting
time on the i-th day.

For estimating the waiting time at an intermediate transfer
point p′, the passenger’s arrival time t′0 at this stop can be
estimated as t0 plus the predicted journey time between the
previous transfer (or origin) stop and p′. Then the waiting time
HA(p′) at p′ is estimated as HA(p′, t′0). However, the major
challenge in waiting time prediction is that it is sensitive to
the arrival time of the passenger at the transfer point, which
cannot be accurately predicted at minute granularity. Thus,
an enhanced method is developed based on the HA method.
Specifically, we utilize a time interval [E[ta]− ε,E[ta]+ ε] to
characterize the arrival time of the prior bus instead of using a
single time point t0, where E[ta] is the expectation of arrival
time based on historical bus trajectories, and ε is set to be
the mean absolute error of the LSTM network presented in
the previous section. The work in [7] proves that the exact
arrival time at the transfer stop of the passenger will fall into
this interval with a probability above 1− Var[ei]

ε2 . As such, the
waiting time can be calculated as

Wait(E[ta], ε) =

∑ε
i=−ε(HA(E[ta] + i))

2ε+ 1
(4)

where E[ta] is the expectation of arrival time based on
historical bus trajectories, and ε is the MAE (mean absolute
error) of the bus riding time prediction model discussed in
Section IV-B1. HA(E[ta]+ i) indicates the estimated waiting
time using the HA approach if the passenger arrives at the bus
stop at time E[ta] + i. For estimating the waiting time at the
origin stop, ta is set to journey start time t0 and ε is set to 0
as t0 is the exact arrival time of the passenger.

D. Attention based Journey Time Fusion

As mentioned before, the proposed method partitioned the
input journey route is partitioned into several segments based
on the transfer points. Each segment can be served by multiple
different bus services, e.g. BL = {b1, b2, · · · , bK}. This
section introduces the method for estimating the journey
time by fusing the journey time predicted based on each
of the alternative bus services. For clarity, the journey time
predicted based on single bus service is called a segment time
component. The segment time component consists of both the

bus riding time and the time waiting for the bus service at the
transfer point. The bus riding time can be obtained using the
prediction model presented in Section IV-B while the waiting
time at the transfer point can be obtained using the prediction
model presented in Section IV-C. Since different bus services
will arrive at different time due to dynamic and uncertain
traffic conditions, the bus services with shorter waiting time
are more likely to be taken than others. This means that the
segment time components obtained from all the alternative bus
services do not contribute equally to the overall journey time
prediction, the segment time component obtained based on
the bus services with shorter waiting time is more important
and should be given more attention. In our model, the attention
mechanism [30] is employed to discriminate the importance of
different bus services automatically. The key idea is to assign
weights to different segment time component. Formally, the
segment travel time is calculated as

T i =
∑

bj∈BLi

aj · (Waitij +Rideij) (5)

where Waitij and Rideij are the waiting time and riding time
of service bi (bi ∈ BLi), BLi is the set of all alternative
bus services of the i-th segment, aj is the weight for term
Waitj + Ridej , and

∑
aj = 1. The weight parameter aj is

learned through the attention layer,

zj = VT
aj · relu(Waj(Waitj +Ridej) + baj) (6)

aj =
exp(zj)∑
j exp(zj)

(7)

where Waj is weight matrices connecting neurons in attention
layer and the input Waitj + Ridej , VT

aj connect neurons in
attention layer with zj , baj is the bias terms.

After obtaining the segment travel times using the Segment
Module for all the segments of the journey route, the total
travel time of the entire journey can be obtained by aggregating
the travel time of all segments.

V. RESULTS AND ANALYSIS

A. Dataset

Road Networks: The road network (obtained from Open-
StreetMap1) is utilized to derive the information of in-
tersections (#.intsections), the number of traffic signals
(#.signals) as well as the walking distance between transfer
stop-pairs for any journey routes. Our experiment relies on the
road network of Singapore, which comprised of 41,732 nodes
and 98,539 road segments.

Bus Route: The bus route information2 includes the ID (a
five digit number) of each bus stop in sequential order, the
GPS location (latitude and longitude) of each bus stop, and
the travel distance between any two consecutive bus stops. We
map the bus routes to the road network using the GPS locations
of bus stops to determine the sequence of road segments

1https://www.openstreetmap.org/export
2https://www.mytransport.sg/content/mytransport/home/dataMall.html



traveled by the bus line. The results are verified by comparing
with Google Map via visualization. Based on the map-matched
bus line routes, the number of intersections and the number of
traffic signals for any journey routes can be calculated. More
than 30 bus lines are used in the experiments, which are shown
in Fig. 3.

Bus Trajectories: A bus trajectory dataset is derived based
on the real-world Bus Arrival Time dataset (the arrival time of
the next bus for each bus stop, at every minute) provided by the
Land Transport Authority, Singapore. The dataset contains bus
trajectory data of 30 bus lines from May 06 to July 07, 2017
(63 days in total). Each bus trajectory is a sequence of points,
and each point contains the information of the stop ID, the
GPS location of the bus stop, the timestamp (arrival time of the
bus at the stop), and the bus line ID. With the trajectories, the
following features are extracted for each trajectory segment:
the day-of-week, the journey start time, as well as the trip
duration (i.e. the bus riding time regarding the journey route
segment).

Pseudo Journey Records: It is challenging to obtain suf-
ficient journey records of individual passengers. Therefore,
a dataset of journey records is generated based on the bus
trajectories and bus arrival time records. The journey records
are generated in the following way, which is similar to that
used in [7]: We repeatedly select a journey route (may involve
transfering among multiple bus services) on the bus network
and then generate a certain amount of journey records by
randomly selecting journey start time over a period of 63 days.

Method to generate the journey routes: a journey route
contains the information of the origin po, the destination pd
and a set of transfer points TP . The origin po and destination
pd are selected based on real-world bus/metro travel demand
information3. We select the top 2000 OD-pairs (with highest
travel demands) as the po and pd to generate the journey routes
to test the performance of the proposed prediction method
and the baselines. Fig. 4(a) shows the distribution of journey
volumes on the top 2000 OD-pairs. When a pair of po and pd
are determined, the set of transfer points TP is constructed
as follows: We first search all the feasible (reachable) path
from po to pd using at most 3 bus services. Then, all the
journey paths are classified into three group: the paths of the
first group need not transfer (denoted as G1), each of the
paths in the second group contains 1 transfer (denoted as G2),
and each of the paths in the third group contains 2 transfer
points (denoted as G3). For G1, the set TP is empty. For G2,
the set TP contains a single transfer point, which is selected
as the transfer point that is mostly used by the paths in the
second group. For G3, the set TP contains 2 transfer points,
where the first transfer point is selected in the same way as
in G2 (the selected transfer point is denoted as tp1). Then
the second transfer point is selected as the transfer point that
is mostly used by the paths containing tp1 in group G3. All
the alternative bus services will be recorded at the same time.
Since the historical arrival times of all alternative bus services

3https://www.mytransport.sg/content/mytransport/home/dataMall.html

at the origin and the transfer stops are known, it is easy to
recover the journey record by assuming that the passenger
can always board the first bus that arrives. This can also be
extended to the case where some passengers have to wait for
the second bus due to overcrowding. To achieve this, we can
first observe the rate, say ρ%, of passengers that failed to board
the first bus at each transfer point. During the journey record
generation, we can allow ρ% passengers who need to transfer
to use the second bus trajectory. With the journey record, the
ground truth of total journey time can be easily calculated.

(4) Weather data: Weather condition influences the bus
travel speed by affecting the bus stopping time at bus stops as
well as the moving speed of vehicles. Hourly-grained weather
data are collected during the same time period, i.e. from May
06 to July 07, 20174. There are 14 types of weather conditions,
including thundershowers, strong thunderstorms, rain showers,
light rain, sunny, etc.

B. Baseline Methods for Bus Travel Time Prediction

Since there are no existing approaches for the same problem
considered in this paper, we compare our method with the
following baseline methods, which are briefly described below.

1) Weighted-Segment Sum Method (WSSM): WSSM par-
titions the entire journey route into several segments based
on transfer points. For each segment, the segment journey
time is predicted as the weighted sum of the travel time of
all alternative bus services. The weights are calculated based
on the frequency (the total number of bus trips in each day)
of each bus service. For example, there are three alternative
bus services for the first segment, i.e. b1, b2 and b3, whose
service frequencies are n1, n2 and n3, respectively. Then the
weight for service bi (1 ≤ i ≤ 3) is calculated as ni∑3

j=1 nj
.

2) Weighted Complete-Path Method (WCPM): This method
first identifies all feasible complete journey paths (where the
utilized bus service for each route segment is deterministic)
and estimates the total travel time for each deterministic
journey path. Then the final journey time is calculated as
the weighted average of the journey time of all feasible
journey paths, where the weights are calculated based on the
frequencies of the involved bus services. Specifically, assume
there are 3 alternative bus services for the first segment (b1,
b2, b3) and 4 alternative bus services for the second segment
(b4, b5, b6, b7), then the weight for the path < bi, bj > is
calculated as ni·nj∑

1≤p≤3,4≤q≤7 np·nq
.

3) Earliest Bus Service Method (EBSM): The EBSM par-
titions the journey route into several segments based on the
transfer point. For each segment, the bus service with shortest
waiting time is used to estimate the travel time for the segment,
then the total travel time of the entire journey is calculated as
the sum of the travel time over all segments.

4https://www.timeanddate.com/weather/singapore/singapore



Fig. 3. The spatial distribution of 30 bus lines used in the experiments.

C. Evaluation Metrics

The performance measures used are the Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE),

MAE =

∑F
i=1 |yi − ŷi|

F

RMSE =

√√√√ 1

F

F∑
i=1

(yi − ŷi)2

where F is the size of the testing set, yi ∈ RF is the predicted
value and ŷi ∈ RF is the actual value observed.

D. Results Comparison

1) Prediction Accuracy: In the experiment, the data col-
lected from May 06, 2017 to Jun. 30, 2017 are used for
training the prediction model, while the data collected for
the last week (from July 01 to July 07, 2017) are used for
testing. During the training process, 25% of the training set is
used for validation. For more clear illustration of the obtained
results, we classify all the journey routes into three group: 1)
in the first group (group 1), each of the journey paths uses a
single bus service without transfering; 2) in the second group
(group 2), each of the journey paths contains 2 bus service
with one transfering; 3) in the third group (group 3), each of
the journey paths contains 3 bus service with two transfering.
As mentioned before, the journey records are generated based
on real-world historical bus trajectories of 30 bus lines in
Singapore. For each group, we randomly select 1000 journey
routes (including information on the origin, destination, the
set of transfer points, the set of alternative bus services) and
generate 50 journey start times in the period from Jul. 01 to
Jul. 07, 2017. The generated journey start times follow the
distribution, as shown in Fig. 4(b)

Fig. 5 presents the performance comparison of our proposed
method and the baseline methods, in terms of MAE and
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(b) Distribution of journey start times of historical journey records
of the top 2000 OD-pairs.

Fig. 4. Statistical Information of journey records on the top 2000 OD-pairs.

RMSE. It can be observed that the proposed method produces
the best performance on MAE as well as RMSE on all of
the three groups of journey routes. For example, the average
improvements compared with the baseline methods on MAE
over the group G1 are 10.3%, 46.7%, 49.6%, respectively. The
improvements are more significant on relatively shorter jour-
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Fig. 5. Comparison of the results, the paths of group G1 need not to transfer,
each of the paths in group G2 contains 2 segments with 1 transfer, and each
paths in group G3 contains 3 segments with 2 transfer points.
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Fig. 6. Comparison of the waiting time obtained by the IHA method and the
proposed method, the routes in G1 contain waiting time at origin stop, routes
in G2 contain waiting time at origin stop and one transfer stop, routes in G3

contain waiting time at origin stop and two transfer stops.

neys than those of longer ones. This is because the proposed
method partitions a given journey into multiple components
(riding time and waiting time components), and the journeys
with transfers typically have more components than journeys
without transfers thus leading to larger accumulated errors.
Another reason is that, longer journeys contain more transfer
points and route segments, and more bus services are involved
which increases the prediction complexity. Similar results are
observed on RMSE, as shown in Fig. 5(b).

Fig. 6 compares the accuracy of waiting time prediction

at the origin stop in terms of MAE, in comparison to the
IHA method proposed in [7]. It can be observed that the
proposed method for waiting time prediction achieves better
performance than IHA methods for all three scenarios. For
the first group, i.e. predict the waiting time at the origin stop
(online scenario), the proposed method achieves better results
than IHA because the previous arrival times of the involved
bus services are available and are used in the proposed method.
For the group G2 and G3, the improvements decrease slightly
because the waiting time at the transfer points are more
challenging, as it can only be predicted in an offline scenario,
which leads to relatively higher errors.

Runtime of Prediction Model: Despite the longer training
time, the bus journey prediction is very efficient. The average
predicttion time of the four algorithms are: 0.042s(WSSM),
0.320s(WCPM), 0.035s(EBSM), 0.051s (proposed), respec-
tively.

VI. CONCLUSIONS

In this paper, we investigated the problem of predicting bus
journey time, considering that the journey route (segment) can
be served by multiple alternative bus services. We proposed a
framework that partitions the entire journey route into several
segments, such that the travel time regarding each segment is
predicted using a segment module and the total journey time
is obtained by aggregating the travel time of all segments.
For each segment, there are multiple alternative bus services,
and an attention network is developed to take into account
the different importance of different bus services. We also
developed effective models to predict the bus riding time as
well as the waiting time for buses at the transfer points. By
conducting extensive experiments on large scale real-world bus
travel data, we showed that our proposed method can predict
the travel time for any given journeys and obtains better results
than the baselines.
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