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Abstract—The pace of electric bus deployment is increasing
rapidly worldwide. Transportation agencies and bus operators
are faced with the challenges of re-evaluating the dimensioning
of their bus fleet and the associated charging infrastructure with
the introduction of electric buses. This paper introduces a new
agent-based public transport simulation model currently being
developed and based on a general-purpose microscopic traffic
simulation platform. It enables users to conduct city-scale studies
and analysis of the day-to-day operation of a public bus fleet of
traditional and electric buses, including detailed modelling of
charging stations, termini and depots. Results are presented in
a case study to electrify the entire bus fleet of Singapore.

Index Terms—electric buses, agent-based simulation, charging
infrastructure, public transport

I. INTRODUCTION

Continuous growth and rising urbanisation of the population
increases the pressure on urban transportation systems. In
addition, climate change as well as local air pollution concerns
motivate the automotive industry towards cleaner vehicle solu-
tions, in particular electric vehicles (EV). While the penetration
of EVs in the private vehicle sector is relatively slow and
will extend over multiple decades ([1] estimated that by 2040
only one third of the global light duty vehicle fleet will be
composed of EVs), the public transportation sector is already
experiencing signs of a much faster transition towards partially
or fully electrified public bus networks [2]. Major cities such as
Shenzhen or Shangqiu have already taken the lead and replaced
their entire bus fleet with electric buses (EB) while cities such
as Los Angeles or Paris intend to do the same by 2030 or
earlier [2]. Many others are only starting to procure EBs and
are trialling their deployment to gain better knowledge of the
specificities and consideration required for their operation [3].
In the recent years, many studies have investigated the feasibil-
ity and the benefits of EBs for public transit. These studies can
be categorised as (i) case studies using high-resolution velocity
measurements applied to selected bus routes or on a small
public transport network or using standard driving profiles [4]–
[6] or (ii) models based on average energy demand value
directly proportional to distance or time [7]–[10]. In the first
case, it is challenging to scale the model to larger bus networks
while at the same time taking into account the characteristics of
each bus route (due to the high amount of data to be gathered),
while in the second case the models are easily scalable to larger
areas but lack the heterogeneity of real-world bus operation.

In this paper, we introduce a newly developed agent-based,
city-scale model of electric public bus operation and bus
charging based on a microscopic traffic simulation platform.
The model is described and preliminary results based on the
current version are presented in a case study for Singapore.
While both microscopic modelling of electric bus driving [11]
or large-scale modelling of charging infrastructure for electric
buses [10] have been studied previously, the model and results
presented in this work represent to the best of our knowledge
the first attempt at combining both approaches simultaneously
in a single software platform without relying on standard driv-
ing profiles or high-resolution measurements as required input
data. This model enables to study in high details the energy
demand and charging infrastructure requirements for the electri-
fication of public transport network at large scale while taking
into account the heterogeneity of the various bus services.

II. MODEL DESCRIPTION

A. The CityMoS platform

The scenario was implemented on the City Mobility Sim-
ulator platform (CityMoS) [12], [13], a microscopic agent-
based discrete event simulation platform currently developed
by research teams at TUMCREATE. The development of
CityMoS started as a generic microscopic traffic simulator for
cars, providing a flexible platform for research on agent-based
traffic modelling. Subsequently, an extension for public bus
operation was added to the platform. This public transport
extension added infrastructure such as bus routes, bus stops,
termini and depots as well as behaviour models to dispatch
buses in order to serve the bus routes, dwell at bus stops and
pick-up passengers. More recently, the models in CityMoS
were extended again to model the operation of electric buses
and their charging infrastructure more specifically.

The CityMoS platform is developed in C++ with a modular
architecture that focuses on high-performance execution, ad-
vanced models for vehicle components and driver behaviour.
Time in the simulation is discretised to the millisecond level
and the inter-event time for updating the position of the
agents is configurable by the user. In the following, it was set
to 250 ms.

Traffic simulations in CityMoS consist of three main parts:
(i) infrastructure: including road and routing network, bus
stops, bus termini, bus depots and charging infrastructure;
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(ii) Driver-Vehicle Units (DVU): a combination of a driver
behaviour model, which controls the behaviour of the agent
on the road, and a vehicle model, which determine the vehicle
characteristics; (iii) other behaviour models: they define the
other interactions between the agents and the infrastructure
(e.g. charging behaviour, dwelling behaviour).

A driver behaviour model is composed of sub-models in-
cluding car following, lane changing, charging behaviour (for
electric agents) and dwelling behaviour models (for public
transport agents). The car following and lane changing models
are responsible for calculating the desired speed and accelera-
tion of the agent and deciding when and how fast to change
lanes, while taking into account the position and movement
of other agents (road traffic) and the environment (e.g. length
of road ahead, traffic lights). A vehicle model is composed of
a vehicle characteristics model (such as length, weight, drag
coefficient, rolling resistance, . . . ), a powertrain model (mod-
elling the efficiency and physical limitations of the powertrain)
and, for electric vehicles, a battery model.

In addition to the agent-based simulation core, a 3D interface
is available to provide real-time inspection and interaction with
the simulation. The screen captures shown in Fig. 1 illustrate
both the scale of the simulation (Fig. 1a) and the aspect of
microscopic agent-based models (Fig. 1b). The simulation can
be run on hardware ranging from laptops for simple studies
to high-performance computing clusters for very large and
detailed scenarios. As an example, the case study presented in
the following can be run on a laptop with 16 GB of RAM.

B. Bus operation model

Buses in the simulation are assigned to bus routes which are
a sequence of road links that the buses have to follow. Each
bus departs from its departure terminus. When a bus reaches
a bus stop on its route, a dwelling model slows down the bus
and lets it dwell to pick up passengers before departing again.
Upon reaching the end of the bus route, the bus enters the
destination terminus to be parked (and optionally recharged
for electric buses) until the next departure. Bus depots are
also modelled. Both bus depots and termini have a limited bus
parking capacity. Thus, when a terminus requires more buses,
these will be dispatched from a depot. Conversely, when too
many buses are parked in a terminus, some of them will be
sent back to depots. The off-service trips between bus termini
and depots are also known as dead-heading trips.

C. Electric bus model and charging model

The instantaneous mechanical energy demand of DVUs is
calculated based on a common longitudinal dynamics model
formulation. The forces related to acceleration, velocity, air
drag, rolling resistance and road inclination are computed at at
every time step. The powertrain provides the mechanical force
required to fulfil the desired acceleration and velocity (as
computed by the driving model) and calculates the energy con-
sumed. For electric buses, the powertrain consists of a battery,
an inverter and an electric motor. The losses in the inverter
and the electric motor are modelled by means of two efficiency

(a) Example of city-scale simulation, with one bus route highlighted

(b) Close-up showing two electric bus agents, a charging station (in green) and
a bus stop (in red)

Fig. 1. Screen captures of CityMoS3D.

maps based on the motor speed and torque. Additionally, a
heating ventilation and air conditioning (HVAC) model is also
included and contributes to the energy demand calculation. At
each time step, the power and energy to be drawn from (or
injected into during energy recuperation while breaking) the
battery is applied and the state of charge (SOC) is updated.

Bus depots and termini can be equipped with charging sta-
tions. This enables electric buses in the simulation to perform
end-station or overnight charging. A charging station consists
of one or more chargers. Each charger has a nominal maximum
power it can deliver. The chargers are shared among all electric
buses in a charging station. When an electric bus completes a
trip and arrives at a destination terminus or depot equipped with
a charging station, the bus will enter the charging station if it
requires charging. If there is an available charger, the bus will
start charging immediately. Otherwise, the bus is placed in a
waiting queue. As soon as a charging point becomes available
again, a selection algorithm picks a bus from the waiting queue
and the selected bus is allowed to recharge. Before choosing an
electric bus for a trip departure, the SOC of the bus is checked
to ensure that the bus has sufficient energy to complete the
given bus route.

Different charging behaviour models can be implemented
and compared. At the current stage of development of the
model, a few simple, rule-based algorithms have been imple-
mented. They take decisions such as selecting which bus from



the waiting queue to pick next, which bus to send next when a
trip must start, which bus to select for sending back to a depot,
etc. These algorithms include presently: random, first-in first-
out (FIFO), last-in first-out (LIFO), highest SOC first (HSOC),
lowest SOC first (LSOC). Moreover, during the charging pro-
cess, a power reduction curve can be applied to the charging
power as the battery reaches higher SOC levels. For example, in
the case study presented below, the charging power was set to
the charger nominal power until the battery reaches 80 % SOC.
Then the power is reduced progressively to reach 50 % of the
nominal power when the battery reaches 100 % SOC. All of
the models and parameters described can easily be customised.

III. CASE STUDY

Singapore is a tropical island city-state with a land area of
720 km2 and a population of 5.6 million, ranked as one of the
most densely populated countries in the world after Macau
and Monaco. Due to limited area availability, current govern-
ment policies favour usage of public transport over private
car ownership. The public transport system of Singapore is
highly developed and very dense, with more than 5400 buses
plying over 580 bus routes, and a daily ridership of 3.9 million.
In 2017, the Land Transport Authority (LTA) initiated the
electrification of Singapore’s bus fleet with the procurement of
50 hybrid buses and 60 electric buses to be delivered by 2020.

A. Data Collection

Simulating this city-scale bus network required gathering
and processing various data sets from different sources. The
road network data for Singapore used by previous studies
with CityMoS was also used in this study. The list of bus
lines and the sequence of bus stops that each line visits were
obtained from the LTA DataMall [14]. The bus capacity of
the termini was inferred from analysis of the data set used in
our previous study [15]. Information about the location and
bus capacity of 15 bus depots and parks in Singapore was
manually gathered from various online sources. Since detailed
daily bus trip scheduling data is not publicly available (this
data is kept internally to bus operators), the headway interval
between two consecutive buses as published by LTA was used
instead to schedule bus departures. The headway value changes
depending on the time of the day, with shorter intervals usually
during morning and evening peak hours resulting in more
frequent bus departures during these time intervals.

B. Parameters

The results presented in this paper are based on a simulation
of all trunk and feeder bus lines of Singapore (586 bus routes),
over 5 days of operation. The scenario selected for the fol-
lowing results models a level of electrification of the bus fleet
of 100 % and a total fleet of 5526 buses. 70 % of the fleet is
modelled as single-decker (SD) buses, the remaining 30 % as
double-decker (DD) buses. The parameters for the bus vehicle
models are summarised in Table I. The battery specific energy
was assumed to be 140 Wh/kg at pack level [16]. In this first
version of the model, and given that our case study is situated

TABLE I
VEHICLE PARAMETERS

Parameter Vehicle type Unit

SD DD

Mass (excluding battery) 13.5 18.5 t
Front area 8.3 10.35 m2

Drag coefficient 0.7 0.7 -
Rolling resistance 0.008 0.008 -
HVAC electrical power 7.5 10 kW
Battery capacity 200 250 kWh

in subtropical climates where the ambient temperature shows
little variation, the HVAC power was assumed to be constant.
The nominal power of all charging points was set at 450 kW.
This corresponds to a typical value for fast-charging via roof-
mounted pantograph. At the end of a charging process, it was
assumed that the charging point was unavailable for a minimum
of 2 minutes to model the time needed for the preceding bus to
clear the area of the charger and the next bus to take its place.
The number of charging stations distributed in the termini
and depots was derived heuristically using a 2-stage approach.
A first simulation is performed with a very high number of
chargers such that there is always an available charger at each
charging station. The results of this simulation are analysed
and, for each charger, we count the number of time steps during
which the charger has been in use (this includes the time steps
during the night). Then all chargers that were used less than
10 % of the time are removed for the second simulation.

IV. RESULTS

This simple case study aims at demonstrating the type of
results that can be derived from using a large-scale microscopic
model of electric public bus operation and charging. In this
section, a selection of the main results are presented. These
results are not considered final, yet they already deliver inter-
esting insights into the requirements for electrifying the public
bus fleet of a megacity.

A. General statistics about the bus trips

There were 52,763 service trips and 23,405 off-service trips
per day on average, for a daily mileage of 1,309,511 km in
total, of which 982,441 km (75 %) were for service trips and
327,070 km (25 %) for off-service trips. The median distance
per trip was 18.1 km with a median absolute deviation (MAD)
of 10.5 km. For service trips, the median daily mileage per
bus was 191 km with a MAD of 47 km, while the median off-
service daily mileage was 59 km with a MAD of 30 km. The
high variance of the values is a consequence of the high variety
of bus services as discussed previously in [15].

B. Energy demand

The average daily energy demand for the entire fleet in this
case-study was 2.20 GWh, of which 1.91 GWh (87 %) were
used for service trips and 0.29 GWh (13 %) for off-service trips.
This represents 1.9 kWh/km on average for service trips and
0.9 kWh/km for off-service trips (including all vehicle types).
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Fig. 2. Cumulative distributions of (a) the specific energy demand (with
normalised distributions on top), (b) the energy demand per trip and (c) the
daily energy demand per bus for service trips. (Box plot whiskers set at 2nd
and 98th percentiles.)

Fig. 2 provides details about the energy demand statistics
and distribution per vehicle type for service trips. Fig. 2a shows
the distribution of the specific energy demand for service trips
for each type of bus. For SD buses the specific energy demand
ranges from 1.1 kWh/km to 2.3 kWh/km with a median of
1.8 kWh/km, while for DD buses it ranges from 1.4 kWh/km
to 3.0 kWh/km with a median of 2.4 kWh/km. Taking into
account the chosen parameters for this case study, these values
are consistent with the expected energy demand values from
previous research and existing literature [5], [11], [17], [18].

Fig. 2b shows the cumulative distribution of the energy
demand per service trip for each vehicle type. The median value
is 32.2 kWh for SD buses, and 43.8 kWh for DD buses, but
the dispersion is wide with a MAD of 18.6 kWh and 25.1 kWh
respectively. 80 % of the trips require less than 47 kWh for SD
and 63 kWh for DD.

The cumulative distribution of the daily energy demand per
bus is shown in Fig. 2c. The median lies at 338 kWh for SD
and 452 kWh for DD. 80 % of the buses have a daily energy
demand of more than 300 kWh for SD and 400 kWh for DD.

C. Charging Power

For this case study, the HSOC (highest SOC first) selection
algorithm was used for selecting which bus to pick from the
waiting queue, as well as for deciding which bus to select
for a trip departure. The rationale behind this algorithm was
described in [4]: choosing the bus with the highest SOC
means that the charging duration will be the shortest and the
charging point will be made available sooner for the benefit
of another bus in the waiting queue. In essence, it attempts
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Fig. 3. Charging power curve (a) aggregated over all charging stations for a
simulation of 5 consecutive days of operation, (b) aggregated over all charging
stations for day 4 and (c) for a charging station at a major bus interchange
for day 4.

to maximise the number of buses exiting the charging station
over a given period.

Fig. 3a shows the charging power curve aggregated over all
charging stations over the 5 days of the simulation and Fig. 3b
shows the same in more details for the fourth day of the simula-
tion. After the first day where the simulation is warming-up, the
charging power pattern repeats similarly every day, validating
the soundness of the model over multiple days. From 7:00 a.m.
to 12:15 a.m, the aggregated charging power stays between
100 MW and 145 MW. Short-term fluctuations of the instanta-
neous charging power with a magnitude of about 20 MW in
a few seconds are visible. This is due to the random arrival
of buses in charging stations and the random time at which
charging ends among all charging stations. The peak power is
reached around 10 a.m. with 147 MW and corresponds with the
increased frequency of arrival of the buses that were dispatched
during the morning peak hour (from 6:30 a.m. to 8:30 a.m).
Similarly, a second peak can be seen between 6:30 p.m. and
8:00 p.m., corresponding to the arrival of buses dispatched
during the evening peak hour (from 5:30 p.m. to 7:30 p.m.).

Fig. 3c shows the charging power curve for day 4 for a
charging station located at a major bus interchange. It can
be noted that the magnitude of the fluctuations relatively to
the average power are much higher than when looking at the
aggregated power over all charging stations. The magnitude of
the fluctuations for this particular charging station are in the
order of a few megawatts. They happen when multiple buses
arrive or depart the charging station in a short period of time.



V. FUTURE WORK

The model described in this paper is under active develop-
ment. Many different aspects towards validating and improving
the accuracy of the model are planned in future work.

Improvements to the traffic and bus dispatching model:
(i) An improved model of dwelling time at bus stops based
on passenger demand statistics from historical data will
replace the current simplified model which assumes a constant
dwelling time at each bus stop. (ii) Car traffic and traffic lights
at intersections were deactivated while implementing the first
version of the bus model in CityMoS as calibrating microscopic
traffic models to scales as large as a megacity is challenging.
In future works, these will be reactivated which will lead to
more realistic trip duration with a lower average speed per
trip. (iii) Improvements to the bus dispatching algorithms
are planned in order to make it more realistic: instead of
dispatching buses from or to depots reactively when termini are
getting empty or too full, a proactive algorithm would take into
account the planned departures and the buses arriving soon.

Improvements related to the energy demand and charging
model: (i) Consideration of variable mass based on passenger
count. (ii) Implementation of more detailed battery models
to include the effects of battery ageing and better model the
battery weight for different battery types. (iii) Stationary battery
storage in charging stations to act as a buffer and to reduce the
fluctuations of the charging power drawn from the electrical
grid will be investigated. (iv) Addition of more advanced
charging scheduling strategies to better decide when and where
the bus shall recharge. (v) Implementation of more detailed
HVAC models to take the solar irradiation and the passenger
count in the bus into account.

The flexibility provided by this new simulation model will
facilitate future studies at city-scale including but not limited
to: (i) Study of different levels of electrification of the bus
fleet with their respective charging infrastructure requirements.
(ii) Comparison of the impact of choosing different charging
power on the required bus fleet and charging infrastructure to
fulfil the same operational requirements. (iii) Determining the
appropriate battery size for buses while taking into account
the highly different energy demand characteristics between
different bus routes. (iv) Comparison of different charging
strategies. (v) Simulation-driven determination of the location
and required number of chargers.

VI. CONCLUSION

In this work, we introduced a new agent-based, large-scale
microscopic model of electric public bus operation and charg-
ing. The operation of buses is modelled in a very detailed
manner aiming at reproducing real-world considerations. The
modular nature of the agent and behaviour models provide
flexibility for the user to customise and improve each aspect of
the model to the desired level of detail. Being based on a high-
performance traffic simulation platform, the model scales to
very large scenarios and enable to study various electrification
scenarios considering the entire bus network and infrastructure.
The case study for Singapore’s entire bus network demonstrates

the ability of the model to be applied on large-scale real-world
studies for fleets of several thousand buses.
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