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Abstract—Recently, power systems have experienced various
changes, the most important one being the increase in the share of
highly variable renewable energy supply (RES). To counteract the
variability of RES, provision of flexibility from the demand side
seems to be a viable option. In this paper, the heating, ventilation
and air conditioning (HVAC) system, mostly installed in medium
to large sized office buildings, is selected to provide demand
side flexibility. A model predictive control (MPC) scheme in a
receding horizon environment is deployed to provide an economic
operation of the building, while respecting comfort constraints
of dwellers. Furthermore, robustness is introduced in the MPC
scheme to participate in both the energy and reserve market.
Simulations are performed to demonstrate the performance of the
developed controller under various price signals. In doing so, the
controller is also evaluated with respect to its sensitivity towards
economical and technical constraints. The National Electricity
Market of Singapore (NEMS) is used as a case study and the most
important parameters governing the challenges for integrating
demand side flexibility in the grid are pointed out.

Index Terms—Demand-side Management (DSM), Energy Mar-
ket, Heating Ventilation Air-Conditioning (HVAC), Model Predic-
tive Control (MPC), Smart Grid.

I. INTRODUCTION

Due to the introduction of large shares of highly variable and
uncertain RES, power systems have experienced issues related
to stability, reliability, and high cost of operation. As a result,
the importance of achieving controllability on both the supply
and demand side of the grid is now more than ever. This is
mainly because large scale storage technologies are still very
expensive. Regarding the demand side, various utilities have
already launched demand response (DR) programs, aiming
to improve both the operational and economical aspects of
the grid [1], [2]. For the case of Singapore, the Energy
Market Authority (EMA) is introducing a DR program in
2015 [3]. This program is intended to supplement the already
implemented Interruptible Load (IL) program to achieve lower
cost of grid operations [4]. Due to Singapore’s climate, energy
intensive space cooling equipments are used in almost every
building. Space cooling, along with the thermal inertia of
buildings, provides an inherent flexibility in the consump-
tion of electricity. Hence, exploiting this inherent flexibility

of the HVAC system could in principle present us with a
great potential to improve the overall power system cost and
operation. This paper discusses operation of the HVAC system
as a potential flexible demand side resource of the grid under
realistic market settings.

In the past, significant amount of work has been done for
controlling energy consumption of buildings. Recent contribu-
tions regarding price-based and direct load control of buildings
is reported in [5]. The applicability of MPC to control building
energy consumption is implemented in [6], [7]. A contractual
framework is developed for providing supply following de-
mand for the grid in [8]. Particularly for the case of HVACs,
the minimization of peak and total energy is demonstrated in
[9]. Some applications of controlling thermal electric loads
for the provision of ancillary services and reduction of the
balancing groups’ scheduled deviations are given in [10]–
[12]. As a realistic case scenario of DR, the participation in
Singaporean DR and IL program, using an electric vehicle
car-park is reported in [13].

According to the knowledge of authors, the aforementioned
papers either deal with the detailed modeling of HVACs and
buildings, or with the application of real market price signals
without the consideration of market dependent physical load
models. Furthermore, the cost and operational dependency of
the developed control scheme under reserve market is not
explored in detail.

Hence, the contribution of this paper is threefold. First, it
develops an extended model for the HVAC system of a build-
ing considering the intended demand side service. An already
developed physical based discrete-time linear time invariant
(LTI) state space model is extended to include participation
in the reserve market. Second, the paper demonstrates the
ability of the developed model using an MPC control scheme
to participate in NEMS. And third, the evaluation of total cost
and demand flexibility is investigated under realistic market
settings with both the reserve and energy price signals.

The remainder of the paper is organized as follows. Section
II explains the extension of market oriented HVAC and build-
ing model, along with the market settings used for developing
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MPC scheme. An MPC control scheme is designed in section
III. In section IV simulation results are evaluated. Section V
concludes this paper with comments on adequacy of MPC
scheme for providing flexible demand. And also, comments are
made on the need for providing higher incentives to the load
operators, for the successful implementation of DR programs
in power system.

II. MODELING AND MARKET ENVIRONMENT

A. Modeling Framework

The HVAC system considered in this paper is equipped with
variable air volume (VAV) functionality. This provides us the
opportunity to modulate the variable frequency drive up or
down, to meet the energy demand of a building. The cool-
ing/heating demand is estimated based on a thermal dynamic
model given in [14]. The validation of model is presented
in [15]. Estimation of the external and internal loads of one
room is reported in [9]. The model describes the relationship
between the room temperature and the air flow input from
HVAC. The thermal dynamic model of a room is considered
as a network of i+ j nodes. Where i represents a wall and j
represents a room. As from [14], [15], differential equations
governing the temperature evolution for both walls and rooms
are given as:

dTwi

dt
=

1

Cwi


 �

j∈Nwi

Tj − Twi

Rij
+ riαiAiq

��
radi


 , (1a)

dTri

dt
=

1

Cri


 �

j∃Nri

Tj − Tri

Rij
+ ṁricp (Tsi − Tri)

+ wiτwiAwiq
��
radi + q̇int

�
, (1b)

For each wall i, Twi, Cwi, αi, Ai and cp represents the
temperature, thermal capacitance, absorptivity factor, area,
and specific heat capacity, respectively. Nwi is the set of all
neighboring nodes to wi. ri is equal to 0 for internal, and
1 for peripheral walls. Similarly for the i-th room, Tri, Cri

and ṁri represent its temperature, thermal capacitance and air
mass flow rate, respectively. The transmittance and area of the
i-th window is denoted as τwi and Ai. q

��
radi is the radiative

heat flux density experienced by room i, and q̇int is the internal
heat generated due to equipments, furniture and occupancy. wi

represents windows on the surrounding walls of the room. For
further insight into the model, and its parameters, readers are
directed to [9], [14], [15]. The resulting nonlinear state space
equation for one zone, from equation (1) is:

ẋt = f
�
xt, ut, d̂t

�
(2)

Where xt ∈ Rn is a state vector of size n = i+ j. ut ∈ Rj

is the input vector representing the HVAC’s mass air flow
rate. As evident from equation (1) and (2), the system at
hand is non-linear. Linear models are desirable for the purpose
of designing a controller. To obtain a linearized model, a
method based on Sequential Quadratic Programming (SQP) is

used and then Zero-order hold is performed to discretize the
resultant linear model (details in [14]). The resultant discrete
time LTI state space model of the system is:

xk+1 = Axk +Buk + Ed̂k (3)

To calculate the power consumed by the HVAC system for
all zones at time step k, the power consumption of the HVAC’s
fan, cooling coil, and heating coil, Pf,uk

, Pc,uk
and Ph,uk

,
respectively are considered as:

Pf,uk
=

�

zones

ukΔP

ρηf
, (4a)

Pc,uk
=

�

zones

ukcp (Tsp − Tc)

ηc
, (4b)

Ph,uk
=

�

zones

ukcp (Th − Tsp)

ηh
, (4c)

Where Th, Tc and Tsp are the temperature of the heating
coil, cooling coil, and set point of the zone, respectively. ΔP
is the pressure difference across the fan, ρ is air density, and
ηf , ηc, and ηh represents the efficiency of the fan, cooling,
and heating respectively. The cost of consumption K (uk) for
the electricity price ck at time step k, and sample time Δt as
a function of input uk is calculated as:

K (uk) = Δt ck (Pf,uk
+ Pc,uk

+ Ph,uk
) (5)

B. Model Extension

To align the model with our objectives, two modifications
are performed. First, a building model is created by augment-
ing single zone thermal network models. To avoid unnecessary
complication – and also the focus of this paper is to develop
a model for the purpose of designing a control strategy –
thermal coupling of adjacent rooms is not considered in this
model. The building model from the previous developed zones
is given as:

xa
k+1 = Adx

a
k +Bdu

a
k + Edd̂ak (6)

Where xa
k+1 =

�
xa
1,k+1 . . . x

a
z,k+1

��
∈ Rz(n) represents

temperature of all n states and z zones. Similarly, for zones
z, vectors ua

k ∈ Rz(j) and d̂ak ∈ Rnd(n) represent inputs
and disturbances for j inputs, and nd disturbances. The
coefficient matrices are subjected to block diagonalizing Ad =
diag (A1 . . . Az). Matrices Bd, Cd, Ed are of the appropriate
sizes. Since we are considering the whole multi-zone model
as a single block – and also to avoid unnecessary increase
of variables – from now onwards we use state vectors and
coefficient matrices without a and d super and subscript,
respectively.

The other extension to the original model is performed
based on the idea suggested in [10]. To incorporate the effect
of provision of reserves from a building, we have extended
the state space model of equation (6), as:

xk+1 = Axk +Buk + Ed̂k +Brrk (7)



Where xk+1 represents the temperature of all the states at
step k + 1 with respect to the consideration of availability of
reserves rk ∈ Rz(j). At each time step k, the matrix Br ∈
Rz(n)×z(j) translates the effect of the extra power in the form
of reserves rk on to the temperature of zones. Matrix Br can be
obtained from operation HB. Where matrix H ∈ Rz(n)×z(n)

contains diagonal entries of 0 or 1. And it is used to indicate
the participation of zones for reserve provision. Significance of
including vector rk at each time step k quantifies the increase
in mass air flow of HVAC, necessary to meet the requirement
of reserve provision. Note that in equation (7), the extension is
only valid for two scenarios i.e. curtailment or not-curtailment
of the HVAC’s load. Similar to equation (5), the cost K (rk)
of allocating reserve rk for the reserve price of bk at time step
k is calculated by:

K (rk) = Δt bk (Pf,rk + Pc,rk + Ph,rk) (8)

The modeled system of equation (7) is used to predict the
future states of the system as:

xk = Ax0 + Buk + Ed̂k + Brrk (9)

Where xk =
�
xk|k, xk|k+1 . . . , xk|k+N

�� ∈ Rz×n(N+1)

represents the predicted states at time step k along a prediction
horizon N . The subscript “k|k + 1” is used to denote the
prediction state at time k for time k + 1. Similar explanation
is valid for other predicted state vectors uk ∈ Rz×j(N),
d̂k ∈ Rz×nd(N), and rk ∈ Rz×nd(N). The matrices A, B,
Br, and E are of appropriate dimensions.

C. Market Environment

In the power system, the term reserves is the capacity
allocated to deal with the case of generation or load dispatch
error. Once the reserves are activated, control procedures in
three time activation steps are used to bring the state of the
grid to normal. In this paper, as an application of demand
flexibility, the market framework of Singapore is considered.
In Singapore, the IL program was introduced in 2006 to
promote competition in the NEMS. Through this program,
consumers can participate in the reserve market by bidding
their load and its corresponding capacity as a reserve. If called
upon, the load is curtailed, and the consumer is paid based
on the reserve price [4]. Hence, the structure of remuneration
is based only on availability. A DR program in Singapore is
going to be implemented in 2015 [16]. Contestable consumers
are able to change their usage in response to real time price
signal. To bid into the market, consumer has to bid the total
load, the period of participation, and the proposed energy
curtailment. The consumer receives an incentive based on the
reduction in the overall price of the market [16]. Singapore
has a real time competitive market of 30 minutes duration.
So, in order to participate in the reserve market, load providers
need to ensure the availability of a constant power level for
an entire 30 minutes [16]. As a liberalized market, for the
participation in the DR program, a load facility can only bid
without the possibility of estimating its exact revenue. As
it will be shown later, one can only maximize the profit of

underlying consumers, which is highly dependent on the price
of electricity experienced by users.
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Fig. 1. Experimental set-up of the interaction of MPC control scheme with
building and energy market.

III. CONTROLLER DESIGN

Figure 1 provides the description of the experimental setup
used for this paper. We have assumed a perfect two way com-
munication channel between the smart grid interface (SGI) and
the Building Energy Management System (BEMS). At each
time step k and prediction horizon N , the SGI communicates
forecast of reserves and energy prices to the BEMS. The
BEMS, based on the developed models predicts N states, user
constraints and disturbances of the building. The prediction
along with the current state is provided as an input to the
MPC scheme to obtain the consumption and reserve schedule
sequence of HVAC for the entire horizon N . From the whole
vector, the first value is taken as an optimal consumption and
reserve allocation for HVAC. The whole procedure is repeated
then for k+1 time instant. The MPC scheme shown in figure
1, for each time step k is formulated in equation (10). For
the entire prediction horizon N and at each time step k, the
objective function is solved for an optimal input u∗

k and a
reserve sequence r∗k. In this context, optimality is measured
in terms of minimization of the total cost of consumption and
maximization of total revenue of reserves. The optimization
function is subjected to system constraints to make sure of
the comfort of users. At each time step, two state trajectories
xNCk+1

and xCk+1
are calculated, accounting for both the not

curtailed and the curtailed scenario, respectively. The differ-
ence between two trajectories is the inclusion of reserve vector
rk for calculating the worst case scenario of curtailment of
power. By adopting this procedure, the MPC scheme is made
robust in a sense that the input power necessary to allocate
reserves is scheduled, while satisfying comfort constraints.
The slack variable �k in the objective function is implemented
for guaranteeing feasibility of the solution by softening the



constraints on upper x+
k and lower limits x−

k of both scenarios.
ρ is used for penalizing the slack variable. u+

k , u−
k imposes

the optimal input and reserve vectors to stay within actuator
limits of HVAC.

min
u∗
k,−r∗k

K (uk) + K (−rk) + ρ�k

subject to

xC
k+1 = AxCk + Buk + Ed̂k

xNC
k+1 = AxNC

k + Buk + Ed̂k + Brrk
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k − �k ≤ xNC

k ≤ x+k + �k

u−
k − rk ≤ uk ≤ u+

k − rk


uk

rk
uk − rk

�k


 ≥ 0

(10)

The developed MPC scheme is designed to synchronize the
time-scale of the intended ancillary service of the grid. Due to
the market framework of Singapore, the allocation of reserve
as an interruptible load is done in real-time. As a result, the
MPC scheme can be considered as one of the best candidates,
as it takes the leverage of rolling the prediction horizon with
the real time for deciding the optimal consumption schedule.
And in doing so, it guarantees feasibility of the system for
the whole prediction horizon. Note that, equation (10) is
essentially a linear program, and numerous solvers exist which
can solve this class of problems very efficiently. For our paper,
we have implemented the MPC scheme using YALMIP [17]
and CPLEX [18].

IV. SIMULATION RESULTS

To evaluate the performance of the developed controller,
two cases are simulated:

Case 1: Without consideration of participation in the reserve
market

Case 2: With consideration of participation in the reserve
market

Both cases are simulated with the assumption of perfect
knowledge of energy and reserve prices, and disturbances.
Time step of 30 minutes is chosen to coincide with the
frequency of real time price signal from NEMS. The prediction
horizon of 1 day (48 periods) is chosen. In principle, a longer
prediction horizon provides more stability to the MPC con-
troller. But for our simulations, a prediction horizon larger than
1 day shows very little improvement in the cost, but increases
computational expenses of the MPC scheme tremendously. So,
a prediction horizon of 1 day seems a good compromise.

A. Scheduling Evaluation

Minimizing the overall cost of operation is the main task
of the developed controller. To compare the effectiveness of
the developed controller, same time periods are adopted for
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Fig. 2. Results from case 1; (a) Temperature of one zone, (b) Real time
energy price in Singapore Dollars (SGD) taken from the NEMS, and (c)
Optimal consumption pattern of HVAC.

simulating both cases. Figure 2 presents results from the sim-
ulation of case 1. Figure 2(a) shows the state of the temperature
of one of the zones of the building. It can be seen that the
temperature is kept within the allowed tolerance, ensuring
comfort constraints of dwellers. The MPC controller avoids
the high price periods – which occur normally around mid-day
– by consuming more energy in low price periods. However,
due to high penalty for violating temperature tolerance, the
controller can not completely avoid high price periods. As a
result, it ends up consuming some energy during those time
periods. For case 2, the simulation is repeated for the same
time period, but now with consideration of the reserve price.
As shown in figure 3, the change in temperature in this case
is still kept within the allowed tolerance for both scenarios of
scheduling. Both the curtailed and not curtailed scenarios are
shown to respect state constraints. As expected, the scheduling
of reserves is performed during high reserve price periods.

In Figure 4, results are presented for the simulation of
both cases. For comparing both cases, a comparative term
% Normalized Energy Price (NEP) = ck/max(c) × 100 is
introduced. NEP represents the ratio of energy price at each
time step ck relative to the maximum energy price max(c)
experienced by the controller for these 4 months. From figure
4, it can be seen that the developed controller shifts the daily
electric load to the low price regions. An observation clearly
evident from figure 4 is the sensitivity of the scheduled load
for a particular cut off value of NEP. Figure 5 explains this
sensitivity of scheduled load. At higher prices, scheduling even
a small amount of load causes a considerable large increase
in the cost. As we have an economical based MPC scheme,
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Fig. 3. Results from case 2; (a) Temperature trajectory of one zone for both
(Curtailed and Not Curtailed) scenarios, (b) Real time energy and reserve
price from NEMS, and (c) Optimal scheduling of consumption due to reserve
allocation.

Fig. 4. Scheduled load by the developed MPC scheme for the period of 4
months of the year 2014.

Fig. 5. Behavior of the scheduled load with respect to the cost of the
consumption and energy price experienced by the controller - for case 1.

Table I
COST ANALYSIS

Month Case 1 (SGD) Case 2 (SGD)
Scheduling Scheduling Reserves

April 20,515 20,581 -1,039.0

May 21,116 21,244 -1,032.4

June 20,769 20,874 -1,079.3

July 19,855 19,957 -1,190.6

it avoids this high price regions and attempts to schedule the
HVAC load before this cut off value of NEP. For the case
of our simulation setup, it can be seen that this sensitivity
of load scheduling starts around at approximately 40% of the
maximum energy price.

B. Cost Evaluation

Table I shows the cost analysis of both cases. Total cost of
consuming electricity is calculated for 4 months of the year
2014. For case 2, the increase in the cost of consumption is
due to the fact that the MPC scheme is solved for not only
minimizing the cost of consuming, but also for maximizing
the revenue of reserve commitment. An average reduction of
5% in the total cost was observed, which is more than the
1% increase in the consumption of the scheduled load, due
to the allocation of reserves. To study the sensitivity of the
scheduled reserves, a parameter called % Relative Price (RP)
= bk/ck × 100 is defined. Figure 6 shows the correlation
between RP and the scheduling of reserve. RP in figure 6
shows that the competency of the reserve bk and energy ck
price experienced by the developed MPC scheme is a key



Fig. 6. Scheduling of reserves with respect to the % Relative Price and
Revenue.

for scheduling reserves. If the energy price overpowers the
reserve price, then the developed MPC scheme does not need
to schedule any reserve, as it will only result in increasing the
system’s cost.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an MPC control framework
capable of participating in a real time reserve market, as well
as minimizing the total cost of the system. Analyses were
performed to evaluate the shifting of consumption patterns in
the presence of energy and reserve price signals. Furthermore,
economic evaluation of the MPC scheme was done to demon-
strate the potential of MPC scheme to actively participate in
various ancillary services of the grid. The results show that the
MPC scheme is capable of providing demand flexibility under
both the energy and reserve market. Furthermore, flexibility in
the objective of the developed controller is easily achievable
by adopting different cost functions of the system and its
constraints. From the simulations presented above, it is evident
that to have a meaningful overall lowering of the cost of
operation, incentives comparable to energy prices must be
introduced. And also, in future there is a strong need for
a contractual framework development with the corporation
from utility planners, grid operators, and load aggregators. In
this way, a co-optimized strategy for all active participants in
the grid can be structured, eventually leading towards a cost
effective and sustainable power system.

Future work to improve this paper will consist of including
model mismatch, uncertainty of price forecast and model dy-
namics, and more types of ancillary services in the developed
MPC scheme.
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