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Abstract—The weather-dependent power flow (WDPF) algo-
rithm performs more accurate power flow analysis (PFA) due
to the utilisation of the heat balance model of conductors. It is
explicitly parameterised in terms of typically available measured
weather parameters (ambient temperature, solar irradiance,
wind speed, and wind angle) and performs more accurate (PFA)
due to the utilisation of the heat balance model of conductors.
It is presented in rectangular form in the extant literature. The
WDPF algorithm accurately estimates the branch resistances, the
system states (current and voltages), the power losses, the branch
flows, and the branch loadings via PFA. In this manuscript, we
propose and investigate a group of weather-dependent AC power
flow algorithms. Namely, the partially decoupled WDPF, the
fast decoupled WDPF, and the sequential WDPF algorithm. In
addition, we also present the derivation of the WDPF algorithm in
polar form. An analysis of the convergence characteristic and the
computational complexity of the proposed algorithms is presented
via extensive simulations.

Index Terms—power flow analysis, power system modelling,
weather-dependent power flow

I. NOTATION

qc convective heat loss rate (in W/m).
qr radiative heat loss rate (in W/m).
qs solar heat gain rate (in W/m).
qj heat gain rate from Joule losses (in W/m).
H heat balance equation of a conductor (in pu).
Ta ambient temperature (in ◦C).
Vw wind speed (in m/s).
φ wind angle (in ◦).
Qs global solar irradiance (in W/m2).
Tc branch conductor temperature (in ◦C).
Pk active power injection (in pu) at bus k.
Qk reactive power injection (in pu)at bus k.
Vk∠δk complex voltage (in pu) at bus k.
v iteration number.
ΔP active power mismatch (in pu) vector.
ΔQ reactive power mismatch (in pu) vector.
ΔH heat balance mismatch (in pu) vector.
yij admittance (in pu) of conductor between bus

i and bus j.
Y (Tc) weather-dependent network admittance ma-

trix.
Ta ambient temperature (in ◦C).
Kangle wind direction factor
NRe Reynold’s number.
D conductor diameter (in m).

ρf air density (in kg/m3).
Vw wind speed (in m/s).
µf dynamic viscosity of air

�
in kg

m·s

�
.

φ wind angle (in ◦).
kf thermal conductivity of air at the boundary

layer temperature
�
in W

m·◦C
�
.

ε emissivity constant.
α solar absorptivity.
Plossij power loss (in pu) in a conductor connecting

bus i and bus j.
I current (in pu).
R(Tc) conductor resistance per meter (Ω/m) at

conductor temperature Tc.
n number of system buses.
gij conductance (in pu) of conductor between

bus i and bus j.
bij susceptance (in pu) of conductor between

bus i and bus j.

Matrices and vectors will be represented in bold in this
manuscript.

II. INTRODUCTION

Power flow analysis (PFA) is a fundamental tool in the
study of steady-state operation of power systems, and is a
basis for many essential analyses like planning and design,
contingency analysis, stability analysis, security analysis, etc.
[1], [2]. Conventional PFA is based on the assumption of con-
stant branch impedance. However, the branch impedance is a
function of current flow, conductor characteristics, and weather
conditions, making the branch impedance dynamic. There-
fore, improvements in PFA are achievable by modelling the
weather-dependent network characteristics utilising conductor
thermal/heat-balance models in the power flow problem [3],
[4].

The importance of incorporating weather information to
improve power system studies has been established in the
extant literature. In [5], power loss error up to 30% was shown
in conventional power flow when conductor temperature and
resistance were corrected considering weather conditions. A
weather-based optimal power flow was presented in [6], which
highlighted the potential for, reducing total generation cost,
optimizing power generation according to thermal ratings, and
maximizing useable capacity of overhead lines. More recently,

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works. The final version of this article is available at https://ieeexplore.ieee.org/document/9334814.

20



studies investigating the impact of weather on transient stabil-
ity analysis have been undertaken [7]–[9]. It has been observed
mainly that the critical fault clearing times vary depending on
the weather conditions, which highlights the importance of
considering weather in transient stability studies.

Various AC power flow algorithms that explicitly or im-
plicitly consider weather information have been proposed and
presented [3]–[5], [10]. These algorithms present the advan-
tage of more accurate evaluation of power system states, power
losses, and power flows in the network [3]–[5], [10]. Recently,
a weather-dependent power flow algorithm (WDPF) [4] was
presented that is fully coupled with the nonlinear and weather-
dependent heat balance model. The WDPF algorithm, in
addition to more accurate power flows, also outputs the tem-
perature of the branch conductors. This is beneficial for con-
ductor temperature profiling and evaluating short-term thermal
line ratings leading to better network management [4], [11].
The WDPF algorithm models the comprehensive relationship
between weather condition and power flow in line conductor
by considering the nonlinear steady-state heat balance model,
which is well documented in IEEE Std 738TM-2012 [12] and
CIGRE Working Group 22.12 [13].

The derivation of the WDPF algorithm presented in [4] was
done in the rectangular form. Consequently, in this manuscript
we contribute by presenting the derivation in the polar form.
In addition, further contributions are made by presenting
and investigating different variants of WDPF algorithms. The
following distinct algorithms are proposed and investigated in
this manuscript:

1) a fully coupled WDPF algorithm in which all the system
states are solved and updated simultaneously;

2) a partially decoupled WDPF algorithm in which the
power system states and the conductor temperatures are
solved and updated separately;

3) a fast decoupled WDPF in which all the power system
states and the conductor temperature state are solved and
updated separately;

4) a sequential WDPF algorithm in which the power system
states and the conductor temperature states are sequen-
tially solved and updated.

The above algorithms are numerically investigated in this
manuscript to assess their computational complexities. Sim-
ulations are undertaken on a number of power networks to
investigate the accuracies and computational times of the
proposed algorithms. Since the fully coupled WDPF algorithm
inherently has a larger Jacobian matrix in comparison to
conventional power flow, the computational effort to obtain the
power flow solution is greater. Consequently, exploration of
other WDPF algorithm formulations is essential, and therefore
undertaken in this manuscript.

The rest of the paper is organized as follows: Section III
introduces and gives an overview of the steady-state nonlinear
heat balance model for overhead conductors. In Section IV, the
proposed weather-dependent AC power flow algorithms are
presented and their implementation is discussed. Numerical
investigation of the WDPF algorithms are presented in Sec-

tion V, which includes investigation of convergence character-
istics and computational complexity. Finally, the manuscript is
concluded in Section VI.

III. OVERVIEW OF NONLINEAR HEAT BALANCE MODEL

The steady-state nonlinear heat balance model of an over-
head conductor defines its heat equilibrium by relating its
temperature, resistance, current, and the weather condition
surrounding it. It is based on the assumption that the mean
wind speed, wind direction, ambient temperature, solar radia-
tion, and current are fairly constant and, hence, the conductor
temperature does not change significantly.

The steady-state nonlinear heat balance equation according
to IEEE Std 738TM-2012 [12] is as follows:

qc + qr = qs + qj (1)

In Equation (1), qc is the heat loss rate due to convective
cooling, qr is the heat loss rate due to radiative cooling, qs is
the heat gain rate due to solar radiation, and qj is the heat gain
rate due to Joule heating. The detailed equations for these can
be referred to in the standards [12], [13], and Appendix A.

The nonlinear heat balance Equation (1) is essential to the
derivation of the WDPF algorithms. Equation (1) can be solved
to obtain the temperature of the line conductor (Tc) for any
amount of power flowing through it under any given weather
condition. This is then utilized to correct the resistance and
then the impedance of the line conductors yielding a more
accurate power flow.

A heat balance function (H) is formulated from Equa-
tion (1), which can be written as a function of ambient
temperature (Ta), wind speed (Vw), wind incidence angle
(φ), solar irradiance (Qs), and conductor temperature (Tc), as
follows:

H(Ta, Vw,φ, Qs, Tc) = qc + qr − qs − qj = 0 (2)

The heat balance function in Equation (2) is utilized in the
next section to derive the proposed algorithms.

IV. WEATHER-DEPENDENT POWER FLOW ALGORITHMS

This section presents the derivation of the proposed algo-
rithms, starting with the fully coupled WDPF algorithm in
polar form.

A. Fully Coupled Weather-Dependent Power Flow

The fully coupled WDPF algorithm in polar form is derived
considering the power injection equations and heat balance
function as presented in Equations (3), (4), and (5). In Equa-
tion (5), the Joule heating term (qjij ) is substituted by the
power loss expression of a conductor between bus i and bus
j. This enables derivation of the partial terms ∂H

∂δ and ∂H
∂V for

the weather-dependent branch conductors in the network.

Pk =

n�

i=1

VkViYki cos (δk − δi − δki) (3)

Qk =

n�

i=1

VkViYki sin (δk − δi − δki) (4)



Hij(Tcij ) = qrij + qcij − qsij −
�
(V 2

i + V 2
j )yij cos δij − 2ViVjyij cos (δi − δj − δij)

�
= 0 (5)

Application of Newton’s method to Equations (3), (4), and
(5) in order to solve for the solution states (V , δ, Tc) yields:
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In Equation (6), ΔP , ΔQ, and ΔH are the mismatch

vectors while V , δ, and Tc are the solution state vectors.
The derivation of partial derivative terms in the Jacobian are
presented in Appendix B. Algorithm 1 summarizes the fully
coupled WDPF algorithm in polar form and is referred to as
the FC-WDPF algorithm in this manuscript. The admittance
matrix Y (Tc) here is weather-dependent as it is calculated
based on the branch temperature estimate.

Algorithm 1: Weather-Dependent Power Flow

Read all input data (conductor, bus, load, weather);
Set error tolerance;
Initialize voltages and conductor temperatures;
while error > error tolerance do

Form/update admittance matrix Y (Tc);
Calculate power injection and heat balance

mismatch (Equation (6));
Calculate Jacobian matrix (Equation (6));
Calculate state mismatch (Equation (6));
Update states V , δ, Tc (Equation (6));
Update network resistances based on Tc

(Equation (A.7));
Update network impedances;

end
Output results;

B. Partially Decoupled Weather-Dependent Power Flow

In the partially decoupled weather-dependent power flow
(PD-WDPF) algorithm, the power system states (V , δ) and
the branch conductor temperature states (Tc) are solved and
updated separately every iteration as presented in Equation (7)
and (8). The inversion of the Jacobians in Equation (7)
and (8) is expected to be faster in comparison to the fully
coupled WDPF algorithm due to the smaller sizes of the
matrices. However, the solution is expected to require a higher
number of iterations. Algorithm 2 summarizes the PD-WDPF
algorithm.
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Algorithm 2: Partially Decoupled Weather-Dependent
Power Flow
Read all input data (conductor, bus, load, weather);
Set error tolerance;
Initialize voltages and conductor temperatures;
while error > error tolerance do

Form/update admittance matrix Y (Tc);
Calculate power injection mismatch (Equation (7));
Calculate Jacobian matrix (Equation (7));
Calculate heat balance mismatch (Equation (8));
Calculate Jacobian matrix (Equation (8));
Calculate state mismatch (Equation (7));
Calculate state mismatch (Equation (8));
Update states V , δ (Equation (7));
Update states Tc (Equation (8));
Update network resistances based on Tc

(Equation (A.7));
Update network impedances;

end
Output results;

C. Fast Decoupled Weather-Dependent Power Flow

The fast decoupled weather-dependent power flow algorithm
(FD-WDPF) is executed by calculating the voltage magnitudes
(V ), voltage angles (δ), and the branch conductor temperatures
(Tc) separately as presented in Equations (9), (10), and (11).
The Jabocians in the FD-WDPF algorithm are much smaller,
indicating faster computation times but a higher number of
iterations. Algorithm 3 summarizes the FD-WDPF algorithm.
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D. Sequential Weather-Dependent Power Flow

In the sequential weather-dependent power flow (S-WDPF)
algorithm, the power flow and the heat balance are solved sep-
arately and sequentially for power flow analysis. The algorithm
first forms the weather-dependent admittance matrix Y (Tc)
based on the initial conductor temperatures. The conventional
power flow is then solved followed by the solution of the
nonlinear heat balance to obtain a correct estimate of the
conductor temperature state. This is then utilized to update the
conductor resistance and form the updated weather-dependent
admittance matrix Y (Tc). This process is repeated until all the
mismatches are within the error tolerance. The main advantage
of the sequential algorithm is the usability of any existing
conventional power flow approach that can be followed by



Algorithm 3: Fast Decoupled Weather-Dependent
Power Flow

Read all input data (conductor, bus, load, weather);
Set error tolerance;
Initialize voltages and conductor temperatures;
while error > error tolerance do

Form/update admittance matrix Y (Tc);
Calculate active power injection mismatch

(Equation (9));
Calculate reactive power injection mismatch

(Equation (10));
Calculate heat balance mismatch (Equation (11));
Calculate Jacobian matrix (Equation (9));
Calculate Jacobian matrix (Equation (10));
Calculate Jacobian matrix (Equation (11));
Calculate state mismatch (Equation (9));
Calculate state mismatch (Equation (10));
Calculate state mismatch (Equation (11));
Update states V (Equation (9));
Update states δ (Equation (10));
Update states Tc (Equation (11));
Update network resistances based on Tc

(Equation (A.7));
Update network impedances;

end
Output results;

the solution of the branch conductor temperature states from
the heat balance equation. However, it may understandably be
computationally complex when scaled up to larger systems
requiring more number of power flow solution executions.
Algorithm 4 summarizes the S-WDPF algorithm.

V. NUMERICAL INVESTIGATION

Extensive simulations are performed to observe the conver-
gence computational and assess the computational complexity
of the proposed WDPF algorithms. Equitable comparisons
between the algorithms can become difficult due to differences
in computers, programming methods, and test problems [14].
In order to minimize these uncertainties, every algorithm
presented here was coded in MATLAB R� [15] on a stan-
dard desktop computer for fair investigation. A number of
power networks from the MATPOWER [16] library were
extracted for the investigation. MATPOWER networks do not
accompany conductor-specific data or weather-specific data.
Therefore, in our simulations, all branch conductors for the
simulated networks were assumed to be replaced by the 795
kcmil 26/7 Drake ACSR conductor [12] and lossless branches
were excluded from the analysis.

For simulation purposes, the hottest weather condition in
Bismarck, North Dakota, USA for the year 2017 was collected
from the National Renewable Energy Laboratory’s National
Solar Radiation Data Base (NSRDB) [17]. The selected loca-
tion has one of the largest temperature differences between the

Algorithm 4: Sequential Weather-Dependent Power
Flow
Read all input data (conductor, bus, load, weather);
Set error tolerance;
Initialize voltages and conductor temperatures;
while error > error tolerance do

Form/update admittance matrix Y (Tc);
while error PQ > error tolerance do

Calculate power injection mismatch
(Equation (7));

Calculate Jacobian matrix (Equation (7));
Calculate state mismatch (Equation (7));
Update states V , δ (Equation (7));

end
while error H > error tolerance do

Calculate heat balance mismatch
(Equation (8));

Calculate Jacobian matrix (Equation (8));
Calculate state mismatch (Equation (8));
Update states Tc (Equation (8));

end
Update network resistances based on Tc

(Equation (A.7));
Update network impedances;

end
Output results;

coldest and the hottest day of the year. The weather parameters
and their values utilized in the simulations are presented in
Table I. It is assumed that the entire network experiences the

TABLE I: Hottest weather conditions in 2017

Weather parameter Value
Ambient temperature (◦C) 39
Wind speed (m/s) 5
Wind incidence angle (◦) 20.9
Solar irradiance (W/m2) 699

same weather condition in the simulations.

A. Convergence Characteristics

The convergence characteristic of all the presented WDPF
algorithms is investigated first. Figure 1 presents the conver-
gence of all four WDPF algorithms for the 30-bus network.
A zoomed-in view of the first 20 iterations is included in the
figure. The FD-WDPF converges after around 140 iterations,
requiring the highest number of iterations while the FC-
WDPF algorithm converges in 5 iterations requiring the lowest
number of iterations. Both PD-WDPF and S-WDPF algorithms
converge to a maximum mismatch closer to the FC-WDPF
algorithm after 10 iterations.

Similarly, the convergence characteristics for the 89-bus net-
work is presented in Figure 2. A similar trend in convergence
is observed, however the number of iterations required by FD-
WDPF algorithm was lower.
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Fig. 1: Maximum mismatch (pu) versus number of iterations
for the 30-bus network [16].
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Fig. 2: Maximum mismatch (pu) versus number of iterations
for the 89-bus network [16].

It should be noted that in our investigations, the FD-WDPF
algorithm showed the worst convergence characteristics and
diverged for some of the tested networks. This is attributed to
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Fig. 3: Maximum mismatch (pu) versus number of iterations
for the 300-bus network [16].

the oversimplification of the nonlinear relationships by decou-
pling the power flow solution. As an example, the convergence
characteristic for the 300-bus network is presented in Figure 3.
It is observed that the maximum mismatch for the FD-WDPF
algorithm reduces until iteration 5, and then diverges without
reaching a solution.

An interesting observation in Figures 1, 2, and 3 is the

convergence of the PD-WDPF and the S-WDPF algorithm.
The convergence of the S-WDPF algorithm appears to be a
convergence trendline to the PD-WDPF algorithm. This is
logical as Equation (7) of the PD-WDPF algorithm represents
the conventional power flow, which is used in the S-WDPF
algorithm. However, the differing solution and update proce-
dure utilized in these two algorithms lead to the differences
observed in the convergence in Figure 3.

B. Computational Complexity

The most computationally complex step in any power flow
algorithm is the inversion of the Jacobian matrix. However,
due to advancements in the field of numerical techniques,
there are various efficient methods of inverting the Jacobian
matrix (LU decomposition, Gauss elimination, etc.) [18], [19].
In our codes, we employ the efficient internal algorithms of
MATLAB R� for the Jacobian inversion. It should be noted that
all the algorithms were coded in a similar fashion (including
the usage of Jacobian inversion in MATLAB R�) for fair
comparison. To compare the computational complexity of the
different algorithms, the total time of execution is compared
rather than the total number of operations.

Figure 4 presents the relative computation time for each of
the algorithms on a number of power networks ranging from a
4-bus network to a 2736-bus network. All computation times
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Fig. 4: Relative simulation time versus various power net-
works [16].

are normalized and presented in percentage by considering
the computation time of FC-WDPF as the base. The results
presented in Figure 4 are calculated by taking the average
time of 100 separate simulation runs for each network at the
same load under the weather conditions presented in Table I.
However, a fewer simulations were performed for the larger
network sizes as the FD-WDPF was taking excessively longer
times for these networks. For example, the FD-WDPF algo-
rithm took 281 seconds on average to complete one simulation
of the 2383-bus network while it took 329 seconds on average
to simulate the 2736-bus network (refer to Table II).

The FD-WDPF and the S-WDPF require more time than
the other algorithms for most of the networks. This can be
correlated to the convergence characteristics as observed in
Section V-A. Since the S-WDPF executes multiple load flows



to reach the solution, the computational time is higher. The
FD-WDPF, however, converges slowly towards the solution
requiring more time. For the largest networks, the FD-WDPF
becomes impractical due to very high computation time. An
interesting observation is that the PD-WDPF does not provide
a substantial advantage over the FC-WDPF.

Simulation times for the largest three of the networks are
presented in Table II. Our investigation reveals that the FC-
WDPF and the PD-WDPF are more promising as the network
size increases.

TABLE II: Computational time (s) for 118-bus, 2383-bus,
2736-bus network.

Network FC-WDPF PD-WDPF FD-WDPF S-WDPF
118-bus 0.14 0.15 0.21 0.21

2383-bus 51.74 39.50 281.67 59.77
2736-bus 58.98 58.52 329.49 79.97

C. Jacobian Characteristics

As a clear differentiating pattern in the computation time of
the algorithms was not achieved, a look into the Jacobians
of the proposed algorithms is important to understand the
algorithms.

The Jacobian of the FC-WDPF algorithm for the 4-bus
network is presented in Figure 5. The numbers on the axes

Fig. 5: Jacobian matrix of FC-WDPF algorithm (Equation (6))
for the 4-bus network [16].

represent row and column numbers of the Jacobian matrix.
The matrices and their corresponding partial derivative terms
are highlighted in Figure 5. As observed, the Jacobian matrix
is larger than conventional power flow Jacobian (four quad-
rants on the top-left of the Jacobian). Although sparsity is
observable, sparsity is dependent on the number of weather-
dependent branches in the network. As the number of weather-
dependent branches increases, the size of matrices ∂P

∂Tc
, ∂Q

∂Tc
,

∂H
∂δ , ∂H

∂V , and ∂H
∂Tc

increases as well. The nonzero elements in
these matrices adjust the power system states for the weather-
dependent impact, thereby resulting in a more accurate power
flow.

The Jacobians for the PD-WDPF algorithm and the FD-
WDPF algorithm are presented in Figures 6 and 7, respec-
tively. The Jacobians for the S-WDPF algorithm are the same
as the ones for the PD-WDPF algorithm.

(a) Jacobian Equation (7) (b) Jacobian Equation (8)

Fig. 6: Jacobian matrices of PD-WDPF algorithm (Equa-
tions (7) and (8)) for the 4-bus network [16].

The PD-WDPF algorithm has Jacobians that are smaller in
size in comparison to the FC-WDPF algorithm. This yields
shorter iteration times, but requires a higher number of it-
erations to achieve the solution. In contrast, the FC-WDPF
algorithm has a larger iteration time due to inversion of a larger
Jacobian, but requires a lower number of iterations. Overall,
the trade-off of faster iteration versus number of iterations
between these two algorithms seem to balance out as the
overall computation time difference is negligible for most of
the cases.

(a) Jacobian Equation (9) (b) Jacobian Equation (10)

(c) Jacobian Equa-
tion (11)

Fig. 7: Jacobian matrices of FD-WDPF algorithm (Equa-
tions (9), (10), and (11)) for the 4-bus network [16].



The FD-WDPF algorithm however neglects more matrices
due to decoupling, and has much smaller Jacobians as ob-
served in Figure (7). This does mean shorter iteration times,
but requiring a higher number of iterations. As a result, the
states update to the solution with smaller jumps resulting in
a large increase in the computation time as the network size
increases.

VI. CONCLUSION

This manuscript presented the derivation and comparison
of various novel weather-dependent AC power flow (WDPF)
algorithms. In addition, the FC-WDPF algorithm was derived
and presented in polar form. Investigation of the algorithms
presented reveals different convergence characteristics and
computational complexity. Our investigation suggests the FC-
WDPF algorithm offers a better balance between computa-
tion time and number of iterations. However, depending on
the use case, the choice of algorithm may vary. It is also
suggested that the FD-WDPF algorithm is more suitable for
smaller networks with solvable conditions. Overall, the WDPF
algorithms presented allow more accurate power flow analysis
and are expected to be used as a replacement to conventional
power flow algorithms. Future work entails derivation of other
weather-dependent power flow algorithms like the fixed-point
power flow, current injection power flow, etc. Investigation of
power system planning and operation utilizing the proposed
algorithms is also anticipated.
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APPENDIX A
NONLINEAR HEAT BALANCE MODEL OF CONDUCTORS

The nonlinear heat balance Equation (1) comprises qc, qr,
qs, and qj . The convective heat loss rate (qc) of a conductor
is of two types [12], [13]: natural convection and forced
convection. The convective heat loss rate is calculated utilising
the following equations:

qc1 = Kangle[1.01 + 1.35NRe
0.52]kf (Tc − Ta)

qc2 = 0.754KangleNRe
0.6kf (Tc − Ta)

qcn = 3.645ρf
0.5D0.75(Tc − Ta)

1.25

(A.1)

In Equation (A.1), qc1 and qc2 represent forced convection,
while natural convection is represented by qcn . The expression
in Equation (A.1) that outputs the maximum value is selected
as suggested by the standards [12], [13]. NRe in Equation (A.1)
is given by:

NRe =
DρfVw

µf
(A.2)

The radiated heat loss rate qr represents the rate at which
the heat energy of a conductor is radiated to its surroundings.
The equation to calculate the radiated heat loss rate [12] is
given as:

qr =
17.8

1004
Dε[(Tc + 273)4 − (Ta + 273)4] (A.3)

The solar heat gain rate of a conductor depends on its diam-
eter (D), the absorptivity (α), and the global solar irradiance
(Qs) [13]. This relationship is presented in Equation (A.4).

qs = αQsD (A.4)



The heat gain rate due to Joule heating (qj) in Equation (1)
is given by:

qj = Ploss = I2R(Tc) (A.5)

The power loss (Ploss) in a conductor between two buses, bus
i and bus j, can be derived as:

Plossij =
�
(V 2

i + V 2
j )yij cos δij − 2ViVjyij cos (δi − δj − δij)

�

(A.6)
Further details and assumptions regarding the heat balance

model should be referred to in the IEEE Std 738-2012 [12].
The nonlinear heat balance Equation (1) is solved to get the

temperature of the branch conductors (Tc) for any amount of
power flowing through it under any given weather conditions.
This is then utilized to update the branch resistance and then
the impedance, followed by the update of the admittance
matrix. Consequently, a weather-dependent admittance matrix
Y (Tc) that is corrected for the power flow and weather
conditions is achieved.

In Equation (A.5), R(Tc) is the resistance of the conductor
at the conductor temperature Tc, which is calculated as [12]:

R(Tc) =

�
R(Thigh)−R(Tlow)

Thigh − Tlow

�
(Tc −Tlow)+R(Tlow) (A.7)

In Equation (A.7), R(Tc) is the AC resistance at conductor
temperature Tc, R(Thigh) is the AC resistance at conductor
temperature Thigh, and R(Tlow) is the AC resistance at con-
ductor temperature Tlow such that Thigh > Tlow. The use of
Equation (A.7) means that the magnetic effects, skin effects,
and lay ratios are already included in the calculation [12].

APPENDIX B
DERIVATION OF THE JACOBIAN ELEMENTS

In this subsection, the partial derivative equations are de-
rived. The equations of P , Q, and H are differentiated with
respect to the states δ, V , and Tc.

1) ∂Pk

∂δi
: Active power Pk partially differentiated by δi

yields:

∂Pk

∂δi
=





−
n�

j=1
j �=k

VkVjYkj cos(δk − δj − δkj) for i = k

VkViYki cos (δk − δi − δki) for i �= k
(B.1)

2) ∂Pk

∂Vi
: Active power Pk partially differentiated by Vi

yields:

∂Pk

∂Vi
=





2VkYkk cos δkk +

n�

j=1
j �=k

VjYkj cos (δk − δj − δkj) for i = k

VkYki cos (δk − δi − δki) for i �= k
(B.2)

3) ∂Pk

∂Tcij
: Active power Pk partially differentiated by

branch temperature Tcij yields:

∂Pk

∂Tcij
=





(V 2
k − VkVj cos (δk − δj))

∂gij
∂Tcij

− (VkVj sin (δk − δj))
∂bij
∂Tcij

for i = k

(V 2
k − VkVi cos (δk − δi))

∂gij
∂Tcij

− (VkVi sin (δk − δi))
∂bij
∂Tcij

for j = k

0 for i, j �= k

(B.3)

4) ∂Qk

∂δi
: Reactive power Qk partially differentiated by δi

yields:

∂Qk

∂δi
=





n�

j=1
j �=k

VkVjYkj cos (δk − δj − δkj) for i = k

−VkViYki cos (δk − δi − δki) for i �= k
(B.4)

5) ∂Qk

∂Vi
: Reactive power Qk partially differentiated by Vi

yields:

∂Qk

∂Vi
=





− 2VkYkk sin δkk +

n�

j=1
j �=k

VjYkj sin (δk − δj − δkj) for i = k

VkYki sin (δk − δi − δki) for i �= k
(B.5)

6) ∂Qk

∂Tcij
: Reactive power Qk partially differentiated by

branch temperature Tcij yields:

∂Qk

∂Tcij
=





−VkVj sin (δk − δj)
∂gij
∂Tcij

+
�
VkVj cos (δk − δj)− V 2

k

� ∂bij
∂Tcij

for i = k

−VkVi sin (δk − δi)
∂gij
∂Tcij

+
�
VkVi cos (δk − δi)− V 2

k

� ∂bij
∂Tcij

for j = k

0 for i, j �= k

(B.6)
7) ∂Hij

∂δk
: Heat balance, Hij , partially differentiated by δk

yields:

∂Hij

∂δk
=





−2ViVjyij sin (δi − δj − δij) for k = i

2ViVjyij sin (δi − δj − δij) for k = j

0 for k �= i, j
(B.7)

8) ∂Hij

∂Vk
: Heat balance, Hij , partially differentiated by Vk

yields:

∂Hij

∂Vk
=





−2(Viyij cos δij − Vjyij cos (δi − δj − δij)) for k = i

−2(Vjyij cos δij − Viyij cos (δi − δj − δij)) for k = j

0 for k �= i, j
(B.8)

9) ∂Hij

∂Tckn
: Heat balance, Hij , partially differentiated by

Tckn
yields:

∂Hij

∂Tckn
=





∂qcij
∂Tcij

+
∂qrij
∂Tcij

−
�
V 2
i + V 2

j − 2ViVj cos(δi − δj)
� ∂gij
∂Tcij

for kn = ij

0 for kn �= ij

(B.9)
The admittance matrix utilized in the above equations is

the weather-dependent admittance matrix Y (Tc). yij , gij ,
and bij in the above equations are the branch admittance,
branch conductance, and branch susceptance, respectively. The
equations of ∂gij

∂Tcij
and ∂bij

∂Tcij
should be referred to in [4].


