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Travel Time Prediction of Bus Journey with
Multiple Bus Trips

Peilan He, Guiyuan Jiang, Siew-Kei Lam, Dehua Tang

Abstract—Accurate travel time prediction of public transport
is essential for reliable journey planning in urban transportation
systems. However, existing studies on bus travel/arrival time
prediction often focus only on improving the prediction accuracy
of a single bus trip. This is inadequate in modern public
transportation systems where a bus journey usually consists of
multiple bus trips. In this paper, we investigate the problem of
travel time prediction for bus journey that takes into account the
passenger’s riding time on multiple bus trips, and also his/her
waiting time at transfer points (interchange stations or bus stops).
A novel framework is proposed to separately predict the riding
and waiting time of a given journey from multiple datasets (i.e.
historical bus trajectories, bus route, and road network), and
combining the results to form the final travel time prediction.
We empirically determine the impact factors of bus riding times
and develop a Long Short-Term Memory (LSTM) model that
can accurately predict the riding time of each segment of the
bus lines/routes. We also demonstrate that the waiting time at
transfer points significantly impacts the total journey travel time,
and estimating the waiting time is non-trivial as we cannot
assume a fixed distribution waiting time. In order to accurately
predict the waiting time, we introduce a novel Interval-based
Historical Average (IHA) method that can efficiently address
the correlation and sensitivity issues in waiting time prediction.
Experiments on real-world data show that the proposed method
notably outperforms six baseline approaches for all the scenarios
considered.

Index Terms—Travel time prediction, bus journey, waiting time
prediction, LSTM, interval-based historical average.

I. INTRODUCTION

Efficient and easy-to-use public transportation system is an
important element in sustainable cities as it can boost reduction
in traffic congestion and lower carbon emissions from vehicles
[1]. A key enabler to the success of public transportation
system lies in the provision of accurate travel time informa-
tion for travelers to make reliable journey planning. This is
especially vital for bus services which typically account for
the majority ridership among all public transport journeys
[2]. Unfortunately current bus services have difficulties in
maintaining deterministic travel times as the bus networks are
inherently unstable due to heterogeneous traffic conditions and
passenger demands.

One of the main issues that contribute to the decrease
in quality of bus service is the perennial problem of long
and unknown waiting time during transfer, which discourages
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passengers from continuing to use public transport [3], [4].
This will become more pronounced in connective networks
[5] or high performance bus (HPB) network [6], [7] that are
designed to increase the number of travel options through the
use of more frequent services and transfers. This problem can
be effectively circumvented by providing accurate travel time
prediction to passengers so that they can plan a preferred route
and departure time. Travel time prediction is also elementary
to dynamic route guidance systems that provide intermodal
transport options and routes to travellers based on real-time
data. The availability of accurate and timely information such
as bus travel/arrival time will become indispensable not only
in current public transportation networks that are constantly
expanding, but also in emerging agile transportation systems
where buses are scheduled and routed based on travel demand
rather than adhering to fixed time-tables and routes [8].

Many researchers have proposed algorithms to predict travel
time for taxis or private cars between an origin-destination
(OD) pair [9], [10], [11], [12], but research on bus journey
time prediction is rather limited. The former approaches cannot
be directly applied to bus travel time prediction because bus
networks are not only affected by traffic conditions (vehicle
speed, traffic flow, traffic signal etc.), but also by factors such
as travel demands, dynamic bus load, bus schedules, etc. As
such, compared to travel time prediction for cars, travel time
prediction for buses is more complex and pose significant
challenges in achieving optimal solutions. Moreover, existing
approaches for bus travel time prediction fail to consider
waiting time and transfer time at transfer points (interchange
stations and bus stops), which is a non-negligible part of a
passengers’ total journey time. This challenge is compounded
by the lack of sufficient historical travel records of individual
passengers to enable proper validation of the algorithms.

In this paper, we focus on predicting the bus journey travel
time for passengers. We make a distinction between journey
and trip, where a trip is traveled on a single route using
one mode (e.g. single bus line/route using one bus service
without transferring), and a journey consists of one or more
trips where transfers are made between services occurring
within a certain time frame (e.g. 60 minutes). Unlike existing
works on travel/arrival time prediction for a single bus trip
[6-32], we address the problem of travel time prediction for
a bus journey that involves riding times of multiple bus trips
and passenger waiting times at transfer points. We conduct
extensive experiments using real bus travel data to evaluate the
prediction accuracy of the proposed method for the bus riding
time, waiting time, and overall journey time. Experimental
results demonstrated the superiority of the proposed approach
over several state-of-the-art methods. The main contributions
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of this work are summarized as follows:
1) To the best of our knowledge, our work is the first to

predict the travel time of a bus journey consisting of riding
times on multiple bus trips, and waiting times during transfers.
We propose a Partitioning and Combination Framework (PCF)
that addresses the heterogeneous distribution of waiting time
at each bus stop, as well as the riding time of bus trips
with different frequency and travel speed. A given journey
is first partitioned into multiple components that comprises
of waiting times at each transfer points (waiting time com-
ponents) and bus riding times on each line segments (riding
time components). Prediction is performed on the waiting time
and the riding time components separately, and the results are
combined to obtain the travel time of the full journey. We adopt
a data driven approach (instead of using real-time traffic data),
since traffic information pertaining to future bus trips may not
be available at the time of prediction.

2) In order to accurately predict the riding time components,
we studied the impact of roadway characteristics (e.g. distance,
number of bus stops, traffic signals, etc.) and traffic conditions
(characterized by trip start time, day of week, route spatial
distribution, etc.) on the bus travel time. Our studies revealed
a close relationship between bus riding time and roadway
characteristics as well as traffic conditions. We propose a
deep learning approach based on Long Short-Term Memory
(LSTM) to predict the travel time of each segment of a given
bus line. The LSTM model relies on features extracted from
multiple data sources that not only characterizes the bus route
but also the traffic conditions and travel demands.

3) We demonstrate that the waiting times at a bus stop are
very sensitive to the arrival time of the passenger at that bus
stop (sensitivity problem), and the waiting times at different
bus stops are correlated to the bus travel times (correlation
problem). With this, we developed a novel Interval-based
Historical Average (IHA) method to estimate the waiting time
at a bus stop, which does not assume a fixed distribution
waiting time. The proposed method effectively handles the
sensitivity and correlation problems.

The remainder of the paper is organized as follows. Related
works are discussed in Section II. Section III introduces
important definitions and the problem formulation. Section IV
discusses the proposed PCF approach for travel time prediction
of bus journey. We evaluate the performance of the proposed
approach in Section V, and Section VI concludes the paper.

II. RELATED WORKS

Over the past decade, the problem of predicting travel time
of vehicles (such as buses, taxis and private cars) has received
wide attention. However, we are not aware of any reported
works that address the same problem considered in this paper,
i.e. estimating the total travel time of a bus journey, which
involves both riding times on multiple bus trips and waiting
times at transfer points. In this section, we review related
works and highlight their differences with ours. These related
works can be categorized into prediction of bus travel time,
bus arrival time, and journey travel time.

A. Bus Travel Time Prediction

In general, efforts to predict bus travel times can be cate-
gorized into four approaches:

1) Analytical model based approaches explore the physical
relationship between travel time and traffic variables (e.g.
traffic flow, occupancy, signal phase plans, etc.) [35], [13].

For example, speed-based models split the bus route into
segments and estimate the average speed on each segment
separately. Traffic conditions such as traffic flow, travel speed,
signal phase plans as well as road capacities are relied upon for
the estimation. Song et al. [14] proposed a method to predict
bus travel time based on real-time GPS (Global Positioning
System) and RFID (Radio-Frequency IDentification) data. A
self-adaptive exponential smoothing algorithm is first proposed
to predict the bus speed based on the short-term speeds of taxis
and buses. A bus travel time prediction model is then proposed
that takes into account the delay caused by the signal control
and acceleration/deceleration. The work in [15] developed a
prediction method that considers both temporal and spatial
variations in travel time. In their work, the conservation of
vehicles equation in terms of flow and density was first re-
written in terms of speed in the form of a partial differential
equation using traffic stream models, and discretized using the
Godunov scheme. A Kalman Filter based prediction approach
is then proposed using the speed based equation.

In general, approaches that are based on analytical models
require real-time traffic data of high density and frequency. As
such, these approaches are usually not applicable to large scale
transportation networks due to the substantial cost involved in
obtaining such data.

2) Historical average approaches predict the travel time of
a trip by relying on the historical average travel time for the
same daily period over different days. This approach builds
a non-parametric model that does not make any assumptions
on the underlying data, and does not use any explicit training
data.

The work in [16] builds a prediction model based on k-
nearest method using data from Vehicle Detector System
(VDS) and Automatic Tool Collection (ATC) system. How-
ever, this work is devoted to predicting the travel time on
expressways. Lee et al. [17] proposed a historical trajectory
based travel/arrival time prediction (HTTP) framework for
real-time prediction of travel time of an on-going bus jour-
ney. HTTP first samples a collection of historical trajectories
“similar” to the current on-going bus trajectory as the basis for
prediction, explores different prediction schemes to prune the
sample set of similar trajectories, and then return the average
travel time of the pruned set as the prediction. However, the
challenge of the historical average approach lies in collecting
sufficient historical travel records for prediction. While it is
possible to collect travel trajectories from mobile phones of
passengers, it is difficult to accurately estimate the journey
time using mobile phone trajectories as there is a need to
infer the users’ travel modes (walking, bus, taxi, metro) from
sparse trajectories due to existence of noise and high spatial
inaccuracy. Furthermore, obtaining dense trajectories from
mobile phones is not feasible as this will incur high power
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consumption leading to poor user experience.
3) Kalman Filters (KF) approaches.
The first work using Kalman Filter to predict bus arrival

time is reported in [18], where a combination of GPS data
and historical data is used. The KF model is applied to track
a vehicle location and a statistical estimation technique is used
to predict travel time. A KF algorithm is proposed in [19] to
predict travel times under heterogeneous traffic conditions on
urban roadways in the city of Chennai, India using GPS data
collected from buses. A hybrid method is developed to predict
the travel time of Bus Rapid Transit (BRT) vehicle using the
GPS data of BRT line 2 in Chaoyang district, Beijing. In this
work, a Support Vector Machine (SVM) approach is used
to predict an initial travel time and then the KF algorithm
is applied to dynamically adjust the results of the initial
prediction [20]. The results show that the prediction accuracy
is higher for off-peak hours. Existing work has shown that
the KF method can be applied to predict bus travel time
using Automatic Vehicle Location (AVL) data [21]. However,
a KF model typically cannot be generalized to the prediction
of different time series as discussed in [22]. Moreover, the
KF approach is sensitive to anomalies which are common in
bus journeys due to uncertainties caused by bunching, delays
at intersections, etc. As a result, the KF method becomes
unreliable if there is a huge difference in travel time between
two consecutive time steps.

4) Time Series Analysis. Time series forecasting uses models
to predict future values using previously observed values by
taking into account possible internal structure in the data.

The work in [23] applied Autoregressive Integrated Moving
Average (ARIMA) model to forecast the short-term travel
time along a corridor by incorporating traffic information from
neighboring links. The authors reported that the travel times
for consecutive segments are highly correlated, and upstream
segments have a higher effect on travel time than downstream
segments. The work in [24] apply the time series model
ARIMA to predict bus travel time, using dataset collected from
the bus service operated on a divided 4-lane 2-way highway in
Ipoh-Lumut corridor, Perak, Malaysia. However, it has been
shown that the time series based approaches cannot produce
predictions with very high accuracy for complex scenarios
such as urban bus travel time prediction. This is because bus
travel time is affected by not only traffic and route conditions,
such as travel distance, traffic congestion, number of bus stops,
intersections and traffic signals etc., but also the dynamic
travel demands such as the number of alighting and boarding
passengers, dynamic bus loads, etc.

5) Machine learning models based on regression, SVM and
neural network have been proposed for travel time prediction.

Classic regression models build relationships between travel
times and related factors. Previous studies created regression
models using travel distance, traffic flow, transit bus frequency,
heavy vehicles proportion, bus-stopping time, number of stops,
and time period, which resulted in promising predictions under
specific conditions. Linear regression models have been widely
applied in traffic prediction to capture the linear relationship
between travel times and the related factors [25], [26]. This
model is computationally efficient but usually produce unde-

sirable results for nonlinear systems. As SVM have greater
generalization capacity and can guarantee global minima for
given training data, the works in [9], [27] have applied
Support Vector Regression (SVR) for predicting travel-time on
highways. However, this model suffers from high computation
overhead. Many Neural Network (NN) approaches have beed
developed to predict bus travel time using both historical and
real-time data [26], [29], [30], [31], [32]. The features, such
as the travel distance, number of stops, number of passengers
boarding and alighting at each stop, average non-stop trip
time, dwell time, bus schedule, have been considered as inputs
for the existing NN prediction models. Approaches using
the NN model has demonstrated advantage over the Kalman
Filter model, historical average model, ARIMA and classic
regression models.

Some of the above mentioned methods are used in a hybrid
manner. For example, the KF method is combined with the
theory of traffic flow in [15] to predict bus travel time. There
also exist works that combine the neural network method with
the KF method [33], [34].

B. Bus Arrival Time Prediction

Existing works on bus arrival time (BAT) prediction also use
similar methods, such as historical average, linear regression,
SVR [39], NN [36], [37], [38], Kalman Filter [33], and hybrid
models [40]. In particular, the BAT problem in [37] considers
the arrival time prediction of multiple buses at a transfer
point (including the origin stop). The term ‘multi-line’ in their
work refers to multiple choice of bus services at a transfer
point. This differs from the notation used in our work where
multiple consecutive bus lines constitute to a bus journey.
In our problem, we investigate the total journey time of a
passenger where only one bus service is used at each transfer
point. Moreover, existing works typically focus on short term
prediction which predicts the arrival time of a bus that is
currently in operation.

C. Journey Travel Time Prediction

Existing research on journey travel time prediction mainly
targets at estimating the time for vehicles traveling on a path
of road segments. Most of this works employ a route-based
strategy for travel time estimation, i.e. they first identify a
route and partition the route into multiple road segments. The
journey time for this route is then estimated by aggregating the
travel time spent on each segment using historical trajectories.
Existing approaches estimate the travel time using real freeway
traffic data [9], [41], rural highway data [10], and urban road-
way data [42], [43], [11]. The spatial or temporal correlations
of link travel time have also been taken into consideration for
estimating the probability distribution of trip travel times [11],
[49]. Different from the traditional route-based approaches,
the work in [12] proposed to use a large amount of taxi trips
without relying on intermediate trajectory points to estimate
the travel time between source and destination. This approach
can achieve efficient prediction with average Mean Relative
Error (MRE) of 21%. The work in [44] investigated the
problem of online travel time prediction in the context of a bus
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journey, using both historical data and real-time data streams.
It partitioned each bus line into road segments based on bus
stops, and the travel time over each segment is estimated
using data from multiple bus lines that travel through the same
segment. However, the approach requires real-time information
to predict the travel time of an ongoing journey. Moreover, the
waiting time and transfer time at interchange stations along the
journey have not been taken into consideration.

Our work differs from the existing methods for bus
travel/arrival time prediction as they only target a single bus
trip. These methods cannot be directly applied to our problem
where the waiting times during transfer need to be considered.
Also, unlike the BAT problem, our work aims to develop a
more general method that not only predicts short term bus
travel time, but also long term travel time of bus journey that
may not have started yet. Note there exist some works on
waiting time prediction [45], [46], but they do not consider
the problem of bus journey time prediction for passengers.
Moreover, they mainly focus on analyzing anomalies in bus
arrival records and calculate the headways to derive waiting
time. The existing approaches to estimate the journey travel
time for taxis and private cars from link level travel time
distributions also cannot be applied to the problem considered
in this paper due to the following reasons: 1) Unlike the car,
the travel time of buses is not only affected by the traffic
conditions but also by other factors such as travel demand,
the dwell time at each bus stop, bus schedule, etc. 2) Multiple
bus lines of a passenger’s journey usually have different travel
time distributions due to variance on the traffic conditions and
frequencies of buses. 3) Waiting times of the passengers at the
transfer points must be considered for travel time prediction.

III. PRELIMINARIES

A. Terminology

In this section, we define some terms that will be used
throughout the remainder of this paper.

TABLE I
List of important notations.

L bus line L
n number of bus stops in L

pLi = (xi, yi) a bus stop in line L
RL

i,j line segment from stop pLi to pLj
dist(RL

i,j) the length of segment RL
i,j

RL
i,i+1 unit segment locates at stop pLi in L

#.stops number of bus stops
#.intersections number of intersections

#.signals number of traffic signals
HA(t0) predicted waiting time with start time t0
BATp dataset of bus arrival records at stop p
Pr(A) probability of event A
E[ta] expectation of random variable ta

Var[ei] variance of random variable ei
ε mean absolute error, i.e. MAE
N number of instances in test set
y predicted journey time
ŷ groundtruth of journey time
ei prediction error ei = |yi − ŷi|.

A bus line is a fixed route that is regularly traveled by the
bus, and it includes a sequence of points L =< pL1 , pL2 , . . .,
pLn > where pLi = (xi, yi), for i = 1 . . . n, is the GPS location
of the i-th bus stop along the bus line L. We use bus stops as
the route points to represent a bus route as it is of high interest
to predict the arrival time at a bus stop. Bus passengers tend
to be only interested in the arrival time at a bus stop rather
than a random point along the route, since anyone can only
board or alight at a bus stop. In this paper, we use the notation
bus line and bus route interchangeably.

Along a bus line, consecutive points are connected by unit
segments. In particular, the i-th unit segment of bus line L
is denoted as RLi = < pLi , p

L
i+1 > (i = 1 . . . (n − 1)), and

the entire bus line L consists of unit segments RL1 , RL2 , . . .,
RLn−1, where n is the number of bus stops in bus line L.
A bus line segment is a set of connected unit segments, e.g.
RLi,j =< pLi , p

L
i+1, . . . , p

L
j > (i < j) indicating the segment

from stop pLi to stop pLj of the bus line L.
We define a trip as a traversal on a single bus line without

any transfers. In contrast, a journey indicates a complete travel
from the passenger’s origin to the destination, which may
involve multiple trips using different bus lines/services. In
practice, the end point of a previous bus trip and the start
point of the new bus trip should be close to each other
since passengers typically avoid walking long distances during
transfer. The transfer points between two consecutive bus
trips consist of bus stops or interchange stations. Without
loss of generality, the bus stop/interchange station where the
passenger waits for the first bus service is also called a transfer
point.

A bus trajectory is a sequence of points in a bus trip,
where each point represents the GPS location of a bus
stop/interchange station and the arrival time of the bus at the
bus stop/interchange station.

B. Problem Formulation

In general, travel time prediction provides an estimate of the
journey’s duration from an origin to the destination. Typically,
the travel times vary greatly over different periods of the
day/week/month, e.g., due to different levels of traffic load.
Consequently, prediction is inherently time-dependent, and
hence predictors are usually a function of the origin, the
destination, and the time at which the journey is made. We
assume that for a given journey, the bus line segments and
transfer points are fixed.

Problem description: Given a bus journey (may cover
portions of multiple bus lines), with the origin, destination,
transfer points and the journey start time, predict the total
journey time (including the riding time in each bus line as well
as any initial waiting and transfer times) based on historical
bus trajectories, bus network and road network information.

Existing works show that the waiting time is perceived to
be heavier than in-vehicle riding time, and different individual
passengers typically have different perceptions [47], [48]. In
this paper, we predict the absolute travel time and waiting
time, instead of relying on perceived waiting/travel time, as it
is difficult to obtain a unified perception for all passengers.
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Fig. 1. Framework for journey travel time prediction.

IV. JOURNEY TRAVEL TIME PREDICTION

We propose a novel Partitioning and Combination Frame-
work (PCF) (shown in Fig. 1) to address the problem of bus
journey travel time prediction as described in the previous
section. As shown in the figure, bus trajectories are first
recovered from bus arrival data. We employ LSTM based
deep learning for bus travel time prediction, using features
extracted from multiple datasets including bus trajectories,
bus route information (e.g. travel distance, number of bus
stops between origin and destination, etc.) and roadway char-
acteristics (e.g. number of intersections and traffic signals
along the travel route etc.). Using the PCF approach, an input
journey is first partitioned into multiple components based on
the transfer points along the journey route. Specifically, the
components consist of the waiting times at the transfer points,
and the riding times on the bus line segments. The riding
time components are predicted using the LSTM networks and
the waiting time components are predicted with the proposed
IHA approach. The predicted waiting time and riding time
components are then merged to obtain the total travel time of
the entire journey.

The component merging step to obtain the final travel time
can be implemented in two ways: 1) The first way is denoted as
PCF-sum, which calculates the direct sum of all components
as the final prediction, 2) The second way uses machine
learning based methods such as linear regression (denoted
as PCF-LR) to combine all components to form the final
result, etc. The latter method requires extra journey records
to train machine learning models. This can be achieved by
generating sufficient (pseudo) journey records from historical
bus trajectories. In our experiments, we have implemented
both PCF-sum and PCF-LR to evaluate the performance.

It is noteworthy that our work is significantly different from
the work in [44], that partitions a journey using all bus stops
along the journey, which results in large number of bus line
segments. Using more segments for travel time prediction will
lead to the higher travel time uncertainty for the entire journey.
Our method, which partitions the journey at transfer points
only, has the following advantages: 1) The entire journey
is partitioned into fewer components, thus leading to lesser
accumulated errors when merging all the component prediction

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

time (hour)

70

80

90

100

110

tr
a
v
e
l 
ti
m
e
 (
m
in
u
te
s)

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Fig. 2. Comparison of total travel time of bus line 855 in Singapore on
different days.

results. 2) Since there are lesser components in our method,
we require much lower computation overhead to process
each component and merging all the components. 3) The bus
dwelling time at each bus stop that is not a transfer point has
considerable impact on the bus travel time. In our method,
this has already been accounted for in the travel time of each
riding component. Thus, even though we do not specifically
consider the bus dwelling time at those stops, we can still
capture their impacts on the total travel time.

A. Riding Time Prediction
1) Feature Analysis and Extraction: In this section, we

analyze the features that affect the bus riding time component,
i.e. bus travel time on a given bus line segment.

Fig. 2 illustrates the total travel time of the bus line 855 in
Singapore. The bus trajectories are first grouped based on day
of week, such that each group contain trajectories covering
9 days. For example, the group of Monday data contains
bus trajectories collected on 9 Mondays. For each group, we
partition the time of a day into intervals with length of one
hour, and for each time interval, we calculate the travel time
as the average of all trajectories whose trip start time fall into
the time interval. The results for each group are shown in
Fig. 2. The x-axis indicates the journey start time, and the y-
axis indicates the total travel time along the entire bus line. It
can be observed that working days (Monday to Friday) have
similar travel time patterns, and the same can be observed for
weekends (Saturday and Sunday). In the same day, journeys
with different start time have significant variance in the travel
time. This shows that the journey start time has an impact on
the travel time and should be used as a feature for travel time
prediction. Moreover, weekdays and weekends have different
travel time distribution, and Sunday exhibits the best travel
condition than other days on the bus line 855. There is no
morning peak on weekends, and the average travel time on
Saturday during 10:00am to 15:00pm is evidently longer than
that on workdays. This observation indicates that the day-of-
week should also be considered as a feature to characterize the
traffic condition for travel time prediction. Note that the bus
line 855 has fixed services (same route and number of stops)
throughout the week.

Fig. 3 shows the average travel time between all OD pairs on
bus line 855, for the first 20 bus stops. The y-axis indicates the
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Fig. 3. The average travel time (minutes) between any origin-destination pairs
on bus line 855, for the first 20 bus stops.

index of the origin stop, the x-axis indicates the index of the
destination stop, and the color indicates the travel time needed
for traveling between the origin and destination. It shows that
the number of bus stops between the origin and the destination
have direct impacts on the total travel time. The reason that
more bus stops leads to longer travel time is not only due
to longer travel distance, but also because of the increase in
bus dwelling time (more number of bus stoppings) and bus
deceleration/acceleration at the bus stops.

The red line in Fig. 3 covers cells corresponding to bus line
segments of the same number of bus stops, i.e. 12 stops. It
can be observed that even for trips of the same number of bus
stops, their spatial distribution also have considerable impact
on the travel time. This is due to the fact that traffic conditions
at different bus line segments can differ significantly. In
addition, the travel demands among different stops are not
the same, leading to unbalanced bus dwelling time distribution
along the trip. In our work, we characterize the spatial location
of a trip by the origin stop location and the segment length
in terms of the number of bus stops. On the other hand, more
bus stops generally correspond to longer travel distance, more
intersections and more traffic signals. Similar figures can be
obtained by replacing number of bus stops with travel distance,
number of intersections and number of traffic signals.

Existing work [21] also takes into account the effect of
passenger demand on bus journey using Automated Passenger
Count (APC) data. Since the APC data is not available to
us, we have relied on time features (e.g. time of day and
day of week) and location of the stops in the bus line (e.g.
journey original stop, number of stops in the journey), which
are highly correlated with the temporal patterns (e.g. periodical
and seasonal patterns) of the passenger demand. Using these
features, we are able to incorporate the travel demand patterns
with our LSTM based deep neural network.

2) Proposed LSTM: Long Short-Term Memory (LSTM)
[50] is a specific recurrent neural network (RNN) architecture
that is well-suited for learning from experience to classify,
process and predict time series with time lags of unknown size.
It has been successfully used in many real-world problems
for processing sequential data, including link-level travel time
estimation. However, the existing approaches only consider

Visible Layer(Input with matrix)

LSTM Layer

Dropout

Dense(Full Connected)

Activation Function 
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Output (Prediction)

Fig. 4. The structure of the deep learning network.

travel time in different time slots and make predictions based
on the historical travel time data. They also need to train
a separate model/network for each of the road links [52].
In contrast, we train one LSTM network for each bus line
such that the travel time of any segments of the bus line
can be accurately predicted by the same model. The training
process takes into consideration the travel time and the impact
factors/features discussed in the previous section.

1© Network Structure: Our model is illustrated by the flow
diagram in Fig. 4. The input matrix is fed into two LSTM
layers, where the first LSTM layer has 128 neurons and the
second has 64 neurons. In order to prevent overfitting, a
dropout mechanism is applied to each LSTM layer as shown
in Fig 4. The rate of dropout is set to 0.5. The output of the
second layer goes into a dense layer, which is a fully connected
NN. The dense layer makes prediction based on the feature
information at the output of LSTM layer. Finally, we apply a
tanh activation function and obtain the prediction results. The
Mean Absolute Error (MAE) is applied as the loss function for
training the model and the Adam optimizer is utilized as the
gradient descent optimization algorithm. The training process
repeats for 50 epochs.

2© LSTM Structure: The basic structure of a single LSTM
memory cell is shown in Fig. 5, which can be described with
the following equations:

it = σ(Wixxt +Wihht−1 + bi)

ft = σ(Wfxxt +Wfhht−1 + bf )

ot = σ(Woxxt +Wohht−1 + bo)

C̃t = tanh(WCxxt +WChht−1 + bC)

Ct = it ∗ C̃t + ft ∗Ct−1

ht = ot ∗ tanh(Ct)

where t stands for the t-th timestamp, it, ft, ot refer to
the output of the input gate, forget gate and output gate
respectively. xt, ct, ht are the input vector, state vector and
hidden vector respectively, and ht−1 is the former output
of ht. C̃t and Ct are the input state and output state of
the memory cell, and Ct−1 is the former state of Ct. σ is
a sigmoid function. Wix,Wfx,Wox,WCx are the weight
matrices connecting xt to the three gates and the cell input,
Wih,Wfh,Woh,WCh are the weight matrices connecting
xt−1 to the three gates and the cell input, bi, bf , bo, bC are
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Fig. 5. Structure of the LSTM memory cell.

the bias terms of the three gates and the cell gates.
3© Input Matrix: In our model, the input record xt for time

step t is a vector representing the information of a trip, that
consists of two parts: travel time and the impact factors of the
travel time, i.e. the features as shown in Table II. For a given
bus line segment, we collected data record xt at a 30-min time
interval for a period of 63 days, to obtain a data sequence of
36× 63 records, where 36 is the number of time intervals in
each day. Note that there are only 36 records instead of 48
records for each day because there are no buses in operation
during 12:00pm to 06:00am. A bus line with n bus stops has
n·(n−1)

2 different bus line segments in total, thus the number
of data records of the input matrix is 36 × 60 · n·(n−1)

2 for
a bus line with n bus stops. In other words, the input matrix
contains multiple data sequences, such that each of the n·(n−1)

2
bus line segments is associated with a sequence. The input
vectors are scaled to the range of (0, 1) based on the min-max
normalization and is used to train a LSTM model such that it
can be used to make accurate travel time prediction for any
segment. The sequence of records contains the temporal trend
of the travel time of each bus line segment, while the n·(n−1)

2
sequences include information of segments that are spatially
adjacent to the segment to be predicted. Therefore, we can
make travel time predictions for any bus line segment based
on temporal data dependencies and spatial data correlations.

TABLE II
List of extracted features for each trip record.

Extracted features from dataset
day of week bus trajectories
time of day bus trajectories

travel distance bus route data
number of bus stops bus route data

location of the origin stop in the bus line bus route data
number of intersections road networks
number of traffic signals road networks

B. Waiting Time Prediction

The challenges in waiting time prediction are as follows: 1)
Distribution problem: To date, it is not clear which models can
best characterize the waiting time distribution in the context
of bus journey; 2) Sensitivity problem: The waiting time at
a transfer point is very sensitive to the arrival time of the
passenger, making it more challenging for prediction because
the exact travel/arrival time of the bus prior to the transfer point
is not known in advance; 3) Correlation problem: The waiting

times at different transfer points as well as the bus travel
time between the consecutive transfer points are correlated,
such that the errors of different components (e.g. riding time,
waiting time) will propagate and lead to extremely large error
for components at the end of the journey.

Case study. Route 3 of Table IV utilizes bus lines 154 and
179, starts at bus stop 81119 using bus line 154, and switches
to bus line 179 at the bus stop 22009 (22009 is common to
both bus lines 154 and 179). It finally reaches its destination
stop 27251. Thus a passenger needs to wait for bus 154 at
stop 81119, and then waits for another bus 179 at stop 22009.
The waiting times at the two bus stops with varying journey
start times are illustrated in Fig. 6, where the x-axis indicates
the journey start time. From the figure it can be observed
that the two curves have steep slopes, which implies that the
waiting times are very sensitive to the journey start time. For
example, as shown in the figure, bus 154 arrived at the stop
81119 at 07:40am. So if the passenger arrives at the stop 81119
at 07:40am, then the waiting time is 0 minute, however, the
waiting time becomes 16 minutes if the passenger arrives at
07:41am. Estimating the waiting time at the second bus stop
22009 is more challenging than that at stop 81119. This is not
only due to the fact that waiting times are very sensitive to
the journey start time, but also because the exact bus travel
time between stops 81119 and 22009 (or the bus arrival time
at stop 22009) cannot be predicted without errors. This shows
that the travel times are correlated with the waiting times.

We take the example of predicting the waiting time for bus
179 at the stop 22009 to describe our method. For simplicity,
we call the bus 154 between stop 81119 to stop 22009 as the
’prior bus’, and it is expected to arrive at bus stop 22009 at
time t0, meaning that the passenger is expected to wait for
the bus 179 from time t0. A simple approach for waiting time
prediction is Historical Average (HA). Assuming the dataset
BAT22009 of historical bus arrival times at bus stop 22009
containing data of d days, then the historical average waiting
time can be calculated as

HA(t0) =

∑d
i=1(ti − t0)

d
,

where ti is the first time bus 179 arrives after time t0 in the
i-th day of the dataset. Thus ti − t0 is the historical waiting
time on the i-th day.

In our work, the HA approach is further optimized in
the following ways: 1) The historical dataset of bus arrival
time is partitioned into two groups based on weekday and
weekend, as bus frequencies on weekends are much lower than
weekdays; 2) The existence of noises and missing values in
the dataset of bus arrival time results in many incorrect records
of historical waiting times. These anomalies (extremely large
values of waiting time) will affect the prediction accuracy.
To mitigate the impact of these anomalies on our prediction
model, we rank the waiting time records and remove those that
ranked above the 90th percentile, as these records are likely
to be anomalies caused by missing values or abnormal traffic
conditions. The remaining records of historical waiting times
will be used in the HA method. 3) The average time interval
between two consecutive bus arrivals (during a period of 1
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Fig. 6. Observed waiting times at two transfer points along journey route 3 of Table IV, with varying journey start time.

hour) are calculated, then all records that have waiting time
larger than twice of the average time interval are removed.
Even passengers can wait more than twice the average wait-
ing time in some extreme cases, this constitutes to a small
percentage of occurrences in Singapore [53]. As such, we have
removed records from the dataset pertaining to waiting times
larger than twice the average waiting time as they are likely
to be anomalies caused by data collection.

Since the HA method is a data-driven approach, it avoids
the assumption of a fixed distribution of waiting times at a bus
stop. However, it cannot address the problems of correlation
and sensitivity, and hence it tends to be biased significantly
when the bus arrival rates are time-varying. Based on the
above mentioned optimizations, we propose a novel approach,
denoted as Interval-based Historical Average (IHA), to handle
the problems of correlation and sensitivity by integrating a
set of results obtained using the optimized HA approach.
The major challenge is that the waiting time is sensitive
to the arrival time t0 of the prior bus 154 at the stop
22009, which cannot be previously predicted. To mitigate the
influence of the sensitivity problem, we utilize a time interval
[E[ta]−ε,E[ta]+ε] to characterize the arrival time of the prior
bus instead of using a single time point t0, where E[ta] is the
expectation of arrival time based on historical bus trajectories,
and ε is set to be the mean absolute error of the LSTM network
presented in the previous section. We next show that the exact
arrival time of the prior bus will fall into this interval with
probability above 1− Var[ei]

ε2 .
Specifically, for each instance in the test set of bus travel

times, we can calculate a prediction error ei = |yi − ŷi|,
as well as its expectation E[ei] and variance Var[ei]. Based
on the Chebyshev’s Inequality, it can be calculated that the
probability where prediction errors fall out of the interval
[−ε, ε] is bounded by

Pr(|e−E[ei]| ≥ ε) ≤
Var[ei]

ε2
.

Therefore, the prediction errors will fall into [−ε, ε] with
probability at least 1− Var[ei]

ε2 , which indicates that the exact
bus arrival time will fall in interval [E[ta]− ε,E[ta] + ε] with
probability of at least 1−Var[ei]

ε2 , where Var[ei] is the variance

of prediction error and ε is the mean absolute error of our
prediction model (LSTM network).

Based on the above analysis, we predict the waiting time as

IHA(E[ta], ε) =

∑ε
i=−ε(HA(E[ta] + i))

2ε+ 1
,

where E[ta] is the expectation of arrival time based on histor-
ical bus trajectories, and ε is the mean absolute error of the
LSTM network for bus travel time prediction. HA(E[ta] + i)
indicates the estimated waiting time using the optimized HA
approach if the passenger arrives at the bus stop at time
E[ta] + i. For estimating the waiting time at the first transfer
point (i.e. 81119), ta is set to journey start time t0 and ε is
set to 0 as t0 is the exact arrival time of the passenger.

V. RESULTS AND ANALYSIS

A. Datasets and Preprocessing
Road Networks: Our experiments are based on Singapore’s

road network, which comprised of 41,732 nodes and 98,539
road segments. The road network is utilized to derive the in-
formation of intersections (#.intsections) as well the number
of traffic signals (#.signals) for any journey routes.

Bus Lines: The bus route information includes the ID (a
five digit number) of each bus stop in sequential order, the
GPS location (latitude and longitude) of each bus stop, the
travel distance dist(RLi,j) between any 2 bus stops pLi and
pLj (i.e. the i-th and j-th stops of bus line L), and the
number of bus stops between pLi and pLj . We also map the
bus routes to the road network using the GPS locations of
bus stops to find out the road segments of the bus line.
The results are verified by comparing with Google Map via
visualization. Based on the map-matched bus line routes, the
number of intersections (#.intersections) as well the number
of traffic signals (#.signal) for any journey routes can be
easily calculated. Table III shows the statistical information of
the 5 bus lines considered in our experiments. The first three
bus lines connect the western part of Singapore to the eastern
part, while the last two bus lines connect the northern part of
Singapore to the southern part of the city as shown in Fig. 7.

Bus Trajectories: A bus trajectory dataset is derived based
on the real-world Bus Arrival Time dataset (the arrival time of
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TABLE III
Bus line routes used in the experiments.

busline origin stop ID dest. stop ID total distance #.stops avg. travel time frequency #.intsections #.signals

179 22009 22009 9.8 km 24 32 min 4-8 min 65 19
154 2 82009 22009 33.8 km 74 83 min 7-15 min 214 32

24 54009 54009 49.5 km 100 139 min 7-15 min 298 44
980 1 58009 80009 25.4 km 64 61 min 10-16 min 178 22
855 1 59009 14009 26.7 km 59 70 min 9-15 min 195 21

TABLE IV
Journey routes used in the experiments.

origin ID destination ID used buslines distance #.stops transfers travel time (minutes)
route 1 95019 27251 24-154-179 52.1 km 109 82049,22009 min: 127, avg: 172, max: 234
route 2 95019 22009 24-154 45.8km 94 82049 min: 108, avg: 147, max: 207
route 3 81119 27251 154-179 28.4km 52 22009 min: 90, avg: 125, max: 181
route 4 28251 14141 980-855 27.6km 64 53029 min: 63, avg: 96, max: 136
route 5 59039 14141 855 23.8km 52 NA min: 46, avg: 74, max: 111
route 6 57039 01341 980 16.7km 43 NA min: 34, avg: 64, max: 95
route 7 82049 41011 154 12.4km 24 NA min: 27, avg: 45, max: 78
route 8 22521 27251 179 4.9km 12 NA min: 8, avg: 19, max: 40

Fig. 7. The spatial distribution of 5 bus lines.

the next bus for each bus stop, at every minute) provided by the
Land Transport Authority, Singapore. The dataset contains bus
trajectory data of 5 bus lines from May 06 to July 07, 2017
as illustrated in Table III. Each bus trajectory consists of a
sequence of points, where each point contains the information
of the stop ID, the GPS location of the stop, the timestamp
(arrival time of the bus at the stop), and the bus line ID. Based
on the historical bus trajectories, the following features are
extracted for each trip traveling along the bus line segments
RLi,j (with origin pLi and destination pLj of bus line L): the
day-of-week, the trip start time, as well as the trip duration
(i.e. the total travel time for the bus line segment).

Pseudo Journey Travel Records: Since it is not possible
to obtain sufficient travel records of individual passengers, a
dataset of journey travel records is generated based on the
available bus trajectories, via random sampling. The involved
journey routes are summarized in Table IV. The investigated
journey routes differ in terms of geometric locations, travel
distance (stops), total travel time, transfers, bus frequency, etc.

To explain how the pseudo journey records are generated,
we use journey route 4 in Table IV as an example. A passenger

will first wait at the bus stop 28251 and board the first bus
980 and alight at the bus stop 53029. He will then board the
first bus 855 that arrives and alight at bus stop 14141. If the
date and start time of the trip are given, we can calculate
the exact waiting times at bus stops 28251 and 53029, as
well as the exact bus riding times of bus 980 between 28251
and 53029, and bus 179 between 53029 and 14141, because
the historical bus travel trajectories are known. Therefore, the
travel information of the journey can be obtained. By repeating
this procedure, for each of the investigated trip routes, we
generate 500 journey records for each observation day, by
randomly selecting the journey start times.

Fig. 8(a) illustrates the temporal distribution of the journey
records for trip route 4 of Table IV, where the y-axis indicates
the dates from May 06 to Jul. 07, 2017, and the x-axis
indicates the journey start time of the day. It can be seen
that the generated journey records (denoted as white cells) are
evenly distributed in the temporal space. We employ uniform
sampling for generating the journey records to ensure that the
training process of our prediction model does not discriminate
between peak and off-peak hours. For example, if more records
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Fig. 8. Statistics of the generated journey travel records for route 4.

are generated during peak hours, then the training process
will pay more attention to those journeys, leading to higher
prediction accuracy for peak-hour journeys than off-peak hour
journeys. There exist some horizontal black row-segments
indicating failure in generating journey records during those
periods due to missing data on the corresponding days (e.g.
May 06, 10, Jun. 06, 10, 17 etc.). The journey travel times
range from 63 to 136 minutes following the distribution shown
in Fig. 8(b), and the waiting time span follows the distribution
depicted in Fig. 8(c). In the experiments, we do not estimate
the travel times of journeys with start time earlier than 6:00am
and after 10:00pm, since there are almost no buses during
those times. Since the day-of-week has been considered as a
feature of the journeys, we use the same prediction model for
a journey regardless of whether it is taken during weekday
or weekend. For the journey routes listed in Table IV, a total
number of 31,500 journey records are generated. The dataset
is partitioned into two sets for the baseline methods: a training
dataset consisting of the 28,000 journeys generated from May
06, 2017 to Jun. 30, 2017, and a test dataset consisting of the
3,500 journeys from the last week of the entire time period.
The features as illustrated in Table II are extracted for each of
the generated journey records.

During the generation of journey records, we assume that
a passenger can always board the first bus that arrives. It is
noteworthy that we can also extend this to the case where
some passengers have to wait for the second bus due to
overcrowding. To achieve this, we can first observe the rate,
say ρ%, of passengers that failed in boarding the first bus at
each transfer point. During the journey generation procedure,
we can allow ρ% passengers who need to transfer to use the
second bus trajectory.

As shown Table IV, 8 journey routes are utilized for
performance evaluation, where routes 1-4 are long range travel
routes that traverses residential, commercial, and institutional
areas, as shown in Fig. 7. The routes 5-8 are short and middle

range routes: Route 5 is a middle range route that has light
traffic congestions along its entire trip; Route 6 is a middle
range route where the first half of the route goes through light
congested areas while the second half goes through heavy
congested areas; Route 7 is a short range route that passes
through heavy congested areas; Route 8 is a short range route
with good traffic conditions and the involved bus line (bus
179) is of high frequency.

B. Baseline Methods for Bus Travel Time Prediction

Since there is no existing approach for the same problem
considered in this paper, we compare our method with the
following 6 well known techniques for journey travel time
prediction, which are briefly described below.

1) Historical average (HA): HA is a naive prediction method
and is commonly used as a baseline for travel time prediction.
Given the origin, destination, journey start time (interval),
and historical journey records, the predicted travel time is the
average of all historical travel records of the same period that
have the same origin and destination.

2) k-Nearest Neighbor (kNN): Similar to the HA method,
kNN approach matches current input variables with historical
observations that have similar input variables. The difference
is that kNN only use the k most similar records instead of
all the previous travel records that have the same origin and
destination. The similarity of historical records is evaluated as
the closeness on the journey start time. The parameter k is set
to 10, which is selected to maximize the performance of the
KNN method on our dataset, by trying different values, i.e.
5-30 stepped by 5.

3) TensorFlow Time Series (TFTS): We use the open source
tool TFTS as one of our baseline1. For testing each OD
pair, the travel times with journey start time at different time
intervals are modeled as a time series, where each value of the
series corresponds to the average travel time of all historical
records whose journey start time fall into the same 30-minute
interval.

4) Linear Regression (LR): LR is utilized to model the
relationship between journey travel time and all the impact
factors/features discussed in Section IV-A1.

5) Fully Connected Neural Network (FCN): A three layer
fully connected neural network is implemented where the
first layer contains 128 neurons, the second layer contains 64
neurons, and the third layer is a dense layer. Tanh is applied
as the active function, the MAE is applied as the loss function
for training the model and Adam optimizer is utilized as the
gradient descent optimization algorithm. The training process
repeats for 50 epochs.

6) Support Vector Regression (SVR): As a variant of
the classic classification technique Support Vector Machines
(SVM), SVR is targeted towards regression problems based on
a straightforward idea: construct a hyperplane that sets apart
the classes of data. Due to its high accuracy when trained with
a sufficiently large dataset, SVR has been used for travel time
prediction in some existing works such as [9], [27].

1https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series
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C. Baseline Methods for Waiting Time Prediction

Since the above mentioned baseline approaches for pre-
dicting journey travel time do not estimate the waiting times
separately, the following baseline methods are utilized for
evaluating the proposed IHA approach to estimate the waiting
times at transfer points. 1) Bus Frequency based Approach
(FA): This approach partitions a day into several time intervals
of 30 minutes each, and calculates the mean and variance
of the time headways of each interval, where the headway
is the time interval between two consecutive bus arrivals of
the same services. The average waiting time, corresponding
to an interval with mean µ and variance σ2, is calculated
as µ

2 · (1 + σ2

µ2 ) [28]. 2) Historical Average approach (HA):
HA method has been introduced in section IV-B, 3) Machine
Learning approaches including Linear Regression (LR), Sup-
port Vector Regression (SVR) as well as Fully Connected
Neural Networks (FCN).

D. Overall Performance

The performance measures used are the Mean Absolute Er-
ror (MAE) and the Mean Absolute Percentage Error (MAPE).
Besides MAE and MAPE, we also compute the average error
of travel time per km (MAE/distance).

The overall performance is evaluated in this section, while
the evaluations on bus riding times and waiting times are
presented in the following two sections. During the training
process, 30% of the training set is used for validation. We
evaluate the performance for a very long prediction period of
seven days, i.e. from July 01 to July 07, 2017. In other words,
the ratios of training set, validation set and test set are 62.3%,
26.7% and 11%, respectively [51], [52]. All algorithms are
implemented using TensorFlow 1.3 running on E5 2.0 GHZ
CPU with 64 GB memory.

Table V presents the overall performance. In particular, for
the PCF approach, we evaluate the two different methods
for merging the waiting time components and riding time
components. PCF-sum indicates the results obtained as a
direct summation of the waiting time components and riding
time components, while the PCF-LR indicates the results
obtained by using linear regression. It is evident that the PCF
approach outperforms all the baseline methods for all the three
metrics. In addition, PCF-LR slightly outperforms the PCF-
sum approach with an average improvement of 0.18 minutes
in terms of MAE. This is due to the fact that the journey
record information are utilized in PCF-LR during the solution
merging procedure. Note that, even without using the journey
records, the PCF-sum method achieves better results than PCF-
LR in some cases (e.g. route 7 and route 8) in terms of MAPE.

The results also reveal that longer journeys tend to result
in smaller MAPE (the journey distance decreases from route
1 to route 8). This is because the uncertainty in overall travel
time is predominantly caused by traffic congestions at the
road segments, delays at intersections, the bus dwelling times
at bus stops, and the waiting/transferring time at transfer
points. Since journeys with short travel distance have fewer
road segments, intersections, bus stops, and transfer points,
large variances in the congestion condition, bus dwell times,

intersection delays, waiting times and bus stopping times are
expected. However, with the increase in journey distance, the
average values of the above mentioned components tend to be
more stable, hence better prediction accuracy is obtained. The
value of MAPE on route 8 is generally high (13% for the PCF
approach). The reason for this is that the length of route 8 is
very short, i.e. 4.9km. Since the journey time is very short,
even small MAEs, i.e. 2-3 minutes, will lead to high MAPEs.

E. Results on Prediction of Bus Riding Times

Table VII illustrates the results of the proposed LSTM
network for bus travel time prediction of a single bus line in
comparison with the baseline approaches, where the waiting
time at the first bus stop is not considered. The journey routes
5-8 utilized for the evaluation in this experiment, as shown in
Table VI, are the same as those in Table IV with the exception
that the waiting times at the first stop are not considered.

Since existing works on bus travel time prediction only
predict the bus travel time of a fixed travel route, we train
a separate prediction model for each of the 4 journey routes
when implementing the baseline approaches. It is worth noting
that the proposed PCF differs from the baseline approaches in
that it trains a prediction model for each bus line. This means
that the number of required models of our approach is not
influenced by the number of journey routes, but only depends
on the number of involved bus lines. In other words, if any
two or more journey routes use the same bus line, their travel
time on that bus line can be predicted using the same model,
regardless of their origins and destinations.
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Fig. 9. Comparison of PCF and the baseline approaches in terms of MAPE
on routes 5-8.

The comparisons on MAE, MAPE and MAE/distance are
shown in Table VII. It is evident that the PCF achieves much
better results than all the baselines, with average improvements
of 55.2%, 48.4% and 47.3% in terms of MAE, MAPE and
MAE/distance, respectively. This is because, our proposed
LSTM networks make travel time predictions for any bus line
segment based on temporal data dependencies and spatial data
correlations, i.e., it considers not only the temporal trend of the
travel time of each bus line segment, but also the location and
spatially adjacent relationship of different segment for training
the prediction model.

Fig. 9 shows the comparison of the MAPEs on each of
the journey routes considered, i.e. route 5-8, respectively.
For all the approaches, the MAPEs of different routes differ
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TABLE V
Comparison of overall performance.

Evaluation metrics Methods route 1 route 2 route 3 route 4 route 5 route 6 route 7 route 8 average
HA 10.32 9.96 9.11 8.14 6.63 6.94 5.03 3.12 7.41

KNN 9.70 9.41 8.67 8.05 5.89 6.44 5.15 3.15 7.06
TFTS 11.65 10.13 9.27 10.60 11.67 7.07 5.01 3.20 8.58

MAE LR 10.12 9.55 8.79 7.34 5.84 6.36 4.92 3.09 7.00
(min) SVR 10.13 9.56 8.69 7.33 5.82 6.36 4.90 3.09 6.99

FCN 9.55 9.01 9.03 7.09 5.63 5.96 4.99 3.09 6.79
PCF-sum 7.59 6.32 5.40 5.50 3.66 3.54 3.12 2.71 4.73
PCF-LR 7.07 6.15 5.22 5.27 3.59 3.41 3.06 2.64 4.55

HA 5.10 6.69 7.07 8.58 9.28 11.04 11.60 15.68 9.38
KNN 5.56 6.31 6.81 8.40 8.03 9.92 11.55 16.02 9.08
TFTS 6.58 6.87 7.12 11.44 15.95 11.79 11.32 16.58 10.96

MAPE LR 5.79 6.39 6.81 7.69 8.10 10.00 11.35 15.53 8.96
(%) SVR 5.79 6.39 6.84 7.68 8.07 9.98 11.27 15.43 8.93

FCN 5.45 6.01 7.06 7.40 7.79 9.43 11.43 15.25 8.73
PCF-sum 4.32 4.24 4.20 5.65 4.99 5.44 6.83 13.08 6.09
PCF-LR 4.08 4.17 4.10 5.46 4.90 5.22 6.85 13.14 5.99

HA 0.198 0.217 0.321 0.295 0.279 0.416 0.406 0.637 0.346
KNN 0.186 0.205 0.305 0.292 0.247 0.386 0.415 0.643 0.335
TFTS 0.224 0.221 0.326 0.384 0.490 0.423 0.404 0.653 0.391

MAE/distance LR 0.194 0.209 0.310 0.266 0.245 0.381 0.397 0.631 0.329
(minutes/km) SVR 0.194 0.209 0.306 0.266 0.245 0.381 0.395 0.631 0.328

FCN 0.183 0.197 0.318 0.257 0.237 0.357 0.402 0.631 0.323
PCF-sum 0.146 0.138 0.190 0.199 0.154 0.212 0.252 0.553 0.230
PCF-LR 0.136 0.134 0.184 0.191 0.151 0.204 0.247 0.539 0.223

TABLE VI
Dataset description for bus travel time prediction.

Routes route 5 route 6 route 7 route 8
affiliated busline 855 980 154 179

distance 23.8km 16.7km 12.4km 4.9km
Training Trajectories 4361 3906 4805 8568
Testing Trajectories 547 492 622 1056

TABLE VII
Evaluation on bus travel time prediction.

Methods MAE (min) MAPE (%) MAE/distance (min/km)
HA 4.220 9.694 0.293

KNN 3.702 8.702 0.267
TFTS 7.230 14.248 0.430

LR 3.648 8.630 0.263
SVR 3.601 8.514 0.260
FCN 4.093 9.479 0.286
PCF 1.978 5.098 0.158

significantly, as the journey routes are associated with different
degrees of traffic uncertainties (caused by traffic congestions,
traffic signals and travel demands at the bus stops, etc). In
particular, since route 8 is a short range route with good traffic
conditions, all the approaches can make good predictions with
MAEs no more than 2 minutes. However, because the total
travel time of route 8 is short, ranging from 8 to 40 minutes,
the MAPEs of all approaches are still high. Comparing the
4 travel routes, route 7 is the most challenging where most
approaches exhibited the worst results due to the fact that route
7 passes through heavy congested areas.

F. Results on Prediction of Waiting Time

In addition to the bus travel time, we also evaluated the
performance of the IHA method for waiting time prediction.
Using journey route 3 as an example, Fig. 10 illustrates
the performance comparison on the waiting time predictions
obtained by IHA as well as the baseline approaches (including
frequency based approach Freq, historical average HA, linear
regression LR, support vector regression SVR and fully con-
nected neural networks FCN) in terms of MAE. The figure
shows the results of the total waiting time along route 3 as
well as the waiting time at stop 81119 (first stop) and 22009
(transfer stop).

In general, the proposed IHA achieves better performance
than all the baseline methods in terms of MAE. In addition,
it can be observed that the machine learning based algorithms
(e.g. LR, SVR and FCN) do not consistently achieve better
results than the historical average HA. For example, the three
machine learning based approaches produce smaller MAEs
than HA in the overall waiting times of route 3, but obtained
larger MAEs for the transfer point 81119. Moreover, the
SVR method obtains larger MAEs for both of the individual
interchange stations than HA. This is due to the fact that the
bus arrival time at a bus stop has some degree of uncertainty
due to the traffic conditions and travel demands. Moreover,
there is a lack of effective features that the machine learning
algorithms can use to train a prediction model.

VI. CONCLUSIONS

This paper investigates the problem of predicting bus jour-
ney travel time for individual passengers, that takes into
account the bus riding times along the travel routes and the
waiting times at transfer points. We proposed a PCF approach
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Fig. 10. Comparison of waiting times for journeys on route 3: the overall
waiting time, waiting time for bus 154 at stop 81119, and waiting time for
bus 179 at stop 22009.

to solve this problem by partitioning the entire journey into
bus riding components and waiting components. The riding
and waiting time components are predicted separately and the
results are merged to obtain the final travel time. We have
shown that features obtained from datasets of historical bus
trajectories, bus routes, and the road network can well char-
acterize traffic conditions, delays at intersections and dwelling
time at the bus stops. These characteristics have significant
influences on the bus travel time. Using a combination of
these features, we developed a LSTM based approach that
can accurately predict the bus travel time over any segment of
the bus line. We also show that the waiting times at transfer
points play a critical role in predicting the total travel time
of the entire journey by demonstrating the challenges caused
by sensitivity and correlation problems. To address those
challenges, we proposed a novel IHA approach which can
effectively address the correlation and sensitivity problems,
without assuming a fixed distribution of waiting times. The
experimental results demonstrated that the proposed approach
significantly outperforms the baseline approaches.

In future, we plan to consider more features, such as
weather condition, to improve the journey time prediction
accuracy of our machine learning model. In addition, we plan
to develop techniques for predicting waiting time that takes
into consideration the extreme cases where buses are delayed
due to operational service problems. Moreover, the prediction
model will need to be continuously retrained using updated
bus trajectory data to deal with evolving traffic conditions,
transport infrastructures, government policies, etc.
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