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Abstract—To be used for decentrally solving the DC-optimal
power flow (DC-OPF) problems, this work offers a comparative
analysis between methods representing two distinct families of
decomposition techniques: Benders decomposition (BD) from
cutting-plane methods and consensus-based alternating direction
method of multipliers (ADMM) from dual decomposition-like
algorithms. Within the scope of the study, the computational
performance and their communication requirements of these
methods are compared. The results demonstrate a relative advan-
tage of BD in terms of computational performance, as ADMM
mostly requires a considerably larger number of iterations under
the same convergence criterion. ADMM in turn has a completely
distributed architecture, which allows regulators to withhold local
information and realizes a higher parallelization potential.

Index Terms—Decentralized optimization, DC-optimal power
flow, Benders decomposition, ADMM

I. INTRODUCTION

In modern electricity supply, growing presence of dis-
tributed power generation units and increasing number of
demand-side decision makers lead to impracticality of the
conventional, central management of energy production and
flows. Necessity arises, among other things, for distributed
solution approaches to optimal power flow (OPF) problems,
which have been serving as an effective tool for power system
control, planning and market design [1,2]. Moreover, conven-
tional operation of power systems brings further challenges
when handling large-scale systems because of communication
constraints and flexibility requirements, even more so with the
liberalization of electricity markets. In this regard, distributed
optimization techniques to solve OPF problems provide a
framework that can accommodate large-scale system operation
tasks under the presence of contingencies [2].

In order to enable decentralized optimization paradigms,
partitioning the original optimization problem into smaller,
minimally-interdependent subproblems via so-called decom-
position techniques are used. In the literature, a wide family of
these techniques have been applied in energy system modeling:
Boyd’s work about dual decomposition and alternating direc-
tion method of multipliers (ADMM) [3] has discussed the pos-
sibility of their deployment in distributed energy management
systems, which has been intensively studied in recent years
(see e.g. [4]–[7]). A few review studies [1,2] were conducted
to compare ADMM to alternative methods (e.g. Karush-Kuhn-
Tucker (KKT)-condition based decomposition [8], proximal

message passing (PMP) [9] among others), which provides in-
sights for their computational performance and organizational
requirements. It turns out that ADMM has certain advantages
due to its simplicity for implementation, robustness and scal-
ability [2]. A decomposition technique of cutting-plane type,
Benders decomposition (BD) has been initially introduced for
mixed-integer linear optimization problems [10], in which the
integer and continuous variables were solved for sequentially.
Since its conception, various modifications to BD have been
introduced; ranging from its generalization to any arbitrary
convex problems [11], to methods aiming at improving con-
vergence (refer to [12] for a comprehensive review). Despite
having a mode of action fundamentally different from ADMM,
recent works in literature demonstrate the suitability of BD
also on decentralized OPF applications ([13,14]).

For each of these methods, computational efficiency, com-
munications security and organizational aspects vary; hence
these need to be carefully addressed. For example, BD needs
a central coordinator to collect, process and redistribute the
information, whereas only neighbor-to-neighbor information
exchange is needed for ADMM’s consensus protocols [2,7].
Thus depending on the regulatory framework, e.g. for ap-
plications where the sensitive information exchange is not
allowed, BD may not be deployed despite its potentially faster
convergence. Nevertheless, to the authors’ knowledge, an
assessment of BD at solving OPF problems within the domain
of other decomposition methods has not been considered in
previous works, which is the main focus of this work.

The contribution and main findings of this work are sum-
marized as follows:
• We provide a comprehensive comparison of BD and

ADMM in terms of organization, communication require-
ments and computational performance using standard
networks. By solving DC-OPF problems with various
number of network sizes, different network partition
formations and levels of contingencies, the applicability
of both algorithms is well understood,

• The study shows that BD generally outperforms ADMM
computationally (despite limited parallelization due to the
master problem), whereas the hierarchical information
exchange makes BD less flexible compared to ADMM
in the presence of regulatory restrictions.



II. DECOMPOSITION OF A MULTI-SUBSYSTEM PROBLEM

A generic, decomposable optimization problem with N -
subsystems has the following form:

min
x,y

N∑
m=1

cm(xm) (1a)

s.t. Ax+Ey ≤ r, (1b)
y ∈ Y (1c)

where the state of each subsystem m ∈ {1, . . . , N}, is
described by two types of variables: its local variables xm ∈
Rnm and the so-called coupling (complicating) variables y ∈
Rz . The solution space is defined by two sets of constraints:
(1b) where both types of variables appear, and (1c) which only
concerns the complicating variables (see Figure 1 for a block
representation). Note that these coupling variables are assumed
to have no contribution to the cost function.
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Fig. 1. Block structure of a multi-subsystem (m ∈ {1, . . . , N}) optimization
problem)

Presence of the constraints in form of (1b) prevents the
direct separation of the problem into independent subprob-
lems. Instead, decomposition methods reformulate the problem
and are performed iteratively, through which the coupling
information between the subsystems, e.g. the values of the
complicating variables, is coordinated and inconsistencies in-
between are cleared in convergence. Depending on the specific
method that is employed, this coordination can take place by
fixing the y values by solving a central master problem before
the subproblems (as is the case for BD), or allowing each
subproblem to solve for its local copy of y independently,
which are then coordinated to calculate a global value (as is
the case for ADMM).

III. CLUSTER-BASED DC-OPF
OPF problems make a practical case for decomposition

approaches as the original problem can be realistically con-
sidered as a combination of multiple subproblems, each of
them representing bus clusters operated by a distinct regulatory
body (e.g. Regional Transmission Organization (RTOs) in the
North American electricity market). Decentralization reduces
the required amount of cross-cluster information exchange,
promoting confidentiality. Parallelized solvability of multiple
smaller-scale problems, on the other hand, could offer a
way to overcome computational hurdles accompanying large-
scale models, e.g. for handling of the working memory or
dampening a divergent computation time.

A. Problem formulation

In this section, the cluster-based DC-OPF problem will be
introduced. We consider a network that consists of a set of

buses N and transmission lines L connecting them, and is
clustered into |M| subsystems, M denoting the set of those.
The set of buses contained in a given cluster m ∈ M is
denoted by Nm. For ease in formulation, these buses are
grouped into two subsets: N int

m being the internal buses of
the cluster connected solely with buses within the same cluster,
and the boundary buses N bo

m that are neighboured at least by
one boundary bus of another cluster (Fig. 2). The set of the
external buses neighboring a cluster m are denoted Nnb

m . For
each bus i, the set of its neighboring buses are denoted as Ni.

Fig. 2. Cluster topology.

Using these definitions, the cluster-based DC-OPF problem
is formulated as follows:

min
p,ϑ

( ∑
m∈M

( ∑
i∈Nm

cipi + qip
2
i

))
s.t. (2a)

Generator capacity constraints:
∀m ∈M, ∀i ∈ Nm pi ≤ pi ≤ pi (2b)

Line capacity constraints:
∀m ∈M, ∀i ∈ Nm, ∀j ∈ Ni

− τ ij ≤ −bij(ϑi − ϑj) ≤ τ ij (2c)
Nodal balance:
∀m ∈M, ∀i ∈ Nm∑
j∈Ni∩Nm

−bij(ϑi− ϑj) +
∑

j∈Ni∩Nnb
m

−bij(ϑi− ϑj)

− pi + di = 0 (2d)

where the problem variables are the power generation at
each bus p =

[
p1, . . . , p|N |

]
and the nodal phase angles

ϑ =
[
ϑ1, . . . , ϑ|N |

]
. Capacity and susceptance of a given

line connecting two buses i and j are denoted as τ ij and
bij respectively. At each node i, an active power demand of
di has to satisfied by local power generation and/or injection
from neighboring buses. To each generator at a given bus i,
linear and quadratic cost coefficients pi, qi are assigned.

In this formulation, the second summation term on (2d)
stands for the power injection at a boundary bus from neigh-
boring clusters, and (2c) limits these flows by the respective
line capacity. From the decomposition perspective, these two
constraints create a coupling between these clusters; had the
phase angles of the boundary buses been fixed, each clus-
ter would obtain its independent subproblem. These thereby



constitute the complicating variables of the DC-OPF problem(
y ≡ ϑbo

Σ =
[
ϑi, i ∈

⋃
mN bo

m

])
.

In the following two sections, implementations of BD and
ADMM for this problem will be introduced. Here, the phase
angles of the internal buses of cluster m are denoted as ϑint

m ,
the subset of ϑbo

Σ belonging to a given cluster m is denoted as
ϑbo
m and the variable space for the neighboring phase angles

of a cluster m is denoted as ϑnb
m .

B. Cluster-based solution of DC-OPF via Benders decompo-
sition

1) Benders master problem: The Benders master problem
is formed by allocating the boundary bus angles as model
variables as well as the estimation variables αm corresponding
to the costs arising from each cluster:

min
ϑbo

Σ ,α

∑
m∈M

αm s.t. (3a)

∀m ∈M, ∀i ∈ N bo
m , ∀j ∈ Ni ∩Nnb

m

− τ ij ≤ bij(ϑi − ϑj) ≤ τ ij (3b)

(ϑbo
Σ ,α) ∈ OC (3c)

where OC is the set of optimality cuts. The only set of
physical constraints that are included in the master problem
are the cross-cluster line capacity constraints (3b), as they
do not include either of the internal variables pm or ϑint

m .
These, along with the optimality cuts (3c) generated from the
subproblems, define the solution space of the master problem.

2) Benders subproblems: For each cluster m ∈ M, sub-
problems of the following form are defined:

min
pm,ϑint

m

( ∑
i∈Nm

cipi + qip
2
i

)
+Mσm s.t. (4a)

∀i ∈ Nm − pi − σm ≤ pi, pi − σm ≤ pi (4b)

∀i ∈ N int
m , ∀j ∈ Ni ∩N int

m

bij(ϑi − ϑj)− σm ≤ τ ij , −bij(ϑi − ϑj)− σm ≤ τ ij (4c)

∀i ∈ N bo
m , ∀j ∈ Ni ∩N int

m

bij(ϑ
∗
i − ϑj)− σm ≤ τ ij , −bij(ϑ∗i − ϑj)− σm ≤ τ ij (4d)

∀i ∈ Nm∑
j∈Ni∩N int

m

if i∈N int
m

−bij(ϑi− ϑj) +
∑

j∈Ni∩N bo
m

if i∈N int
m

−bij(ϑi− ϑj∗)

+
∑

j∈Ni∩N int
m

if i∈N bo
m

−bij(ϑi∗ − ϑj) +
∑

j∈Ni∩Nnb
m

if i∈N bo
m

−bij(ϑi∗ − ϑj∗)

− pi + di = 0 (4e)

In each subproblem, the local generation costs within each
cluster are allocated as the corresponding objective function
to be minimized (6), and the phase angles at the boundary
buses assume their fixed values obtained from the master
problem (3) (denoted as (. . . )∗). Note that, in order to dispense
with the generation of feasibility cuts (and thereby simplify

the cut generation process), a Big-M relaxation is applied to
the subproblems (as proposed in [15]). Herewith, the local
objective functions and the inequality constraints are adjusted
with a large parameter M and the slack variables σm.

3) Generation of the Benders cuts for DC-OPF: For gener-
ating the optimality cuts, each constraint (4b)-(4e) is rewritten
in the following form :

Amxm − (1)mσm ≤ rm −Emy
∗
m︸ ︷︷ ︸

RHS∗
m

. (5)

The right-hand-side vector (RHSm = rm − Emym) is then
multiplied by the vector λm consisting of the dual variables
of each constraint, and the optimality cut is given by the non-
positivity condition of this product. These cuts are generated
for all m ∈ M and added to the master problem before it is
solved in the subsequent iteration.

C. Cluster-based solution of DC-OPF via Consensus ADMM

ADMM in consensus form consists of solving a partially
augmented Lagrangian using the dual ascent approach, where
the primal and dual variables are sequentially calculated by
fixing one another at each step.

1) ADMM subproblems: For each cluster m ∈ M, the
corresponding subproblems are solved using local copies
of the boundarying and neighboring phase angles (ϑex

m :=
[ϑbo

m ,ϑ
nb
m ]). These local copies are put into a consensus

constraint to be equal to their global values ϑ+
i , and a partial

augmented Lagrangian is set for the objective function using
these consensus constraints ϑexm,i − ϑ

+
i = 0:

min
pm,ϑint

m ,ϑex
m

( ∑
i∈Nm

cipi + qip
2
i

)
+
∑

i∈N bo
m ∪N

nb
m

λm,i(ϑ
ex
m,i − ϑ+

i )

+
∑

i∈N bo
m ∪Nnb

m

ρm,i

2
(ϑexm,i − ϑ+

i )
2 s.t. (2b)− (2d) (6)

where λm,i and ρm,i denote the dual variables and the penalty
terms respectively, corresponding to the consensus constraint
for subproblem m’s local copy of the phase angle at a bus i.

2) Updating the global and dual variables, parameter tun-
ing: The primal optimizers (ϑexm,i)

∗, after obtained by solving
above problem, are used to update (a) the global variable ϑ+

i

(”averaging step”), followed by (b) the penalty terms ρm,i and
(c) the dual variables λm,i associated with them:

(a) ∀i ∈ N bo
m ∪Nnb

m

ϑ+
i (k + 1) =

1

|Mi|
∑

m∈Mi

(ϑexm,i)
∗(k), (7)

(b) ∀m ∈M, ∀i ∈ N bo
m ∪Nnb

m

ρm,i(k + 1) =
ρm,i(k) · (1 + τ) if µ · rm,i(k + 1) > sm,i(k + 1),

ρm,i(k) · (1 + τ)−1 if µ · rm,i(k + 1) < sm,i(k + 1),

ρm,i(k) otherwise
(8)



(c) ∀m ∈M, ∀i ∈ N bo
m ∪Nnb

m

λm,i(k + 1) = λm,i(k) + ρm,i(k + 1) · (ϑexm,i − ϑ+
i ) (9)

where Mi ⊆M are the set of clusters that either contain the
bus i, or at least contain a bus that is connected with the bus
i. µ and τ are the adaptive penalty parameters as introduced
in [3]. rm,i and sm,i are the primal and dual residuals of ϑm,i

respectively, which are calculated before step (b) as follows:

rm,i(k + 1) =
∣∣ϑm,i(k + 1)− ϑ+

i (k + 1)
∣∣ , (10)

sm,i(k + 1) = ρm,i(k) · |ϑm,i(k + 1)− ϑm,i(k)| . (11)

D. Stopping criterion

Since both decomposition methods are iterative, a uniform
convergence criterion has to be defined, where the decentral
solutions settle down to a point after a certain number of
iterations and thereby are assumed to sufficiently approximate
the original central solution. For ADMM, primal and dual
residuals are typically used for checking convergence. Since
Benders decomposition does not have a concept of local vs.
global values which are involved by the primal residuals, the
dual residuals (without the multiplied ρ since it does not apply
to BD) are selected as the indicator of the convergence:

s2(k) :=

∥∥(ϑbo
Σ )∗(k)− (ϑbo

Σ )∗(k − 1)
∥∥2

2

|N |
≤ ε, (12)

where ε is a small positive real number. Note that the residual
is normalized by the total number of the buses in the network,
in order to make up for the accumulation of residuals for larger
test cases.

IV. COMPARATIVE STUDY

A. Organizational and communicational comparison

The two methods are clearly distinguished in their orga-
nization and communication; BD necessitates a hierarchical
architecture whereas a flat organization can be deployed for
ADMM. Figure 3 gives an overview on the problem hierarchy
and information exchange between the subproblems for both
methods. For BD, the presence of a master problem that
requires a collection of the cuts from each subproblem prevent
a completely distributed architecture. For consensus-based
ADMM, the averaging step can be performed independently
for each complicating variable, with the information exchange
only taking place between the neighboring clusters where
those variables appear. This allows for a distributed paradigm
and does away with the requirement of a central entity.

B. Computational evaluation using IEEE networks

In this section, convergence and computational properties of
BD and ADMM is compared, where IEEE networks of 9, 14,
30, 39, 118 and a 62-bus network depicting the Indian utility
system are used. The data for the IEEE cases are retrieved from
MATPOWER [16], whereas the data for the 62-bus case is
extracted from [17]. Furthermore, the following modifications
were made: i) line capacities are added for IEEE 14-bus
and IEEE 118-bus cases ([18] for the latter) as the original

miny,α
∑

m αm

s.t. y ∈ Y,
(y,α) ∈ OC ∩ FC,

minx1 c1(x1)
s.t.A1x1 ≤ r1 −E1y

∗
minxN

cN (xN )
s.t.ANxN ≤ rN −ENy

∗. . .

decomplication
y := y∗

OC, FCOC, FC

BD

minx1,y1
c1(x1)

+λm(y1 − y+)

+
ρm
2
‖y1 − y+‖2

s.t.A1x1 +E1y1 ≤ r1

minxN ,yN
cN (xN )

+λm(yN − y+)

+
ρm
2
‖yN − y+‖2

s.t.ANxN +ENyN ≤ rN
. . .

ADMM

Send local y∗m

Fig. 3. Problem hierarchy and information flows for BD (above) and ADMM
(below).

data sets did not include any and ii) the quadratic and linear
cost coefficients are adjusted for IEEE 39-bus and IEEE 118-
bus cases respectively so that these cases have single global
optimum. Comparison is done along two scaling aspects: i)
increasing number of buses from the 9-bus case up to 118-
bus, each divided in two cluster each and ii) increasing number
of clusters using the 118-bus network as the base case. The
optimization problems are built by MATLAB Problem-Based
Optimization and the subproblems are solved in parallel using
the Parallel Computing Toolbox on a workstation with Intel(R)
Xeon(R) 2.4GHz, 16 cores processor (up to 6 of which were
utilized in parallel) with 128 GB RAM. As solver, the built-in
quadratic programming solver of MATLAB quadprog is used.
For a fair benchmarking, all cases were run five times and
the resultant average times are considered. For BD algorithm,
a variable value of ($3) × |N | is set by inspection for the
big-M term, which was observed to have good convergence
rate while respecting all the inequality constraints at the same
time. For the ADMM algorithm, adaptive penalty parameters
of τ = 0.1 and µ = 10 are set [3]. For the stopping criterion,
a threshold value of ε = 10−5 is selected, which corresponds
to an mean absolute error of 10−5 in radians over each bus.

1) Convergence properties for varying network sizes:
Figure 4 shows the convergence behavior of the nodal power
generations for both methods, for the selected test cases
ranging from 9 buses up to 118 buses, all with two clusters.

For each of these test cases, both methods converge to the
solution of the original problem. To settle below the same error
threshold, ADMM was observed to require more iterations
than BD for all of the cases. This could be attributed to each
BD iteration keeping the history of the algorithm through the
Benders cuts that accumulate in the master problem, leading to
overall more efficient iterations. On the other hand, ADMM’s
iteration steps are distinguished from one another only by the
current global values of the coupling variables and the dual
variables/penalty factors of their consensus constraints.

2) Convergence properties with varying inter-cluster line
contingencies: Additional to the network size, the inter-cluster
line capacities is expected to have an influence on the conver-



5 10 15 20 25

0

100

200
BD

20 40 60

0

100

200

ca
se
9

ADMM

5 10 15 20 25
-50

0
50

100
150

20 40 60 80 100
-50

0
50

100
150

ca
se
14

10 20 30 40

-20
0

20
40
60
80

100 200 300

-20
0

20
40
60
80

ca
se
30

10 20 30 40

0

500

1000

50 100 150

0

500

1000

ca
se
39

20 40 60
-200

0

200
400

50 100 150
-200

0

200
400

ca
se
62

5 10 15 20 25

0
200
400
600

200 400 600

0
200
400
600

ca
se
11
8

P
ow

er
 g

en
er

at
io

n 
at

 b
us

es
 (

M
W

)

iterations

Fig. 4. Convergence profiles for 9- to 118-bus test cases, each network
clustered into two.

gence. To analyse this, the IEEE-118 test case is divided in 2,
3, 4, and 6 clusters. Then, for each clustering formation, the
line capacities between two neighboring clusters are adjusted
by a scalar η ∈ {0.25, 0.5, 1, 2, 5} in order to provide a wide
range of instances between possible infeasibility and non-
contingency. For ADMM, the four and six cluster cases with
η = 2 exhibit non-convergence and are therefore not illustrated
on the figure.

Figure 5 shows the dual residuals for all test scenarios.
Following observations are made: first, increasing number of
clusters has led to a lower number of required iteration steps
for ADMM, whereas this is not the case for BD. It is observed
that BD leads to long-term linear residual profiles on the
log-scale, indicating an exponential decay. In ADMM, larger
line capacities between the clusters allow to higher oscillation
amplitudes of the power injections across these lines. This
has an adverse effect on the number of iterations needed for
these oscillation to settle, and hence the time for the algorithm
to converge. This behavior is also partially present for BD;

the case with η = 0.25 mostly led to the least number of
iterations. However, the effect is not as direct as for ADMM,
since the subproblems assume fixed values for the boundary
phase angles (and hence constant power injections over the
inter-cluster lines). A notable case has been ADMM with
two clusters, where the given range of line capacities had
no influence on the convergence profile whatsoever; as no
contingency was present across the adjusted lines.
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Fig. 5. Dual residuals of 118-bus test case with varying number of clusters
and inter-cluster line capacity multipliers η.

3) Runtime considerations: Besides the required number
of iterations, the actual computation time elapsed until con-
vergence holds high practical importance. Figure 6 shows a
comparison of the runtimes for both algorithms, across all net-
work cases and line capacity multipliers. Reflecting the overall
larger number of iterations for ADMM (as demonstrated at
the previous section), BD shows overall better computational
performance. Performance improvement by increasing the
number of clusters was not achieved, which demonstrates the
significance of the parallel overhead in these implementations.
In addition to the total runtime, Figure 7 shows the evolution
of the time elapsed between each iteration until convergence.
Here, a qualitative difference is present: the ADMM iterations
take a relatively constant amount of time in every step, whereas
the time intensity of the iteration steps for BD increase roughly
linearly. This is largely caused by the increasing size of the
master problem in BD via the addition of Benders cuts at each
step. This indicates that the time intensity of solving the master
problem starts to dominate over the subproblems, which
reduces the overall benefit of parallelizing the algorithm, as



ca
se
9

ca
se
14

ca
se
30

ca
se
39

ca
se
62

ca
se
11
8-
2c

ca
se
11
8-
3c

ca
se
11
8-
4c

ca
se
11
8-
6c

101

102

103

104

C
om

pu
ta

tio
na

l t
im

e 
(s

ec
on

ds
)

B A B A B A B A B A B A B A B A B A

=0.25
=0.5
=1
=2
=5

Fig. 6. Computation times resulting from parallelized Benders decomposition
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the master problem has to be solved sequentially.
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V. CONCLUSIONS

In this work, a qualitative and computational comparison
was done for decentrally solving DC-OPF problems using
Benders decomposition and ADMM. While BD had a relative
advantage in terms of computational performance, ADMM has
been shown to be the truly distributed method that does not
require a central optimizer. Furthermore, it was shown that the
runtime inferiority of ADMM can be remedied if partitioning
is done between weakly coupled clusters characterized by low
interconnector capacities. To this end, optimal partitioning al-
gorithms may prove useful for accelerating these algorithms. If
performance improvement is desired, measures for optimizing
the parallelization architecture also need to be taken, so that
the parallel and communicational overheads are minimized.
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